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Abstract We study the integrability of a model of
elastic satellite whose centre of mass moves in a circu-
lar Keplerian orbit around a gravity centre. The satel-
lite is modelled by two point masses connected by
an extensible massless spring that obeys Hooke’s law.
It is assumed that the distance between point masses
is much smaller than the radius of the orbit, so the
orbital motion of the satellite is not perturbed by its
rotational motion. The gravity potential of the satel-
lite is expanded into a series with respect to its size
up to quadratic terms which describe the gravity gra-
dient torque acting on the satellite. Two cases are con-
sidered with Hooke’s centre localised in the centre of
mass of the dumbbell and at an arbitrary point along a
line connecting both masses. It is shown that the first
case appears to be integrable and super-integrable for
selected values of the parameter of the system. In the
second case, model depends effectively only on one
parameter and is non-integrable. In the proof, differ-
ential Galois integrability obstructions are used. For
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the considered sysem, these obstructions are deduced
thanks to the recently developed symplectic Kovacic’s
algorithm in dimension 4.According to our knowledge,
this is the first application of this tool to a physical
model.

Keywords Integrability obstructions · Tethered
satellite · Hamiltonian systems · Super-integrability

1 Introduction

We consider a model of an elastic dumbbell satellite
following Sidorenko and Celletti [10]. It consists of
two point masses connected by a massless spring and
moves in a central gravity field. We assume that the
dumbbell is short; thus, its orbital motion decouples
from its rotational motion. The dumbbell satellite mod-
els have attracted the attentionof scientists because they
are suitable for an investigation of the general proper-
ties of a rigid or elastic deformable body motion in a
gravity field.

The aim of this article is the integrability analy-
sis of this model. Two sets of coordinates: Cartesian
and spherical are used to show different aspects of
the dynamics. The complete integrability result for
physically important ranges of parameters variability
is obtained using the differential Galois theory and the
direct method of searching for first integrals.

The plan of the paper is as follows. In Sect. 2, we
derive equations of motion for the considered model.
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Fig. 1 Reference frame related to the considered model

We use two sets of coordinates which parametrise the
configuration space of the problem. Using the first one,
we can easily notice that the first model with Hooke’s
centre located at themass centre of the dumbbell is inte-
grable. In Sect. 3, we show that for particular values of
parameters this model is super-integrable. The second
set of coordinates is used in the proof of our main the-
orem which states that except explicitly distinguished
integrable cases the system is not integrable. So, in
this paper we give necessary and sufficient conditions
for integrability of the considered system. In Sect. 4,
we distinguish equilibria and certain invariant sets of
the system. We demonstrate also its chaotic behaviour
using numerical methods. Section 5 contains a proof of
ourmain theorem. It is based on the symplecticKovacic
algorithm recently formulated in Combot and Sanabria
[1]. This algorithm can be used to investigate systems
of variational equations in dimension 4. As this tool
is relatively new, we collect basic theoretical facts in
“Appendix”.

2 Equations of motion

Following Sidorenko and Celletti [10], we assume that
two pointmassesm1 andm2 are connected by an exten-
sible massless spring that obeys Hooke’s law. The cen-
tre of mass of this elastic dumbbell moves in an orbit
around a gravity centre located at the origin of the iner-
tial frame.We assume that the dimensions of the dumb-
bell are much smaller than the dimension of the orbit.

The radius vectors of masses m1 and m2 are

r1 = r + d1, r2 = r + d2, (2.1)

where r is the radius vector of the centre of mass of the
dumbbell, and

d := r2 − r1, d1 := − m2

m1 + m2
d,

d2 := m1

m1 + m2
d. (2.2)

The kinetic energy of the dumbbell is

T = 1

2
m1 ṙ1 · ṙ1 + 1

2
m2 ṙ2 · ṙ2 = 1

2
m ṙ · ṙ

+1

2
μḋ · ḋ, (2.3)

where

m = m1 + m2, μ = m1m2

m
. (2.4)

The gravitational potential energy of point masses
can be expanded into the Taylor series

Vi = − κmi

|r + di | = −κmi

|r|
[
1 − 2r · di + di · di

2|r|2

+3(r · di )2
2|r|4 + · · ·

]
, i = 1, 2, (2.5)

where κ = GM is the gravitational parameter of the
centre, see, e.g. Sidorenko and Celletti [10].

Thus, the gravitational potential of the dumbbell
reads

Vg = V1 + V2 = −κμ

|r|
+ κμ

2|r|3
[
d · d − 3(d · er )2

]
, (2.6)

where er = r/|r| is the unit vector in the direction to
the centre of mass.

We assume that the elastic dumbbell is permanently
straight, and the potential energy of its elastic deforma-
tions is given by

Ve = 1

2
c (|d| − d0)

2 = 1

2
c
(
|d|2 − 2d0|d| + d20

)
,

(2.7)

where d0 is the length of the undeformed spring. If
d0 = 0, then Hooke’s centre is localised at the centre
of mass of the dumbbell.Wewill discuss this case later.

In a typical study of the attitude motion of a satel-
lite, it is usually assumed that its orbital motion is not
perturbed by its rotation. Up to rotation of the Carte-
sian coordinates, we can assume that the mass centre
of the dumbbell moves in the (x, y)-plane of the iner-
tial frame along a circular Keplerian orbit with radius
a := |r|. Thus, the Lagrange function of the system is

L = 1

2
μḋ · ḋ − κμ

2a3

[
d · d − 3(d · er )2

]

−1

2
c (|d| − d0)

2 . (2.8)

It depends explicitly on time because components of
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Non-integrability of a model of elastic dumbbell satellite 127

er are time dependent. To remove this dependence, we
pass to the orbital frame with the origin at the centre
of mass of the dumbbell and with axes {s, t, n}, where
n and t are unit vectors normal and tangential to the
orbit, and s = t × n = r/r = er , see Fig. 1. We set

d = Aq, q = [q1, q2, q3]T , (2.9)

where qi are component of vector d with respect to the
orbital frame,

A =
⎡
⎣ cos(ωt) sin(ωt) 0

− sin(ωt) cos(ωt) 0
0 0 1

⎤
⎦ , (2.10)

and ω2 = κ/a3 is the orbital angular velocity. Then,

ḋ = Aq̇ + A(AT Ȧ)q = A
(
q̇ + ω × q

)
. (2.11)

According to our assumptions, s = er and ω =
ω[0, 0, 1]T . In termsof (q, q̇)variables, theLagrangian
reads

L = 1

2
μ
[
(q̇1 − ωq2)

2 + (q̇2 + ωq1)
2 + q̇23

]

−1

2
μω2

[
q · q − 3q21

]
− 1

2
c (|q| − d0)

2 . (2.12)

Assuming that d0 �= 0, we can rescale variables qi →
d0qi , and time t → ωt . Then, the above Lagrangian
transforms into L = μω2d20 L̃ , where

L̃ = 1

2

[
(q̇1 − q2)

2 + (q̇2 + q1)
2 + q̇23

]

−1

2

[
q · q − 3q21

]
− 1

2
γ (|q| − 1)2 , (2.13)

and γ := c/(μω2) is a new parameter. Let us note
that γ ≥ 0 that will be used in further considerations.
The standard Legendre transformation of the above
Lagrangian gives the following Hamiltonian function

H = 1

2

[
(p1 + q2)

2 + (p2 − q1)
2 + p3

2
]

+1

2

(
q23 − 3q21

)
+ 1

2
γ (|q| − 1)2 . (2.14)

The corresponding Hamilton equations read

Fig. 2 Angles characterising orientation of the dumbbell in the
orbital frame

q̇1 = p1 + q2,

ṗ1 = p2 + (2 − γ )q1 + γ q1√
q21 + q22 + q23

,

q̇2 = p2 − q1,

ṗ2 = −p1 − (γ + 1)q2 + γ q2√
q21 + q22 + q23

,

q̇3 = p3,

ṗ3 = −(γ + 1)q3 + γ q3√
q21 + q22 + q23

.

