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Abstract The main challenge of the stability analy-
sis for general polynomial control systems is that non-
convex terms exist in the stability conditions, which
hinders solving the stability conditions numerically.
Most approaches in the literature impose constraints
on the Lyapunov function candidates or the non-convex
related terms to circumvent this problem.Motivated by
this difficulty, in this paper, we confront the non-convex
problem directly and present an iterative stability anal-
ysis to address the long-standing problem in general
polynomial control systems. Different from the exist-
ing methods, no constraints are imposed on the poly-
nomial Lyapunov function candidates. Therefore, the
limitations on the Lyapunov function candidate and
non-convex terms are eliminated from the proposed
analysis, which makes the proposed method more gen-
eral than the state-of-the-art. In the proposed approach,
the stability for the general polynomial model is ana-
lyzed and the original non-convex stability conditions
are developed. To solve the non-convex stability con-
ditions through the sum-of-squares programming, the
iterative stability analysis is presented. The feasible
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solutions are verified by the original non-convex stabil-
ity conditions to guarantee the asymptotic stability of
the general polynomial system. The detailed simulation
example is provided to verify the effectiveness of the
proposed approach. The simulation results show that
the proposed approach is more capable to find feasible
solutions for the general polynomial control systems
when compared with the existing ones.
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Non-convex problem · Iterative stability analysis ·
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1 Introduction

Polynomial control systems have been successfully
applied to fulfilling different control objectives due to
its rigorous mathematical framework and the ability
to deal with nonlinearity. Based on the technique of
sum-of-squares (SOS), there are promising research
outcomes for polynomial control systems and SOS.
For example, in [1], fault-tolerant control for nonlin-
ear systems was conducted in the polynomial control
systems. In [2], the fault-tolerant control was extended
to polynomial fuzzy control systems. Converse SOS
was discussed in [3] and the existence of a global
polynomial Lyapunov function was discussed in [4].
In [5], the output-feedback sampled-data polynomial
controller for nonlinear systems was designed. In [6],
the input-delay for the sampled-data H∞ control of
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polynomial systemswas reported. The research on con-
trol design of polynomial systems with input saturation
was reported in [7]. The research works focus on the
domains of attraction for polynomial nonlinear systems
were reported in [8,9] Also the approaches in [10–18]
adopted polynomial terms in the fuzzy-model-based
(FMB) control. It is worth mentioning that the SOS-
based techniques also have the potential to be applied to
solve the dynamic problems in the heat transfer inves-
tigation [19–21].

Polynomial control systems can also be regarded as
a polynomial extension of linear control systems, in
which the polynomial terms can be processed. When
the order of all the polynomial terms in the polyno-
mial control systems is reduced to 0, the polynomial
control systems become linear control systems, sug-
gesting its generalizability. For many reported control
systems, such as the linear control systems and Takagi-
Sugeno (T–S) FMB control systems, the techniques of
linear matrix inequalities (LMIs) can be used to solve
the stability conditions efficiently. For example, in [22–
24], the H∞ problem was investigated through LMIs.
In [25–27], the LMIs techniques were adopted to deal
with the time-delay control issues. Also, LMIs in T-S
FMB control can be found in [28–32].

Despite the success of LMIs in control applications,
LMIs can no longer be used for polynomial control
systems due to the polynomial terms in the model and
controller, which cannot be handled by the LMI solver.
In contrast, the stability conditions of polynomial con-
trol systems can be represented by SOS and solved
efficiently by a third party MATLAB® toolbox SOS-
TOOLS [33]. Adopting the polynomial control systems
can have a range of applications. However, due to the
polynomial Lyapunov function candidate, the stabil-
ity conditions are not convex in most cases for general
polynomial control systems.

It should be pointed out that in most of the literature
regarding polynomial control systems, there are some
constraints that need to be imposed on the polynomial
Lyapunov function candidate. In [10–14], the polyno-
mial Lyapunov function candidates are constrained to
be dependent on only part of the state variables accord-
ing to nonzeros rows in the input matrix B(x(t)). This
constraint is considered to be strong since it often
makes the polynomial Lyapunov function candidate in
the form of constant Lyapunov function candidate in
cases that B(x(t)) does not have all-zero rows. There-
fore, this constraint introduces conservativeness into

the stability analysis, forgoing the advantages of poly-
nomial Lyapunov function candidates.

To make the stability analysis of general polyno-
mial control systems possible, in [1,2], the polynomial
Lyapunov function candidate can be dependent on all
the state variables, and thus the general polynomial
control systems can be analyzed. However, there is a
bound/index required for the non-convex terms in the
general polynomial control system, which is another
constraint imposed on the stability analysis.

To remove the constraints on the general control sys-
tems, in [15], a two-step stability analysis was provided
to solve the general polynomial control systems with-
out any other constraints on the stability conditions.
The results are more general, and thus more general
forms of the polynomial Lyapunov function candidate
can be adopted in the stability analysis and control syn-
thesis. However, in the two-step approach, when the
stability analysis fails to find a feasible solution in the
first step or the second step, the solving process is ter-
minated and no feasible solution can be found.

Motivated by this specific difficulty in general poly-
nomial control systems, the non-convex problem is
investigated in this paper. The purpose of this paper
is to propose an iterative stability analysis for general
polynomial control systems. In the proposed approach,
the non-convex terms in the stability conditions are
firstly omitted to make the stability conditions convex,
then a predefined convex term will be added manu-
ally into the stability conditions to make the convex
stability conditions easier to find a feasible initial solu-
tion. In order to keep the impact of the manually added
term as small as possible, the stability conditions are
rewritten as an optimization problem. By solving the
optimization problem, the value of the manually added
term will be minimized. Once the initial solutions are
obtained, the non-convex terms are approximated by
the initial solutions, which makes the non-convex sta-
bility conditions into convex and can be further solved
by SOSTOOLS. If the newly obtained solutions satisfy
the original non-convex stability conditions, the newly
obtained solutions are qualified as feasible solutions for
the general polynomial control system. If not, the non-
convex terms are approximated by the newly obtained
initial solutions to obtain the most updated solutions
iteratively. The novelty and contribution of the paper
are summarized as follows:
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(1) The approximation of non-convex terms is pre-
sented to render the stability conditions into convex
form for the general polynomial control systems.

(2) An iteration approximation approach is proposed
that the intermediate solutions dependent on the
solutions in both the previous and current itera-
tions. The solutions are verified by the original non-
convex stability conditions to guarantee the asymp-
totic stability of the general polynomial system.

(3) In the proposed stability analysis for general poly-
nomial control systems, no constraint is imposed
on the polynomial Lyapunov function candidate.
Therefore, the polynomial Lyanpunov function
candidate can depend on any system state variables.

(4) Compared with the works reported in [1,2,10–14],
there is no constraints imposed on the polyno-
mial Lyapunov functions in the proposed approach;
Compared with the works reported in [15], the
proposed approach is more general and has more
potential to find feasible solutions.

This paper is organized as follows. In Sect. 2, the pre-
liminaries of general polynomial control systems and
polynomial Lyapunov function candidate will be intro-
duced. In Sect. 3, the algorithm for iterative stability
will be presented and discussed in detail. The simula-
tion example and the comparison with the state-of-the-
art are provided in Sect. 4. A conclusion is drawn in
Sect. 5.

Notation: The following notations are employed
throughout the paper, the monomial vector x(t) =
[x1(t), . . . , xn(t)]T , the superscript T stands formatrix
transposition, the superscript −1 in the expression
X (x(t))−1 stands for matrix inverse, the expressions
of P(x(t)) > 0 represents the corresponding polyno-
mial p(x(t), υ) = υT P(x(t))υ can be decomposed
into SOS, where υ is a nonzero arbitrary vector with
proper dimensions.