(2.15)

Now, we introduce new variables (ξ, ϕ, θ) useful in
further analysis

q1 = (1 + ξ) cos θ,

q2 = (1 + ξ) sin θ sin ϕ,

q3 = −(1 + ξ) sin θ cosϕ.

(2.16)

These variables are well defined for θ �= 0, π. The
angles ϕ and θ are defined as it is shown in Fig. 2. In
these variables, Lagrangian L̃ given in (2.13) takes the
form

L̃ = 1

2
(ξ + 1)2

[
(θ̇ + 2 sin ϕ)θ̇ + (cosϕ sin(2θ)

+ sin2 θϕ̇
)

ϕ̇
]

+ 1

2
ξ̇2

+1

8
(ξ + 1)2

[
3 + cos(2θ) − 2 cos(2ϕ) sin2 θ

]

−1

2
γ ξ2 + 1

4
(ξ + 1)2 (1 + 3 cos(2θ)) , (2.17)

and making its Legendre transformation, we obtain the
following Hamilton function
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128 T. Combot et al.

H = 1

2(ξ + 1)2

(
p2ϕ

sin2 θ
+ p2θ

)
+ p2ξ

2

− pϕ cosϕ cot θ − pθ sin ϕ

+ 1

2
γ ξ2 − 1

4
(ξ + 1)2 (1 + 3 cos(2θ)) .

(2.18)

The corresponding Hamilton equations take the form

ϕ̇ = pϕ

(ξ + 1)2 sin2 θ
− cosϕ cot θ,

θ̇ = pθ

(ξ + 1)2
− sin ϕ,

ξ̇ = pξ ,

ṗϕ = pθ cosϕ − pϕ sin ϕ cot θ,

ṗθ =
(

pϕ cot θ

(ξ + 1)2
− cosϕ

)
pϕ

sin2 θ

− 3(ξ + 1)2 sin θ cos θ,

ṗξ = 1

(ξ + 1)3

(
p2ϕ

sin2 θ
+ p2θ

)

+ 1

2
(1 − 2γ + 3 cos(2θ)) ξ + 2 − 3 sin2 θ.

(2.19)

At this point, we explain why we derived equations
of motion in two sets of coordinates in the configu-
ration space of the system. In the Cartesian coordi-
nates, the state of the system is described by (q, q̇)

or (q, p) which are ‘almost’ global, that is (q, p) ∈
(R3 \ {0}) × R

3. We have to remove q = 0 from the
configuration space because if cd0 �= 0, then the elastic
potential

Ve = 1

2
c (|q| − d0)

2 (2.20)

is not differentiable at q = 0. Moreover, if γ =
0, then the Hamiltonian (2.14) is a homogeneous
quadratic polynomial function of (q, p), so equations
ofmotion (2.15) are linear and thus, they are integrable.
However, this property is not obvious in other coordi-
nates, see Hamiltonian (2.18) and Eq. (2.19).

On the other hand, we will use coordinates (ξ, ϕ, θ)

in our proof of the main theorem of this paper, namely

Theorem 2.1 If γ > 0, then the system given by
Hamiltonian (2.18) is not integrable in the Liouville
sense with first integrals which are meromorphic in
pϕ, pθ , pξ , ξ, cos θ, sin θ, cos ϕ, sin ϕ.

Remark that the variable change between Cartesian
coordinates and coordinates (2.16) transforms mero-

morphic functions in p, q,

√
q21 + q22 + q23 to mero-

morphic functions in pϕ, pθ , pξ , ξ, cos θ, sin θ, cosϕ,

sin ϕ. Thus, Theorem 2.1 forbids the existence of addi-
tional first integrals of Hamiltonian (2.14) meromor-

phic in p, q,

√
q21 + q22 + q23 .

The proof of this theorem is quite long and the proper
choice of coordinates allows to avoid several analytical
difficulties and complications.

In the end, let us underline that we derive the Hamil-
tonians mentioned in the above theorem under assump-
tion that d0 �= 0. The case d0 = 0 is itself interesting,
and it is considered in the next section.

3 Integrable and super-integrable cases

In order to have possibility to investigate cases with
d0 = 0, we rescale only time variable t → ωt in the
Lagrange function (2.12). Then, L = μω2 L̃ , where
now

L̃ = 1

2

[
(q̇1 − q2)

2 + (q̇2 + q1)
2 + q̇23

]

−1

2

[
q · q − 3q21

]
− 1

2
c (|q| − d0)

2 . (3.1)

The corresponding Hamilton function is

H = 1

2

[
(p1 + q2)

2 + (p2 − q1)
2 + p3

2
]

+1

2

(
q23 − 3q21

)
+ 1

2
c (|q| − d0)

2 . (3.2)

Let us notice that for d0 = 0 or γ = 0 this Hamilto-
nian is a homogeneous polynomial of degree two with
respect to phase variables (q, p) and thus, its equations
of motion are linear in variables.

In the remaining part of this section,wewill consider
case d0 = 0 with simplified Hamiltonian

H = 1

2

[
(p1 + q2)

2 + (p2 − q1)
2 + p3

2
]

+1

2

(
q23 − 3q21

)
+ 1

2
γ q2. (3.3)

This system is integrablewith commuting first integrals

I1 = p23 + (γ + 1)q23 , I2 = 3(p2 + q1)
2

− 4γ (p2q1 − p1q2) + 3γ q22 .

The examples of time evolution of our system for
two different initial conditions are presented in Figs. 3
and 4. Figures 3a and 4a show spatial motion of the
dumbbell vector q in the orbital system, and Figs. 3b
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Non-integrability of a model of elastic dumbbell satellite 129

(a)

(c) (d) (e)

(b)

Fig. 3 Time evolution of components of vector q for d0 = 0 and γ = 500. Initial conditions: q1(0) = 1
2 , q2(0) = 1

10 , q3(0) = 1
20 ,

p1(0) = p2(0) = p3(0) = 0

and 4b the corresponding projections of these trajec-
tories on plane (q1, q2). The inclination θ oscillates
between −π and 0, see Figs. 3c and 4c. The time
changes of the azimuth angle ϕ are more complicated
as the vector q rotate and the direction of these rota-
tions is changing more or less periodically, see Figs. 3d
and 4d. The deformation parameter of the dumbbell ξ
oscillates with high frequency which illustrate Figs. 3e
and 4e .

If we additionally assume that γ = 0, then one can
find onemore first integral. Thus, in this case the system
has three additional first integrals

I1 = p23 + q23 , I2 = p2 + q1,

I3 = 2p2 p3 + p3q1 + p1q3 + q2q3.

They are functionally independent together with H and
satisfy the following commuting relations

{I1, I2} = 0, {I2, I3} = 0,

{I1, I3} = 2I4 = 2(q1q3 + p1 p3 + 2p2q3 − p3q2).

Thus, if γ = 0, then the system is super-integrable,
but H, I1, I2, I3, I4 are algebraically dependent as the
following relation holds true

I 21 + I 23 + I 24 − I1(2H + 3I 22 ) = 0. (3.4)

It is natural to ask if for other values of γ the system
is super-integrable. To answer this question,weobserve
that for a generic value of γ the system is integrable so
its invariant tori are three-dimensional manifolds in the
phase space. With each such a torus, we have related
three periodswhich are independent overZ. If onemore
additional first integral appears, then its common level
with the invariant torus is typically a torus of dimension
two. So, if the system is super-integrable, then the three-
dimensional torus is foliated by two-dimensional tori.
This is why the three periods cannot be Z independent.
Thus, if the system is super-integrable, then a resonance
between basic frequencies appears.
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(a) (b)

(c) (d) (e)

Fig. 4 Time evolution of components of vector q for d0 = 0 and γ = 500. Initial conditions q1(0) = 1
2 , q2(0) = 1

10 , q3(0) = 1
20 ,

p1(0) = p3(0) = 0, p2(0) = 5

For the considered system, this approach is particu-
larly simple because Hamilton equations are linear

dx
dt

= Ax, (3.5)

with x = [q, p]T and with matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 0 0
−1 0 0 0 1 0
0 0 0 0 0 1

2 − γ 0 0 0 1 0
1 −1 − γ 0 −1 0 0
0 0 −1 − γ 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (3.6)

To identify characteristic frequencies of this system,
let us check the characteristic polynomial of this matrix

p(λ) = det[A − λI]
=
(
γ + λ2 + 1

) (
(2γ + 1)λ2 + (γ − 3)γ + λ4

)
.

After substitution λ = iω, characteristic equation
takes the form

(γ − ω2 + 1)
[
ω4 − (2γ + 1)ω2 + (γ − 3)γ

]
= 0.

Its solutions are of the form ±ωk , k = 1, 2, 3, where

ω1 = √
γ + 1, ω2 = 1√

2

√
1 + 2γ −√

16γ + 1,

ω3 = 1√
2

√
1 + 2γ +√

16γ + 1.

Thus, if the matrix is diagonalisable, using a canoni-
cal change of variables the Hamiltonian (3.3) can be
transformed to the form

H =
3∑

i=1

σi Ii (3.7)

where now (Ii , ϕi ) are canonical action-angle variables
and σi = εiωi , with εi ∈ {−1,+1}, for i = 1, 2, 3.
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Non-integrability of a model of elastic dumbbell satellite 131

Clearly, I1, I2 and I3 are first integrals of the system. If
there is a resonance between frequencies of the form

n1σ1 + n2σ2 + n3σ3

= m1ω1 + m2ω2 + m3ω3 = 0,

mi = εi ni , ni ∈ Z, (3.8)

then

ψ := n1ϕ1 + n2ϕ2 + n3ϕ3, (3.9)

is a first integral of the system. The number |n| :=
|n1| + |n2| + |n3| is called the order of the resonance.
Instead of ψ it is more useful to consider the first inte-
gral I4 = sinψ (or I4 = cosψ). Since sinψ and cosψ

are polynomials of degree |m| in canonical variables,
the additional first integral for cases corresponding to
resonance conditions (3.8) can be chosen a homoge-
neous and polynomial function in variables (q, p) of
degree equal to the order of resonance |m|.

Below, we list triples of integers (m1,m2,m3) ∈ Z
3

with |m| ≤ 4 that corresponds to γ ≥ 0.
Let us notice that for γ = 0wehaveω1−ω3 = 0 and

ω2 = 0, thus |m| = 2, and this is the only resonance
of order 2 with γ ≥ 0. In this case, matrix A is not
diagonalisable.

There are three resonances of degree 3. For the res-
onance, ω1 + ω2 − ω3 = 0 corresponding to γ = 4
one can find the following first integral

I4 = p1 p3(−3p2 + q1) + p3(p2 − 9q1)q2

+ (2p22 − 4p21 + 3p2q1 − 7q21 − 6p1q2 + 14q22 )q3.

Resonances ω1 − 2ω2 = 0 and ω3 − 2ω2 = 0 occur
for γ = 29

9 + 2
√
217
9 and γ = 91

18 + 5
√
337
18 , respectively.

We do not list the explicit forms of the corresponding
first integrals because they are too long.

There are also three resonances of order four. If γ =
51
32 + 7

√
57

32 , then resonance ω1 + 2ω2 − ω3 = 0 occurs
and the additional first integral is rather complicated

I4 = 4p3(128(−38 + 5
√
57)p32

+16(−665 + 87
√
57)p22q1

+7(−247 + 37
√
57)q31

−(1311 + 163
√
57)q1q

2
2

+4p2((−1919 + 253
√
57)q21

+(−19 + 9
√
57)q22 ))

+64(19 + 7
√
57)p31q3

+q2
(
16(−475 + 81

√
57)p22

+8(−1615 + 237
√
57)p2q1

−(10659 + 23
√
57)q21

+7(893 + 137
√
57)q22

)
q3

+16p21(32
√
57p2 p3 + 4(−19

+√
57)p3q1 + (−95 + 29

√
57)q2q3)

+4p1(8p3(−152p2 + (133 + 25
√
57)q1)q2

+(16(−171 + 17
√
57)p22

+8(−551 + 53
√
57)p2q1

+(−779 + 289
√
57)q21 )q3

−(2983 + 267
√
57)q22q3).

Resonances ω1 − 3ω2 = 0 and 3ω2 −ω3 = 0 occur
for γ = 67

32 + 9
√
57

32 and γ = 21
8 + 15

4
√
2
, respectively.

Here, we do not list the form of additional first integrals
for these cases.

In a generic Liouville integrable case, connected
compact common levels of three independent first inte-
grals are three dimension tori. In a super-integrable case
the dimension of invariant tori is smaller. Let us con-
sider a common level of four independent first integrals

M = {(q, p) ∈ R
6 | H = h, I1 = α1, I2 = α2,

I3 = α3},
where h, and αi are real constants. It is a two-
dimensional surface in R

6. We can visualise it in the
configuration space R

3 and eliminate momenta from
polynomial equations defining level M. As result, we
obtain a polynomial P(q, h, α1, α2, α3). Its zero level
defines an algebraic surface which is the image of
the invariant torus in the configuration space. Polyno-
mial P is a product of irreducible polynomials P =
P1 · · · Pk , k > 1 and Pi = 0 defines a connected com-
ponent of the surface. In Fig. 5, we present components
of these algebraic surfaces selected by the choice of the
initial condition q1(0) = 1

2 , q2(0) = 1
10 , q3(0) = − 1

5 ,
p1(0) = p2(0) = p3(0) = 0. The trajectory for this
initial condition is shown as black line on these sur-
faces. Surfaces shown in Fig. 5c, f are cylinders as the
polynomials defining them do not depend of q3. Thus,
for these cases invariant manifoldsM are not compact.

Time evolution of inclination θ , azimuth angle ϕ

and the deformation parameter of the dumbbell ξ cor-
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132 T. Combot et al.

Fig. 5 Time evolution of
vector q for selected
super-integrable cases.
Initial conditions:
q1(0) = 1

2 , q2(0) = 1
10 ,

q3(0) = − 1
5 , p1(0) =

p2(0) = p3(0) = 0. Time
of integration t = 250 for
(a–d), t = 500 for (e) and
t = 350 for (f)

(a) (b)

(c) (d)

(e) (f)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Fig. 6 Time evolution of θ , ϕ and ξ for selected super-integrable cases. Initial conditions: q1(0) = 1
2 , q2(0) = 1

10 , q3(0) = − 1
5 ,

p1(0) = p2(0) = p3(0) = 0
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responding to these super-integrable cases is shown in
Fig. 6.

If relation (3.8) holds for two non-colinear m1,m2,

m3, the system is doubly resonant, and then it would
admit twoadditional first integrals.Asω1 = √

γ + 1 >

0, we can divide by it relation (3.8), and noting

ρ1 = ω2

ω1
= 1√

2

√
2γ − √

16γ + 1 + 1

γ + 1
,

ρ2 = ω3

ω1
= 1√

2

√
2γ + √

16γ + 1 + 1

γ + 1
, (3.10)

we obtain that both ρ1, ρ2 should be rational.