2 Preliminaries

Consider the following polynomial control system:

{
ẋ(t) = A(x(t))x(t) + B(x(t))u(t)

u(t) = G(x(t))x(t),
(1)

where A(x(t)) ∈ R
n×n and B(x(t)) ∈ R

n×m are
the system and input polynomial matrices. G(x(t)) ∈

R
m×n is the polynomial feedback gain matrix and

u(t) ∈ R
m is the control input.

The dynamics of closed-loop polynomial control
system can be written as:

ẋ(t) = A(x(t))x(t) + B(x(t))G(x(t))x(t)

or

ẋ(t) = (A(x(t)) + B(x(t))G(x(t)))x(t).

To derive the stability conditions, it firstly needs
to define the polynomial Lyapunov function candidate
V (t) as:

V (t) = x(t)T X (x(t))−1x(t), (2)

where X (x(t)) = X (x(t))T > 0.
The differential of V (t) should be guaranteed to

always be negative to ensure the asymptotic stability
of the polynomial control system:

V̇ (t) = ẋ(t)T X (x(t))−1x(t) + x(t)T X (x(t))−1 ẋ(t)

+ x(t)T Ẋ(x(t))−1x(t). (3)

The expression V̇ (t) can be further deducted using
the dynamics of the closed-loop control system in (1)
as follows:

V̇ (t) = x(t)T (A(x(t))

+ B(x(t))G(x(t)))T X (x(t))−1x(t)

+ x(t)T X (x(t))−1(A(x(t))

+ B(x(t))G(x(t)))x(t) + x(t)T(
n∑

c=1

∂X (x(t))−1

∂xc(t)

dxc(t)

dt

)
x(t) < 0, (4)

where dxc(t)
dt = Ac(x(t))x(t) + Bc(x(t))G(x(t))x(t),

Ac(x(t)) ∈ R
n and Bc(x(t)) ∈ R

m are the c-th rows
of the matrices A(x(t)) and B(x(t)), respectively. To

deal with the term
∑n

c=1
∂X (x(t))−1

∂xc(t)
dxc(t)
dt in (4), let us

introduce the following lemma [10] here.

Lemma 1

∂X (x(t))−1

∂xc(t)
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= −X (x(t))−1 ∂X (x(t))

∂xc(t)
X (x(t))−1,∀c = 1, . . . , n.

(5)

Proof of Lemma 1 Given that

∂ I

∂xc(t)
= 0, (6)

replacing I by X (x(t))−1X (x(t)), then (6) can be
rewritten as

∂X (x(t))−1X (x(t))

∂xc(t)
= 0. (7)

��
Then it follows that:

X (x(t))−1 ∂X (x(t))

∂xc(t)
+ ∂X (x(t))−1

∂xc(t)
X (x(t)) = 0. (8)

In addition, to make the stability analysis numeri-
cally feasible, adopting z(t) = X (x(t))−1x(t) to do
variable replacement, we can further define:

V̇ (t) = z(t)T Q(x(t))z(t) (9)

where Q(x(t)) = A(x(t))X (x(t)) + X (x(t))
A(x(t))T + B(x(t))N (x(t)) + N (x(t))T B(x(t))T −∑n

c=1
∂X (x(t))

∂xc
(Ac(x(t))+Bc(x(t))N (x(t))X (x(t))−1)

x(t). The variable N (x(t)) = G(x(t))X (x(t)) is intro-
duced, in which X (x(t)) and N (x(t)) are the deci-
sion variables. The polynomial feedback gains can
be calculated through the relationship G(x(t)) =
N (x(t))X (x(t))−1 after solving the values of X (x(t))
and N (x(t)).

By guaranteeing Q(x(t)) < 0 (or−Q(x(t)) as SOS
matrix), the closed-loop control system can be guaran-
teed to be stable. However, it can be found that this
stability condition is not convex due to the non-convex
terms in Q(x(t)), which makes SOSTOOLS cannot be
applied to solve the stability conditions.

Remark 1 When compared with other non-general
condition in [10–14], the existing conditions therein
can be considered as the sub-set of the proposed
approach since there are constraints imposed on the
Lyapunov function candidate. To make it possible
for SOSTOOLS to solve the stability conditions in
a numerical way, the non-convex (nonlinear) term

∑n
c=1

∂X (x(t))
∂xc

(Ac(x(t))+Bc(x(t))N (x(t))X (x(t))−1)

x(t) needs special attention. In the following section,
an iterative stability analysis is introduced to deal with
this non-convex issue.

3 Iterative stability analysis

To process the non-convex term
∑n

c=1
∂X (x(t))

∂xc
(Ac

(x(t))+Bc(x(t))N (x(t))X (x(t))−1)x(t) throughSOS
programming, an iterative stability analysis approach
is presented in this paper.

From the definition of N (x(t)) and X (x(t))−1, it can
be shown that the following equation is always hold:

G(x(t)) = N (x(t))X (x(t))−1. (10)

It can be found that
∑n

c=1
∂X (x(t))

∂xc
(Ac(x(t)) +

Bc(x(t))N (x(t))X (x(t))−1)x(t) can be rewritten as∑n
c=1

∂X (x(t))
∂xc

(Ac(x(t)) + Bc(x(t))G(x(t)))x(t).

Remark 2 It should be pointed out that using the vari-
able substitution

∑n
c=1

∂X (x(t))
∂xc

(Ac(x(t)) + Bc(x(t))
G(x(t)))x(t)will not make the stability condition con-
vex. Since the variableG(x(t)) is not independent with
the other two decision variables N (x(t)) and X (x(t)),
therefore, all the three variables cannot all be the deci-
sion variables at the same time. In the following analy-
sis, wewill use initial solutions of N (x(t)) and X (x(t))
to approximate G(x(t)), which makes the iterative sta-
bility conditions convex.

The stability conditions can be rewritten as:

Q(x(t)) = A(x(t))X (x(t)) + X (x(t))A(x(t))T

+ B(x(t))N (x(t)) + N (x(t))T B(x(t))T

−
n∑

c=1

∂X (x(t))

∂xc
(Ac(x(t))

+ Bc(x(t))G(x(t)))x(t) < 0, (11)

X (x(t)) > 0. (12)

To apply iterative stability analysis, let us start with∑n
c=1

∂X (x(t))
∂xc

(Ac(x(t)) + Bc(x(t))G(x(t)))x(t) = 0
as the 1-st iterative stability condition and solve the
SOS-based iterative stability condition:
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minimize α subject to:

A(x(t))X (x(t)) + X (x(t))A(x(t))T + B(x(t))N (x(t))

+ N (x(t))T B(x(t))T − αM(x(t)) < 0, (13)

X (x(t)) > 0, (14)

where M(x(t)) ∈ R
n×n is a predefined polynomial

matrix and M(x(t)) > 0. αM(x(t)) is a manually
added term to make the condition easier to be feasi-
ble. In the corresponding SOS conditions, X (x(t)) and
N (x(t)) are the decision variables to be solved by SOS-
TOOLS.

It can be seen that (13) and (14) are convex condi-
tions, and thus it can be solved by SOS solver. After
(13) and (14) are solved, X (1)(x(t)), N (1)(x(t)) are
used as the initial solutions for the 1-st iteration as
the superscript (1) indicates. From the initial solutions
X (1)(x(t)), N (1)(x(t)),G(1)(x(t)) can be calculated as
G(1)(x(t)) = N (1)(x(t))X (1)(x(t))−1.

It should be noted that the term X (1)(x(t))−1 will
still make the stability conditions non-convex. From
the definition of the inverse matrix, we have:

X (1)(x(t))−1 = adj(X (1)(x(t)))

det(X (1)(x(t)))
,

where adj(X (1)(x(t))) is the adjointmatrix of X (1)(x(t))
and det(X (1)(x(t))) is the determinant of X (1)(x(t)).