Proposition 3.1 The system (3.5) has a double reso-
nance only for γ = 0.

Let us recall that for γ = 0 matrix A is not diagonal-
isable and this is why the system is super-integrable in
this case with just one additional first integral.

Proof Taking both Eqs. (3.10) and eliminating γ by a
resultant formula, we obtain the relation

4ρ4
1 + 7ρ2

1ρ
2
2 + 4ρ4

2 − 11ρ2
1 − 11ρ2

2 + 7 = 0. (3.11)

We are looking for rational solutions of this curve. Not-
ing s = ρ2

1 , ifρ1, ρ2 is a rational solution of (3.11), then
s, ρ2 is a rational solution of

4s2 + 7sρ2
2 + 4ρ4

2 − 11s − 11ρ2
2 + 7 = 0. (3.12)

This curve is an elliptic curve, and its Weierstrass form
is v2 = u3 + 191u + 99198. Magma computational
algebra system manages to compute its Mordell–Weil
group, and it admits only 6 rational points, leading to
the following rational solutions (s, ρ2)

(1,±1), (1, 0), (0,±1),

(
7

4
, 0

)
.

For the last one, s is not a rational squared, thus does
not lead to a rational solution of (3.11). Solution (0, 1)
gives γ = 0, and the others do not lead to a nonnegative
γ . �	

Removing the radicals in (3.8), we find that γ should
satisfy the following quartic polynomial

(−m3 + m1 + m2)
2(m3 + m1 + m2)

2

(−m2 + m3 + m1)
2(−m2 + m1 − m3)

2γ 4

+ (4m8
1 − 14m6

1m
2
2 − 14m6

1m
2
3

+ 10m4
1m

4
2 + 60m4

1m
2
2m

2
3 + 10m4

1m
4
3 + 6m2

1m
6
2

− 70m2
1m

4
2m

2
3 − 70m2

1m
2
2m

4
3 + 6m2

1m
6
3 − 6m8

2

− 8m6
2m

2
3 + 28m4

2m
4
3 − 8m2

2m
6
3 − 6m8

3)γ
3

+ (6m8
1 − 18m6

1m
2
2 − 18m6

1m
2
3 + 3m4

1m
4
2

+ 112m4
1m

2
2m

2
3 + 3m4

1m
4
3 + 16m2

1m
6
2 − 116m2

1m
4
2m

2
3

− 116m2
1m

2
2m

4
3 + 16m2

1m
6
3 + 9m8

2 + 58m6
2m

2
3

+ 122m4
2m

4
3 + 58m2

2m
6
3 + 9m8

3)γ
2

+ (4m8
1 − 10m6

1m
2
2 − 10m6

1m
2
3 + 60m4

1m
2
2m

2
3

+ 6m2
1m

6
2 − 44m2

1m
4
2m

2
3 − 44m2

1m
2
2m

4
3 + 6m2

1m
6
3

+ 6m6
2m

2
3 + 20m4

2m
4
3 + 6m2

2m
6
3)γ

+ (m2
1 − m2

3)
2(m2

1 − m2
2)

2 = 0.

Then, substituting m1,m2,m3 by integers gives res-
onant γ ’s as solutions of this equation. Relation (3.8)
defines a straight line with rational slope in ρ1, ρ2 coor-
dinates for each triplet of (m1,m2,m3), and the ones
leading to nonnegative γ ’s are represented in Fig. 7 for
|m| ≤ 4.

Compared with a generic Hamiltonian system with
three degrees of freedom not all resonances for our
system are possible because the quartic equation could
have no nonnegative roots (compare with Karabanov
and Morozov [4]).

4 Basic properties of the system

We start this section with numerical examples show-
ing behaviour in time of the dumbbell with d0 �= 0
obtained by integration of equations of motion in angu-
lar variables (2.19). Presented simulations were made
for γ = 500. All simulations were performed using
software Mathematica with working precision at least
13 so that precision of 13 digits has been maintained
during internal computations. We chose four initial
conditions given below for which the dynamics looks
different
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Non-integrability of a model of elastic dumbbell satellite 135

IC 1: ϕ(0) = 0, θ(0) = π
2 − 1

20 , ξ(0) = − 1
γ+1 =

− 1
501 , pϕ(0) = pξ (0) = pθ (0) = 0 that belong

to the energy level E = 0.49527,
IC 2: ϕ(0) = 1, θ(0) = 1

10 , ξ(0) = − 1
10 , pϕ(0) =

− 1
2 , pθ (0) = pξ (0) = 0 that belong to the

energy level E = 19.8783,
IC 3: ϕ(0) = 0, θ(0) = − 1

2 , ξ(0) = 1
10 , pϕ(0) =

1
2 , pθ (0) = − 2

3 , pξ (0) = 0 that belong to the
energy level E = 3.25553,

IC 4: ϕ(0) = π
4 , θ(0) = − 1

2 , ξ(0) = 1
10 , pϕ(0) =

1
2 , pθ (0) = − 2

3 , pξ (0) = 0 that belong to the
energy level E = 3.45886.

Spatial motion of the dumbbell vector q(t) in the
orbital frame expressed in angular variables in (2.16)
for the above initial conditions is presented in Fig. 8.
The corresponding time evolutions of the inclination
angle θ , the azimuth angle ϕ and the deformation
parameter ξ are shown in Fig. 9. One can notice that
for initial conditions IC 1 oscillations of ξ have small
amplitude, so the end of vector q moves approximately
on a sphere; its inclination oscillates and rotates around
the q3-axis. For remaining considered initial condi-
tions, the length of the dumbbell ξ changes consid-
erably and the motion of the dumbbell vector q is a
superposition of oscillations of θ and ξ and rotations
of ϕ.

These numerical experiments just illustrate the com-
plexity and the variety of dynamics of the system.How-
ever, for further analytical and numerical investigations
we need to identify its simplest invariant sets.

Hamilton’s equations (2.15) have the following
equilibria: saddle-centre-centres L1,2, saddle-saddle-
centres S1,2 and for elastic dumbbell satellite rigid

Fig. 7 Resonance curves by means of the rotation numbers with
orders |m| = 2 in blue, |m| = 3 in green, and |m| = 4 in red

enough with γ > 3 centre-centre-centres O1,2 with
the (q, p) coordinates

L1,2 : (0,±1, 0,∓1, 0, 0),

S1,2 :
(
0, 0,± γ

γ + 1
, 0, 0, 0

)
,

O1,2 :
(
± γ

γ−3 , 0, 0, 0,± γ
γ−3 , 0

)
.

Eigenvalues of linearization of vector field (2.15) at the
respective equilibria are following

• for L1,2 :

λ1,2 = ± i√
2

√
�, λ3,4 = ±√

6

√
γ

�
, λ5,6 = ±i,

where � = γ + 1 + √
γ (γ + 14) + 1;

• for S1,2

λ1,2= ±
√
1

2

(
1+i

√
15
)
≈ ±1.11803 ± 0.866025i,

λ3,4= ±
√
1

2

(
1−i

√
15
)
≈ ±1.11803 ∓ 0.866025i,

λ5,6 = ±i
√

γ + 1,

• and for O1,2

λ1,2 = ± i√
2

√
�, λ3,4 = ±i

√
6(γ − 3)

�
,

λ5,6 = ±2i,

where � = γ + 4 + √
γ (γ − 4) + 52.