Adopting adj(X (1)(x(t))) and det(X (1)(x(t))), we
have:

G(1)(x(t)) = N (1)(x(t))X (1)(x(t))−1

= N (1)(x(t))
adj(X (1)(x(t)))

det(X (1)(x(t)))
. (15)

For any X (x(t)) > 0, it is always true that
det(X (x(t))) > 0. Therefore, the iterative stability
conditions can be defined as following:

Q(1)(x(t))

= det(X (1)(x(t)))
(
A(x(t))X (1)(x(t))

+ X (1)(x(t))A(x(t))T

+ B(x(t))N (1)(x(t)) + N (1)(x(t))T B(x(t))T
)

−
n∑

c=1

∂X (1)(x(t))

∂xc
(det(X (1)(x(t)))Ac(x(t))

+ Bc(x(t))N (1)(x(t))adj(X (1)(x(t))))x(t) < 0,
(16)

X (1)(x(t)) > 0. (17)

The following stability conditions can be verified:

Q(1)(x(t)) < 0, (18)

X (1)(x(t)) > 0. (19)

If the stability conditions in (18) and (19) are valid,
the polynomial control system is guaranteed to be sta-
ble, X (x(t)), N (x(t)) and G(x(t)) are feasible solu-
tions. Otherwise, substitute G(1)(x(t)) into (11), and
solve (11) again with G(x(t)) = G(1)(x(t)) as a prior:

det(X (1)(x(t)))(A(x(t))X (x(t)) + X (x(t))A(x(t))T

+ B(x(t))N (x(t)) + N (x(t))T B(x(t))T )

−
n∑

c=1

∂X (x(t))

∂xc
(det(X (1)(x(t)))Ac(x(t))

+ Bc(x(t))N (1)(x(t))adj(X (1)(x(t))))x(t) < 0,
(20)

X (x(t)) > 0, (21)

X (x(t)) − X (1)(x(t)) − β
(1)
1 I < 0, (22)

X (1)(x(t)) − X (x(t)) − β
(1)
2 I < 0, (23)

N (x(t)) − N (1)(x(t)) − β
(1)
3 I < 0, (24)

N (1)(x(t)) − N (x(t)) − β
(1)
4 I < 0 (25)

where β
(1)
1 , β

(1)
2 , . . . , β

(1)
4 are predefined sufficiently

small constants for the 1-st iteration. By solving the
SOS-based stability condition in (20) to (25), we can
obtain the solution for the 2-nd iteration: X (2)(x(t)) and
N (2)(x(t)).Also,G(2)(x(t)) = N (2)(x(t))X (2)(x(t))−1.
In the stability conditions, since the non-convex terms
are approximated by the initial solutions, the fea-
sible solutions are dependent on both the current
and the initial solutions. Therefore, the parameters
β

(1)
1 , β

(1)
2 , . . . , β

(1)
4 are used to relate the current and

initial solutions in a numerical way.

Remark 3 It is worth mentioning that in the above sta-
bility conditions, the non-convex terms are approx-
imated by

∑n
c=1

∂X (x(t))
∂xc

(det(X (1)(x(t)))Ac(x(t)) +
Bc(x(t))N (1)(x(t))adj(X (1)(x(t)))x(t), which are the
solutions from the previous iteration and do not need to
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be solved again in the current iteration. Therefore, the
stability conditions are convex for SOS programming.

Let’s check whether the iterative stability conditions
are SOS:

Q(2)(x(t)) < 0, (26)

X (2)(x(t)) > 0, (27)

if not, repeat the iteration using solutions X (2)(x(t))
and N (2)(x(t)) as a prior.

In a more general form, for the k-th iteration, the
iterative stability conditions can be expressed as fol-
lows:

det(X (k)(x(t)))(A(x(t))X (x(t)) + X (x(t))A(x(t))T

+ B(x(t))N (x(t)) + N (x(t))T B(x(t))T )

−
n∑

c=1

∂X (x(t))

∂xc
(det(X (k)(x(t)))Ac(x(t))

+ Bc(x(t))N (k)(x(t))adj(X (k)(x(t))))x(t) < 0,
(28)

X (x(t)) > 0, (29)

X (x(t)) − X (k)(x(t)) − β
(k)
1 I < 0, (30)

X (k)(x(t)) − X (x(t)) − β
(k)
2 I < 0, (31)

N (x(t)) − N (k)(x(t)) − β
(k)
3 I < 0, (32)

N (k)(x(t)) − N (x(t)) − β
(k)
4 I < 0 (33)

where β
(k)
1 , β

(k)
2 , . . . , β

(k)
4 are predefined sufficiently

small constants to be determined for k-th iteration. In
the iterative stability analysis, since the non-convex
terms are approximated by the previous solutions, the
feasible solutions are dependent on both the current
solutions and the previous solutions. Therefore, the
parameters β

(k)
1 , β

(k)
2 , . . . , β

(k)
4 are used to relate the

solutions in two consecutive iterations in a numerical
way.

By solving the SOS-based stability conditions in
(28) to (33),we can obtain the k+1-th iterative solution:
X (k+1)(x(t)) and N (k+1)(x(t)). Also, G(k+1)(x(t)) =
N (k+1)(x(t))X (k+1)(x(t))−1.

Until

Q(k+1)(x(t)) < 0, (34)

X (k+1)(x(t)) > 0. (35)

Then X (k+1)(x(t)), N (k+1)(x(t)) and G(k+1)(x(t)) are
feasible solutions for the general polynomial control
system.

The iterative stability analysis of the general poly-
nomial control system is summarized in Algorithm. 1.

Algorithm 1 Algorithm for iterative stability analysis
1: Choose the order of the polynomial Lyapunov function can-

didate V (t) and the order of the decision variable N (x(t)).
2: Set the maximal number of iterations K .
3: Solve A(x(t))X (x(t))+X (x(t))A(x(t))T+B(x(t))N (x(t))+

N (x(t))T B(x(t))T −αM(x(t)) < 0 and X (x(t)) > 0 to
minimize α.

4: Save the initial solution N (1)(x(t)) and X (1)(x(t)).
5: Approximate the non-convex term using prepared solutions:

G(1)(x(t)) = N (1)(x(t))X (1)(x(t))−1.
6: for 1 : K -th iteration do
7: Set the values for β

(k)
1 , β

(k)
1 , . . . , β

(k)
4 .

8: Solve the stability conditions from (28) to (33).
9: Save the solutions N (k+1)(x(t)) and X (k+1)(x(t)).
10: if Q(k+1)(x(t)) < 0 & X (k+1)(x(t)) > 0 is valid then
11: Terminate and return X (k+1)(x(t)), N (k+1)(x(t)) and

G(k+1)(x(t)) as feasible solutions.
12: else Store X (k+1)(x(t)) and N (k+1)(x(t)) as the initial

solutions for the non-convex term in the next iteration.
13: end if
14: end for
15: No feasible solution can be found.

4 Simulation example

In this section, a numerical example is provided to ver-
ify the effectiveness of the iterative stability analysis.
Let us consider a polynomial control system, where
x(t) = [x1(t), x2(t)]T :
A(x(t))

=
[−1 + x1(t) + 3

4 x1(t)
2 − 3

2 x2(t)
2 1

4 − x1(t)2

x1(t) x2(t)

]
,

B(x(t)) =
[

1 0
x1(t) 2

]
.

In the simulation, X (x(t)) is chosen as a polynomial
matrix with 2-nd order of x1(t) and x2(t), N (x(t)) is
chosen as a polynomial matrix with 2-nd order of x1(t).
M(x(t)) is chosen as the identitymatrix.β(k)

1 = β
(k)
2 =

0.2 and β
(k)
3 = β

(k)
4 = 0.05 for every iteration.