In variables (ϕ, θ, ξ, pϕ, pθ , pξ ), equilibria are given
by

L1 : (∓π
2 ,∓π

2 , 0, 0,∓1, 0
)
,

L2 : (∓π
2 ,±π

2 , 0, 0,∓1, 0
)
,

S1 :
(
0,−π

2 ,− 1
γ+1 , 0, 0, 0

)
,
(
π, π

2 ,− 1
γ+1 , 0, 0, 0

)
,

S2 :
(
0, π

2 ,− 1
γ+1 , 0, 0, 0

)
,
(
π,−π

2 ,− 1
γ+1 , 0, 0, 0

)
.
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(a) (b)

(c) (d)

Fig. 8 Time evolution of vector q for selected initial conditions and the time of integration t
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 9 Time evolution of θ, ϕ and ξ

Equilibria O1,2 lie on axis s = 0, where angular coor-
dinates (2.16) are not defined.

Themethods used to prove that the system is not inte-
grable require that we know a non-equilibrium solution
of the system. There is no general method how to find
such a solution.However, the considered systemadmits
an invariant two-dimensional manifold

M2 :=
{
(q, p) ∈ R

3 × R
3|q1 = q2 = p1 = p2 = 0

}
,

on which it reduces to a one degree of freedom Hamil-
tonian system describing oscillations of vertically ori-
ented satellite.

In variables (ϕ, θ, ξ, pϕ, pθ , pξ ), this manifold is
given by

M2 =
{
(ϕ, θ, ξ, pϕ, pθ , pξ ) ∈ R

6|ϕ = 0, θ = π
2 ,

pϕ = pθ = 0
}
.
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The Hamiltonian system (2.15) admits also the
invariant manifold

M4 :=
{
(q, p) ∈ R

3 × R
3 | q3 = p3 = 0

}
, (4.1)

on which it is a Hamiltonian system with two degrees
of freedom with Hamiltonian

H = 1

2

[
(p1 + q2)

2 + (p2 − q1)
2
]

−3

2
q21 + 1

2
γ

(
q − q

|q|
)2

, (4.2)

where q = (q1, q2).
In angular coordinates (2.16), this manifold is

defined by

M4 =
{
(ϕ, θ, ξ, pϕ, pθ , pξ ) ∈ R

6 | ϕ = π

2
, pϕ = 0

}
.

On this manifold, variable θ becomes the polar angle
in the plane, Hamiltonian of the restricted system has
the form

H = p2θ
2(ξ + 1)2

+ p2ξ
2

− pθ

+1

2
γ ξ2 − 1

4
(ξ + 1)2 (1 + 3 cos(2θ)) (4.3)

and the corresponding Hamilton equations read

θ̇ = pθ

(ξ + 1)2
− 1, ṗθ = −3

2
(1 + ξ)2 sin(2θ),

ξ̇ = pξ ,

ṗξ = p2θ
(ξ + 1)3

− γ ξ + 1

2
(ξ + 1) (1 + 3 cos(2θ)) .

(4.4)

This two degrees of freedom system onM4 does not
seem to be integrable. This is suggested in the sequence
of the Poincaré cross-sections shown in Fig. 10. Fol-
lowing Sidorenko and Celletti [10], we take γ = 500
that corresponds to considered in this paper value of
parameter β = 1

γ
= 0.002. Cross-sectional plane was

chosen ξ = 0, and points are generated when pξ > 0.
Angle θ is taken modulo π . These cross-sections show
that for low energies the dumbbell oscillates periodi-
cally with small amplitude around the direction to the
gravitational centre, and this periodic motion is stable,
see Fig. 10a. Increasing energy we can achieve that
besides quasi-periodic oscillations rotations are possi-
ble. Moreover, visible chaos appears, but still the peri-
odic solution with small amplitude is stable. However,
when the energy is big enough, then it vanishes and a
new hyperbolic periodic solution with small amplitude
appears.

These numerical examples suggest moreover that
the original system with three degrees of freedom is
not integrable. In fact, if the system restricted to M4

is not integrable, then the original system is not inte-
grable. We tried to prove directly that the restricted
system is not integrable using differential Galois tools,
however, in vain because we were not able to find a
non-equilibrium particular solution.

5 Proof of Theorem 2.1

Weconsider the complexificationof the considered sys-
tem in order to apply differential Galois methods to the
integrability analysis. Applied notions and results of
this theory are shortly described in “Appendix”.

Hamilton equations (2.19) have complex invariant
manifold given by

M2 = {(ϕ, θ, ξ, pϕ, pθ , pξ ) ∈ C
6 | ϕ = 0, θ = π

2 ,

pϕ = pθ = 0}.

OnmanifoldM , there is a family of particular solutions
defined as solutions of the following linear inhomoge-
neous system

ξ̇ = pξ , ṗξ = −(γ + 1)ξ − 1. (5.1)

It has first integral

h = 1
2 p

2
ξ + 1

2ξ (2 + (γ + 1)ξ)

and its solutions are

ξ(t) = C1 cos
(√

1 + γ t
)

+C2 sin
(√

1 + γ t
)

− 1

γ + 1
.

Let [�,�,�, Pϕ, Pθ , Pξ ]T denote variations of
variables [ϕ, θ, ξ, pϕ, pθ , pξ ]T . Then, the variational
equations along this particular solution will take the
form
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(a) (b)

(c) (d)

(e) (f)

Fig. 10 Poincaré cross-sections for γ = 500
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⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�̇

�̇

Ṗϕ

Ṗθ

�̇

Ṗξ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1
(ξ+1)2

0 0 0

−1 0 0 1
(ξ+1)2

0 0

0 0 0 1 0 0
0 3(ξ + 1)2 −1 0 0 0
0 0 0 0 0 1
0 0 0 0 −(γ + 1) 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�

�

Pϕ

Pθ

�

Pξ ,

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

where ξ = ξ(t) satisfies (5.1).
We notice that variational equations separate into

two blocks: normal variational equations for variables
[�,�, Pϕ, Pθ ]T and tangential equations for variables
[�, Pξ ]T .

We will now analyse normal variational equations.
This system of four equations can be rewritten as the
fourth-order equations, e.g. for variable�.We choose a
particular solution corresponding to h = 0 just for sim-
plification of expressions. After the change of indepen-
dent variable t → z = ξ(t), we obtain the following
equation

�(4) + a3(z)�
′′′ + a2�

′′ + a1�
′ + a0� = 0, (5.2)

where ′ = d
dz , with coefficients

a3 = 10(γ − 3)(γ + 1)z3 + (γ (5γ − 29) − 90) z2 − 2(7γ + 39)z − 18

z(z + 1)((γ − 3)z − 3)((γ + 1)z + 2)
,

a2 = 1

z2(z + 1)2((γ − 3)z − 3)((γ + 1)z + 2)2[
(γ − 3)(γ + 1)(23γ + 24)z5 +

(
γ (γ (24γ − 47)

−423) − 360
)
z4 + (γ (γ (4γ − 47) − 546) − 657) z3

− (16γ (γ + 18) + 531) z2 − 9(5γ + 19)z − 9
]
,

a1 = 1

z2(z + 1)2((γ − 3)z − 3)((γ + 1)z + 2)2[
3(γ − 3)(γ + 1)(3γ + 4)z4 +

(
γ (γ (6γ − 29)

−159) − 144
)
z3 − 3(γ (10γ + 61) + 66)z2

−2(γ + 18)(2γ + 3)z − 3(γ + 6)
]
,

a0 = − γ
(
4(γ − 3)z2 + (γ − 27)z − 18

)
z(z + 1)2((γ − 3)z − 3)((γ + 1)z + 2)2

.

The companion matrix of this equation is

A =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1

−a0 −a1 −a2 −a3

⎤
⎥⎥⎦ ,

seeEq. (A.5) for the definitionof the companionmatrix.
We check whether fourth-order differential operator
defined by Eq. (5.2) is symplectic. To this aim, we look

for a skew-symmetric matrix

W = w0

⎡
⎢⎢⎣

0 w1 w2 w3

−w1 0 w4 w5

−w2 −w4 0 w6

−w3 −w5 −w6 0

⎤
⎥⎥⎦ , (5.3)

which satisfies the matrix equation

ATW + W A + W ′ = 0, (5.4)

see Combot and Sanabria [1]. Common factor w0 of
all entries of this matrix was distinguished just for sim-
plifying the result form. Equation (5.4) has a solution
with the following entries

w0 = (z + 1)
√
z(γ z + z + 2)

(γ − 3)z − 3
,

w1 = −3(γ + 6) − z (14γ + (5γ + 12)z + 24) ,

w2 = −3(z + 1) (z(3γ + 5(γ + 1)z + 10) + 3) ,

w3 = −3z(z + 1)2(γ z + z + 2),

w4=z
[
4(γ+6)+z

(
γ (2γ+27)+3(γ+1)(4γ+5)z2

+
(
8γ 2 + 62γ + 60

)
z + 72

)]
+ 3,

w5=z(z+1)(γ z+z+2)
[
z(γ+3(γ+1)z + 6) + 1

]
,

w6 = z2(z + 1)2(γ z + z + 2)2.

Because of the presence of the square root√
z(γ z + z + 2) matrix W defines a projective sym-

plectic structure. This structure is not-degenerated
because

detW = 16z6(z + 1)10(γ z + z + 2)6

((γ − 3)z − 3)2
�= 0.

This implies that differential Galois group G of differ-
ential Eq. (5.2) is a subgroup of projectively symplectic
matrices PSP(4,C). In our further considerations, we
use positivity of parameter γ , γ > 0.

Our proof is based on the necessary conditions for-
mulated in LemmaA.5 contained in “Appendix”. Thus,
at first, we show that Eq. (5.2) does not have any hyper-
exponential solution. Function f (z) is called hyperex-
ponential if its logarithmic derivative f ′(z)/ f (z) is a
rational function. If γ ∈ R

+ \ {0, 3
5 , 1}, Eq. (5.2) has

five regular singularities: z1 = −1, z2 = 3
γ−3 , z3 = 0,

z4 = − 2
γ+1 and z5 = ∞. The sets of exponents at the

respective singularities are following

E1 = {−1, 0, 1, 1}, E2 = {0, 1, 2, 4},
E3 = E4 =

{
0,

1

2
, 1,

3

2

}
, E5 = {c1, c2, c3, c4},
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where ci are roots of the following polynomial of
degree 4

(γ + 1)2Z4 − 4(γ + 1)2Z3 + (γ + 1)(4γ

+5)Z2 − 2(γ + 1)Z − 4γ = 0. (5.5)

They are given by

c1,2 = 1 ±
√
2γ + 1 − √

16γ + 1

2(γ + 1)
,

c3,4 = 1 ±
√
2γ + 1 + √

16γ + 1

2(γ + 1)
.

Equation (5.2) is Fuchsian; thus, it admits a hyper-
exponential solution if and only if it has the form
P(z)

∏
i (z − zi )ei , where P(z) ∈ C[z], zi ∈ C are

singularities, ei are exponents at zi , and there exists an
exponent at infinity e∞ such that the sum

∑
i ei +e∞ is

a non-positive integer, see, e.g. Singer and Ulmer [12].
Taking into account exponents at finite singularities one
of roots of (5.5) must be a half-integer. When we sub-
stitute Z = n

2 to Eq. (5.5), then we obtain quadratic
equation for γ

n2(n − 4)2γ 2 + 2(−32 − 8n + 18n2 − 8n3 + n4)γ

+ (n − 4)(n − 2)2n = 0. (5.6)

In order to have at least one real root, the discrimi-
nant of this equation should be non-negative that gives
condition

Q(n) = 16(−15n4 + 120n3 − 272n2

+128n + 256) ≥ 0.

As limn→±∞ Q(z) = −∞, function Q(n) takes
non-negative values only for a few integer n con-

tained in the interval
[
2
5 (5 − 3

√
5), 2

5 (5 + 3
√
5)
]

≈
[−0.683, 4.683], that is forn ∈ {0, 1, 2, 3, 4}. For these
values, we calculate corresponding values of γ . Taking
into account that γ > 0, we obtain that

γ ∈
{
1

9
(29 + 2

√
217), 3

}
. (5.7)

For γ = 1
9 (29+2

√
217), set of exponents at infinity is

E∞ =
{
1

2
,
3

2
, 1 − 1

4

√
1

2

(
37 + √

217
)
,

1 + 1

4

√
1

2

(
37 + √

217
)}

and for γ = 3

E∞ =
{
1, 1, 1 −

√
7

2
, 1 +

√
7

2

}
.

If γ is different from the above-mentioned values,
then the differential Eq. (5.2) does not admit a hyperex-
ponential solution. On the other hand, for these specific
values of γ the equation does not depend on parameters
and using a computer algebra system, e.g. Maple, we
can check that it does not have any hyperexponential
solution.

To check the second assumption of Lemma A.5, we
can transform the system (5.4) to an equation of sixth
order and check how many hyperexponential solutions
it has. For computation simplifications, it is better to
calculate the second exterior power of Eq. (5.2) and
check how many hyperexponential solutions it admits.
The second exterior power of Eq. (5.2) is a sixth-order
differential equation with eight regular singularities:
z1 = −1, z2 = 0, z3 = − 2

γ+1 , and z4, z5, z6, z7 which
are roots of the fourth-order equation

4(γ − 6)(γ − 3)2Z4 + 2(γ − 3)((γ − 3)γ + 144)Z3

+ [γ (γ (γ + 75) + 198) − 1512]Z2

+ 6(γ (7γ + 27) − 216)Z + 18(5γ − 24) = 0

and z8 = ∞ provided

γ /∈
{
0,

3

5
, 1, 3,

24

5
,
1

2

(
31 − √

865
)

,

1

2

(
31 + √

865
)

, γ1, . . . , γ11

}
,

where γi for i = 1, . . . , 11 are roots of the following
equation

13γ 11 − 1879γ 10 + 610434γ 9 − 4888206γ 8

−70921791γ 7 + 1162009557γ 6 − 6524763840γ 5

+17573378976γ 4 − 24402021120γ 3

+17909745408γ 2 − 6610968576γ

+967458816 = 0. (5.8)

The respective sets of exponents at singularities are the
following:

E1 = {−2,−1,−1, 0, 0, 1},
E2 = E3 =

{
−1

2
, 0,

1

2
, 1,

3

2
,
5

2

}
,

E4 = E5 = E6 = E7 = {0, 1, 2, 3, 4, 6},
E8 = {3, 4, d1, d2, d3, d4},
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where di are roots of equation

(γ+1)2Z4−12(γ+1)2Z3+2(γ+1)(25γ+26)Z

−12(γ+1)(7γ+8)Z+γ (45γ+124)+64= 0.
(5.9)

For the second exterior power to have exponential solu-
tions, the sum

∑8
i=1 ei , ei ∈ Ei should be a non-

positive integer. We have one choice of exponents
(e1, e2, e3, e4, e5, e6, e7, e8) = (−2,−1/2,−1/2, 0,
0, 0, 0, 3) that sum to 0. Really, the second exterior
power has a solution for every γ of the form

w(z) = 1

(z + 1)2
√
z
(
z + 2

γ+1

) . (5.10)

In order to find other solutions, one can built them
only using a root of Eq. (5.9). Looking on exponents at
finite points, we deduce that such a root must be a half-
integer. Substitution Z = n

2 to (5.9) gives the following
second-order equation for γ

(n − 10)(n − 6)2(n − 2)γ 2 + 2 ((n − 12)n((n − 12)n

+60) + 992) γ + (n − 8)2(n − 4)2 = 0.