Firstly, the stability conditions in (13) and (14) are
adopted to find the initial solutions. Then the solutions
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X (1)(x(t)), N (1)(x(t)) can be obtained. Using the ini-
tial solution to approximate the non-convex term and
re-solve the solutions for the convex stability condi-
tions, after the 1-st iteration feasible solution can be
found.

For the N (x(t)) matrix, we rewrite N (x(t)) as:

N (x(t)) =
[
N11(x(t)) N12(x(t))
N21(x(t)) N22(x(t))

]

where

N11(x(t)) = −3.746 × 10−6x1(t)
2

− 0.0001958x1(t) − 0.5418,

N12(x(t)) = −1.112 × 10−6x1(t)
2

+ 0.003416x1(t) + 0.07179,

N21(x(t)) = 0.03998x1(t)
2 + 0.09521x1(t) + 0.282,

N22(x(t)) = −0.278x1(t)
2 − 0.02907x1(t) − 1.009.

For the X (x(t)) matrix, we define

X (x(t)) =
[
X11(x(t)) X12(x(t))
X21(x(t)) X22(x(t))

]

where

X11(x(t)) = 5.266 × 10−9x1(t)
2 + 6.099 × 10−7x1(t)

+ 1.299 × 10−8x2(t)
2 + 0.1238,

X12(x(t)) = 2.785 × 10−9x1(t)
2 − 3.664 × 10−7x1(t)

+ 8.491 × 10−10x2(t)
2 + 0.1132,

X21(x(t)) = 2.785 × 10−9x1(t)
2 − 3.664 × 10−7x1(t)

+ 8.491 × 10−10x2(t)
2 + 0.1132,

X22(x(t)) = 3.536 × 10−9x1(t)
2 − 7.849 × 10−7x1(t)

+ 1.918 × 10−9x2(t)
2 + 0.155.

In order to have a better understanding of the time-
response of states x1(t) and x2(t), the time response of
x1(t) and x2(t) can be viewed in Figs. 1 and 2. In the
figures, it can be observed that the polynomial control
system can be stabilized swiftly from 4 different initial
states: the bold blue curve represents the state response
with initial state x(0) = [−1.5, 3]T ; The dashed bold
red curve represents the state response with initial state
x(0) = [1.5, 3]T ; The green curve represents the state
responsewith initial state x(0) = [3,−1]T ; The dashed
black curve represents the state response with initial
state x(0) = [−3,−1]T .

Fig. 1 The time-response simulation for x1(t) from different
initial states

Fig. 2 The time-response simulation for x2(t) from different
initial states

In addition, the 2-dimensional control input during
the control process can be viewed in Figs. 3 and 4. In
these figures, it can be seen that the two control inputs
are within reasonable ranges. As the same in the time-
response simulations: the bold blue curve represents
the control input with initial state x(0) = [−1.5, 3]T ;
The dashed bold red curve represents the control input
with initial state x(0) = [1.5, 3]T ; The green curve
represents the control input with initial state x(0) =
[3,−1]T ; Thedashedblack curve represents the control
input with initial state x(0) = [−3,−1]T .

The vector field and phase plot of the polynomial
control systemwith 12 initial start states can be viewed
inFig. 5. In thefigure, the black circles represent the ini-
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Fig. 3 The control input u1(t) from 4 different initial states

Fig. 4 The control input u2(t) from 4 different initial states

tial state for every trajectory. The blue arrows represent
the vector fields in terms of size and direction. From
Fig. 5, it can be seen that all the phase flows (red trajec-
tories) start from different initial states (black circles)
follow the vector field (blue arrows) into the stabiliza-
tion state smoothly.

To compare our method with the two-step approach
reported in [15], detailed simulations have been done
using the two-step approach with the same polynomial
model and all the other parameters, such as the same
degrees of X (x(t)), N (x(t)), etc.