The discriminant of this polynomial is 1024((n −
12)n((n − 12)n + 61) + 964) ≥ 0; thus, it has real
roots γ1 and γ2. Both of them are negative if simulta-
neously two inequalities due to Vieta’s formulas hold

γ1 + γ2

= −2
(
n4 − 24n3 + 204n2 − 720n + 992

)
(n − 10)(n − 6)2(n − 2)

< 0,

γ1γ2 = (n − 8)2(n − 4)2

(n − 10)(n − 6)2(n − 2)
> 0.

This happens for integer n ∈ R \ [2, 10]. Integers n ∈
[2, 10] give the following positive values of γ

γ ∈
{
1

63

(
101 + 16

√
46
)

, 4,
1

5

(
39 + 16

√
6
)}

.

It means that for

γ /∈
{
3
5 , 1,

1

9
(29 + 2

√
217), 3,

1

63

(
101 + 16

√
46
)

,

4,
1

5

(
39 + 16

√
6
)

,
24

5
,
1

2

(
31 − √

865
)

,

1

2

(
31 + √

865
)

, γ1, . . . , γ11

}
,

where γ1, . . . , γ11 satisfy Eq. (5.8), the differential
Galois group contains the whole SP(4,C) that is not
solvable and thus in particular is not Abelian. These
selected values of γ correspond to confluence of sin-
gularities of normal variational Eq. (5.2) or of its sec-
ond exterior power, or possibility of existence of an

exponential solution of normal variational equation or
of its the second exterior power. For these values γ ,
the system no longer depends on parameters and can
then be treated with symbolic software as, e.g. Maple.
We obtain that for all these selected cases normal vari-
ational equation does not factorise thus its differen-
tial Galois group is not reducible. The second exterior
power also does not factorise and has just one hyper-
exponential solution even for these special values of
γ . Thus, differential Galois group of (5.2) is not irre-
ducible. Therefore, the system is not integrable for all
values γ > 0.
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Appendix: Theory

Important question concerning equations (2.19) is their
integrability. Because they are Hamiltonian equations,
thus the most natural is the notion of the integrability
in the Liouville sense.

In the nineties of the previous century, a very effec-
tive theory has appeared that formulates obstructions
to the integrability in the Liouville sense in the lan-
guage of the differential Galois theory of variational
equations obtained as a result of linearization of Hamil-
tonian equations in a neighbourhood of a certain non-
equilibrium particular solution.
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Roughly speaking, differential Galois group of vari-
ational equations is a linear algebraic group which pre-
serves polynomial relations between solutions of these
linear equations. As a linear algebraic group in gen-
eral, it consists of several connected components in the
Zariski topology, and among them the one containing
identity is called the identity component. For a precise
definition of the differential Galois group and differ-
ential Galois theory, see, e.g. Kaplansky [3] or Magid
[7].

The presence of n commuting first integrals of
a Hamiltonian system with n-degrees of freedom
imposes a very special property of the differential group
of variational equation that gives the necessary integra-
bility condition formulated in Morales Ruiz [8].

Theorem A.1 Assume that a Hamiltonian system is
meromorphically integrable in the Liouville sense in a
neighbourhood of an analytic phase curve �. Then, the
identity component of the differential Galois group of
the variational equations along � is Abelian.

Applications of this theorem are hard because of
difficulties related to

• finding a non-equilibrium particular solution,
• determination of differential Galois group of varia-
tional equations.Difficulty grows very quicklywith
dimension of the variational equations.

In applications, it happens that variational equations
split into tangential and normal subsystems and one can
restrict to analysis of differential Galois group of nor-
mal variational equations that have smaller dimension
than full variational equations, for detailed explanation,
see, e.g. in Morales Ruiz [8] or shortly in Maciejewski
and Przybylska [6]. In the case, when the dimension
of normal variational equations is two and coefficients
of these equations are rational functions of an indepen-
dent variable (sometimes after appropriate algebraic
change of independent variable) there is a very pow-
erful tool for determination of the differential Galois
group. This tool called the Kovacic algorithm formu-
lated in Kovacic [5] is a decision procedure in a finite
number of steps if one can write a general solution of
differential equation

w′′ = r(z)w, r(z) ∈ C(z), ′ ≡ d

dz
(A.1)

in a closed form,more precisely in a field of Liouvillian
functions. This algorithm is constructive, it means that
it enables to determine explicitly the form of solutions.

As the byproduct, it determines the differential Galois
group of Eq. (A.1). In fact, it is built on the base of
complete classification of algebraic subgroups of the
group SL(2,C).

Unfortunately, there is no an equivalent of the
Kovacic algorithm for linear differential equationswith
rational coefficients of higher orders although many
partial results especially for equations of the third and
fourth orders are known, see, e.g. Singer and Ulmer
[11,12], van Hoeij et al. [14], Ulmer [13] and refer-
ences therein.

But in the case of Hamilton equations that can be
written as

ż = JH ′(z), J =
[

0 In

−In 0

]
, z = [q, p]T , (A.2)

where In is n-dimensional identity matrix, their vari-
ational equations in a neighbourhood of a particular
solution ϕ(t) are also Hamiltonian

Ẏ = JH ′′(ϕ(t))Y . (A.3)

Here, variables Y are variations of z. Solutions of
these variational equations have very special property.
Namely, if y1 and y2 are arbitrary two solutions, then
quantity ( y1, J y2) is constant. But this implies that for
arbitrary element G of differential Galois group holds

const = ( y1, J y2) = (G y1, JG y2) = ( y1,G
T
JG y2)

and this implies J = GT
JG. But this equality means

that the differential Galois group of VEs is a sub-
group of Sp(2n,C). Group Sp(2,C) is isomorphic
to SL(2,C) but in higher dimensions Sp(2m,C) ⊂
SL(2m,C), for m > 1 and Sp(2m,C) is much smaller
than SL(2m,C), thus classification of its subgroups
should be much simpler. Using this classification, one
can try to construct the equivalent of the Kovacic
algorithm for symplectic differential operators and for
dimension four this was formulated by Combot and
Sanabria [1].

To describe it shortly, we introduce appropriate ter-
minology. Let L be differential operator with coeffi-
cients in C(z)

L(y) = y(n) + an−1y
(n−1) + · · · + a1y

′

+ a0y = 0, ai ∈ C(z), (A.4)

and A is its corresponding companion matrix

A =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −an−1

⎤
⎥⎥⎥⎥⎥⎦

. (A.5)
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The 2n-th-order operator is

• symplectic if there exists an invertible
skew-symmetric matrix W with elements in C(z)
which is a solution of following equation

ATW + W A + W ′ = 0, (A.6)

• projectively symplectic if there exists an invertible
skew-symmetric matrix W with elements in C(z)
which is a solution of equation

ATW + W A + W ′ + λW = 0, (A.7)

for a certain λ ∈ C(z).

An operator L of order 2n is symplectic (respec-
tively, projectively symplectic) when its Galois group
is isomorphic to a subgroup of symplectic matrices
Sp(2m,C) (respectively, of projectively symplectic
matrices PSp(2m,C)) defined as

Sp(2m,C) = {M ∈ M2m(C) | MT
JM = J},

PSp(2m,C) = {M ∈ M2m(C) | MT
JM = λJ,

λ ∈ C
∗}.

If L is projectively symplectic, then up to a mul-
tiplication of a hyperexponential function, one can
ensure that the operator is symplectic. Function f (z)
is called hyperexponential if its logarithmic derivative
f ′(z)/ f (z) is a rational function.

Lemma A.1 Assume that the system ẋ = Ax is sym-
plectic, i.e. there exists an invertible skew-symmetric
matrix W with coefficients in C(z) which is a solu-
tion of Eq. (A.6). Then, x(t) is a solution of equation
ẋ(t) = Ax(t) if and only if x∗(t) = Wx(t) is a solution
of the adjoint equation ẋ∗(t) = −AT x∗(t).

This lemma can be proved by a direct check. It follows
that if symplectic operator L has right factor L1, then
its adjoint L∗ has a right factor L̃1 of the same order.
Thus, L has right factor L1, then it has also a left factor
of the same degree.

With a system ẋ = Ax,we can associate its external
second power. It is a system of the form

Ẇ = AW − WT AT (A.8)

for an antisymmetric matrixW , see “Appendix” in [2].
Thus, Eq. (A.6) is an equation for the external square
of a dual to the system x ′ = Ax .

The classification theorem formulated in Combot
and Sanabria [1] is the following.

Lemma A.2 A Lie subgroup of Sp(4,C) is up to con-
jugacy generated by elements of the form:

1. upper block triangular matrices with diagonal
blocks of size at most 2 × 2,

2. 2×2 diagonal matrices and anti-diagonal matrices⎡
⎢⎢⎣

∗ ∗ 0 0
∗ ∗ 0 0
0 0 ∗ ∗
0 0 ∗ ∗

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣
0 0 ∗ ∗
0 0 ∗ ∗
∗ ∗ 0 0
∗ ∗ 0 0

⎤
⎥⎥⎦ ,

3. full group Sp4(C).

This classification is constructed on the base of known
classification of Lie subgroups of wider unimodular
group SL(4,C) ⊃ Sp(4,C). Subgroups of the projec-
tive symplectic group are central extensions of these
and so contain multiples of the identity matrix with
non-unit determinant. But as these commute with all
matrices, the possible structures of subgroups in items
1, 2 are unchanged.

The next two lemmas characterise reducible case.

Lemma A.3 Let us consider the following block diag-
onal system

ẋ = Ax A =
[
B C
0 D

]
, (A.9)

where B, C and D are 2 × 2 matrices with rational
coefficients. Then, Eq. (A.6) has the following particu-
lar solution

W = e
∫
r
[
0 0
0 J

]
, J =

[
0 1

−1 0

]
, (A.10)

where r is a rational function.

Lemma A.4 Let us consider differential operator

L = (∂2 + c∂ + d)(∂2 + a∂ + b), (A.11)

where a, b, c, d ∈ C(z) and let A be its companion
matrix. Then, Eq. (A.6) has the particular solution

W = e
∫
c

⎡
⎢⎢⎣

0 b2 + ba′ − ab′ ab − b′ b
−b2 − ba′ + ab′ 0 a2 − a′ − b a

b′ − ab b + a′ − a2 0 1
−b −a −1 0

⎤
⎥⎥⎦ ,

(A.12)

and detW = 0.

Both lemmas can be proved by a direct check.
In our proof of the non-integrability, we will use the

following criterion.
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Lemma A.5 Assume that equation

L(y) = y(4) + a3(z)y
′′′ + a2(z)y

′′

+a1(z)y
′ + a0(z)y = 0, ′ = d

dz
(A.13)

is projectively symplectic and A is its corresponding
companion matrix. If Eq. (A.13) does not admit a
hyperexponential solution and Eq. (A.6) has exactly
one hyperexponential solution, then the differential
Galois group of (A.13) contains Sp(4,C).

Proof If (A.13) does not admit a hyperexponential
solution, then it does not admit a right factor of order
one. Thus, if it is reducible, it admits a right factor of
order two. Hence, using Lemma A.4, Eq. (A.6) has a
hyperexponential solution such that the corresponding
antisymmetric matrix W1 is singular. Equation (A.13)
is projectively simplectic, and thus, Eq. (A.6) admits a
hyperexponential solution such that the corresponding
antisymmetric matrixW2 is not singular. Thus,W1,W2

cannot be the same, but this is impossible as by assump-
tion (A.6) has exactly one hyperexponential solution.
It implies that Eq. (A.13) is irreducible. If it admits
Liouvillian solutions, then it admits at least two pro-
jective Poisson structures. But this is impossible as by
assumption there exists exactly one hyperexponential
solution of (A.6). �	

Item1 inLemmaA.2 corresponds to reducible cases.
Differential Galois group of equation

L(y) = y(4) + a3(z)y
′′′ + a2(z)y

′′

+a1(z)y
′ + a0(z)y = 0, ′ = d

dz
(A.14)

is a reducible subgroup of Sp(4,C) if and only if the
equation itself can be factorised. If a symplectic opera-
tor has a left factor, then it has a right factor of the same
order. Thus for an order four symplectic operator only
the following factorizations into factors with appropri-
ate orders are possible: (i) 1,1,1,1 or (ii) 1,2,1 or (iii)
2,2.

If this equation has a factor of order one, then it is
either a right factor of order one or a left factor of order
one. Since a left factor of order one leads to a right factor
of order one of the adjoint differential operator L∗(y),
then one can restrict to testing of a right factor of order
one of L(y) or of L∗(y). If an equation has a right factor
of order one, then it has an hyperexponential solution.
If L(y) = 0 is of Fuchsian type, then any hyperexpo-
nential solution must be of the form P(z)

∏
i (z− zi )ei ,

where P(z) ∈ C[z], zi ∈ C are singularities except
the infinity, ei are exponents at zi . Then, using lemma
3.1 in Singer andUlmer [12] about the necessary condi-
tion for such a solution one can formulate the following
proposition

Proposition A.1 If a Fuchsian symplectic equation of
order four has a factor of order one, then L(y) = 0
has a solution of the form P(z)

∏
i (z − zi )ei , where

P(z) ∈ C[z], zi ∈ C are singularities, ei are exponents
at zi , and there exists an exponent at infinity e∞ such
that the sum

∑
i ei + e∞ is a non-positive integer.

In the case when L(y) factorises into two factors
L = L1L2 of order two to each of them one can use
the Kovacic algorithm. If one of them is not solvable,
then the differential Galois group is not solvable.

Item 2 in Lemma A.2 corresponds to irreducible
solvable cases. Then, operator L admits a factorisa-
tion in two operators of order two with coefficients in
a quadratic extension of C(z). This case can be identi-
fied by the presence of two linearly independent rank
two Poisson structures (requirement as for symplec-
tic structure but without invertibility requirement) with
coefficients in a quadratic extension ofC(z), see Com-
bot and Sanabria [1]. But the presence of two structures
is related to the presence of two hyperexponential solu-
tions of the exterior power of L . Thus, to identify the
irreducible solvable cases we use the following propo-
sition formulated in Combot and Sanabria [1]

Proposition A.2 The necessary condition for irre-
ducible solvable cases is that the second exterior power
of differential equation has at least two hyperexponen-
tial solutions.

The second exterior power of a differential operator L
with solutions {y1, . . . , yn} is the equation having for
its space of solutions the vector space generated by the

2×2Wronskians of solutions

∣∣∣∣yi y jy′
i y

′
j

∣∣∣∣, i < j of operator

L , see, e.g. Schwarz [9]. To identify these solutions for
Fuchsian operators, L one can use Proposition A.1.

Item 3 in Lemma A.2 corresponds to non-solvable
cases.
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