From the simulation results, it is found that the two-
step approach is also able to find a feasible solution
N (x(t)) as:

Fig. 5 Phase plot of the polynomial control system

N11(x(t)) = −3.746 × 10−6x1(t)
2

− 0.0001975x1(t) − 0.5249,

N12(x(t)) = −1.112 × 10−6x1(t)
2

− 0.003686x1(t) + 0.07221,

N21(x(t)) = 0.002368x1(t)
2 + 0.2854x1(t) + 0.1736,

N22(x(t)) = −0.278x1(t)
2 − 0.02918x1(t) − 1.003.

and X (x(t)) as:

X11(x(t)) = 3.877 × 10−9x1(t)
2 − 9.467 × 10−9x1(t)

+ 1.36 × 10−8x2(t)
2 + 0.0002032,

X12(x(t)) = 3.351 × 10−9x1(t)
2 − 2.408 × 10−9x1(t)

+ 9.92 × 10−10x2(t)
2 + 0.0002164,

X21(x(t)) = 3.351 × 10−9x1(t)
2 − 2.408 × 10−9x1(t)

+ 9.92 × 10−10x2(t)
2 + 0.0002164,

X22(x(t)) = 2.259 × 10−9x1(t)
2 − 3.979 × 10−9x1(t)

+ 3.048 × 10−9x2(t)
2 + 0.004621.

However, when the order of N (x(t)) is set to 0, the
two-step approach cannot find a feasible solution while
the iterative stability analysis is still able to find a feasi-
ble solution at the 2-nd iteration. The feasible solutions
are:

N (x(t)) =
[−0.05362 −0.006776

0.1625 −1.285

]
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and X (x(t)) as

X11(x(t)) = 1.204 × 10−8x1(t)
2 + 3.592 × 10−7x1(t)

+ 4.43 × 10−8x2(t)
2 + 0.07741,

X12(x(t)) = 8.896 × 10−9x1(t)
2 + 1.581 × 10−7x1(t)

+ 4.474 × 10−9x2(t)
2 + 0.08018,

X21(x(t)) = 8.896 × 10−9x1(t)
2 + 1.581 × 10−7x1(t)

+ 4.474 × 10−9x2(t)
2 + 0.08018,

X22(x(t)) = 7.972 × 10−9x1(t)
2 + 1.051 × 10−7x1(t)

+ 2.68 × 10−9x2(t)
2 + 0.09714.

Remark 4 From the comparison with the two-step
approach reported in [15], it can be found that the pro-
posed approach hasmore potential to find feasible solu-
tions for the general polynomial control systems. In
addition, when the manually convex term added in the
first step of the two-step approach to form the optimiza-
tion problem, the two-step approach can be considered
as a special case in the iteration approach with only 1
iteration.

Remark 5 Having demonstrated themerits of the itera-
tive approach, the shortcoming of the proposed method
is that it demands more computational resources when
compared with the existing methods. In this paper, the
simulations are conducted based on Matlab® 2018a,
and the computer is equipped with Intel Core i7-7700K
along with 16GB memory. The compared two-step
approach took 9.60s, the proposedmethod took 20.46s.
From the simulation time, it can be found that it takes
longer for the iterativemethod tofind feasible solutions.

5 Conclusion

In conclusion, to confront the non-convex problem
directly, an iterative stability analysis is presented for
general polynomial control systems. Unlike most of
the methods reported in the literature, there is no con-
straint imposed on the forms of the polynomial Lya-
punov function candidates or the non-convex terms.
Furthermore, the relationship between the solutions of
successive iterations is utilized to obtain the feasible
solutions,which are verified by the original non-convex
conditions. In addition, the comparison between the
proposed approach and the current state-of-the-art
has been conducted. From the comparison results, it

demonstrates that the proposedmethodhasmore poten-
tial to find feasible solutions than the reportedmethods,
which shows the effectiveness of the method in this
paper.
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