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Abstract The authors of the paper “Two-dimensional
third-and fifth-order nonlinear evolution equations for
shallow water waves with surface tension” Fokou et
al. (Nonlinear Dyn 91:1177–1189, 2018) claim that
they derived the equation which generalizes the KdV
equation to two space dimensions both in first and sec-
ond order in small parameters. Moreover, they claim to
obtain soliton solution to the derived first-order (2+1)-
dimensional equation. The equation has been obtained
by applying the perturbation method Burde (J Phys A:
Math Theor 46:075501, 2013) for small parameters of
the same order. The results, if correct, would be sig-
nificant. In this comment, it is shown that the deriva-
tion presented in Fokou et al. (Nonlinear Dyn 91:1177–
1189, 2018) is inconsistent because it violates funda-
mental properties of the velocity potential. Therefore,
the results, particularly the new evolution equation and
the dynamics that it describes, bear no relation to the
problem under consideration.
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1 Outline of the method

The authors of [1] consider the model of inviscid and
incompressible fluid which motion is irrotational in a
container with a flat bottom. In dimensional variables,
the set of hydrodynamical equations has the following
form:

φxx + φyy + φzz = 0, in the volume, (1)

φz − (ηxφx + ηyφy + ηt ) = 0, at the surface, (2)

φt + 1

2
(φ2

x + φ2
y + φ2

z ) + gη = 0, at the surface,(3)

φz = 0 at the bottom. (4)

Here φ(x, y, z, t) denotes the velocity potential,
η(x, y, t) anand denotes the surface function and g is
the gravitational acceleration. Indexes denote partial

derivatives, i.e. φxx ≡ ∂2φ

∂x2
, and so on. The authors take

into account surface tension terms, as well. In this note,
we neglect these terms since their presence or absence
does not change the source of errors made in [1].

Next, the authors introduce a standard scaling
to dimensionless variables (different in x- and y-
direction)

x̃ =x/L , ỹ = y/y0, z̃ = z/h0, t̃ = t/t0, (5)

η̃ =η/A, φ̃ = φ/(L
A

h0

√
gh0), (6)

where A is the amplitude of surface distortions from
equilibrium shape (flat surface), h0 is average fluid
depth, L is the average wavelength (in x-direction),
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and y0 is a wavelength in y-direction. In general, y0
should be of the same order as L , but not necessarily
equal. Notation t0 = L/

√
gh0 is not explained in the

paper.
Then, the set (1)–(4) takes in scaled variables the

following form (tildas are now dropped):

βφxx + γφyy + φzz = 0, (7)

ηt+α(ηxφx+ γ

β
ηyφy)− 1

β
φz = 0,

for z = 1+αη, (8)

φt+ 1

2
α

(
φ2
x + γ

β
φ2
y+

1

β
φ2
z

)
+η = 0,

for z = 1+αη, (9)

φz = 0 for z = 0. (10)

As usual, small parameters are defined as follows:

α = A/h0, β = (h0/ l)
2 and γ = (h0/y0)

2.

2 Details of calculations in [1] limited to first order

Next, the authors assume γ = β and write erroneous
formula [1, Eq. (11)] for the velocity potential

φ =
N∑

m=0

N∑

n=0

(−1)m+nβm+nz2(m+n)

(2m)!(2n)!
∂2(m+n)

∂x2m∂y2n
f (x, y, t). (11)

In the following, the authors limit their considera-
tions to the Boussinesq equations up to second order in
small parameters. Then, it is enough to use the explicit
form of the potential (11) up to third order (due to terms
1
β
φz in (8) and 1

β
φ2
z in (9) the velocity potential should

be valid up to one order higher than the Boussinesq
equations)

φ = f − β z2

2

(
fxx + fyy

) + β2z4

24

× (
fxxxx+6 fxxyy+ fyyyy

) − β3z6

720
× (

f6x + 15 f4x2y + 15 f2x4y + f6y
)
. (12)

The fact that formulas (11)–(12) are wrong is easy to
check by a direct substitution to the Laplace equation
(7). With the above form of the velocity potential, the
authors obtained the set of Boussinesq’s equations in

the form (here surface tension is neglected and only
terms of first order are retained)

ηt + fxx + fyy + α
(
fxηx + fyηy + η( f2x + f2y)

)

− 1

6
β

(
fxxxx + 6 fxxyy + fyyyy

) = 0, (13)

ηx + fxt + α
(
fx fxx + fy fxy

)

− 1

2
β

(
fxyyt + fxxxt

) = 0. (14)

Next, the authors insert the velocity potential into Eqs.
(8) and (9) retaining terms up to second order in α, ε =
β. They introduce the following notation

u = fx , v = fy . (15)

With the above notation Boussinesq’s equations (13)–
(14) can be formulated as [1, Eq. (12)]– [1, Eq. (13)],
that is as

ηt + ux + vy + α
(
uηx + vηy + η(ux + vy)

)

− 1

6
ε
(
uxxx + 3uxyy + 3vxxy + vyyy

) = 0, (16)

ηx + ut + α (uux + vvx ) − 1

2
ε
(
vxyt + uxxt

) = 0.

(17)

In the following, the authors apply the perturbative
approach described in detail by Burde and Sergyeyev
[2] and next extended in [3] to more complicated cases.
In this method, one begins from zeroth-order solutions,
then uses their properties in the calculation of correc-
tions of the first order, and so on. In zeroth order eqs.
[1, Eq. (12)]– [1, Eq. (13)] reduce to

ηt + ux + vy = 0, and ηx + ut = 0, (18)

which have solutions u = η, v = a(x, t) with ηt =
−ηx , ut = −ux . The authors of [1] take constant v =
a, which is a particular solution to vy = 0.

Looking for the solution in first-order approxima-
tion, one introduces corrections of the first order to the
equations (18) and requires that the Boussinesq’s equa-
tions become compatible in this order (whatmeans that
these two equations become equivalent). The authors
look for first-order solutions in the form

u = η + α B(x, y, t) + εC(x, y, t), (19)

v = a (constant ). (20)

Inserting first-order corrections (19)–(20) into (16)–
(17), retaining only terms up to first order, and using
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properties Bt = −Bx , Ct = −Cx the authors obtained
simple differential equations for the correction func-
tions B and C . Here, we cite the formulas from [1].
More detailed derivation, with the correct velocity
potential formula, is presented in Sect. 3. These equa-
tions, after integration give the formulas [1, Eq. (23)]–
[1, Eq. (24)]. These formulas read as

B = −1

4
η2 − 1

2
a

∫
ηy dy, C = 1

4
ηyy + 1

3
ηxx .

(21)

So, in first-order approximation u becomes (in [1,
Eq. (25)] terms at α and ε are incorrectly positioned)

u = η + α

(
−1

4
η2 − 1

2
a

∫
ηy dy

)

+ ε

(
1

4
ηyy + 1

3
ηxx

)
.

Insertion of u, given by the above expression into
[1, Eq. (12)] and [1, Eq. (13)] leads in both cases to the
same equation [1, Eq. (26)], that is

ηt + ηx + α

(
3

2
ηηx + 1

2
aηy

)

+ ε

(
1

6
ηxxx − 1

4
ηxyy

)
= 0. (22)

In other words, equation [1, Eq. (25)] supply compati-
bility of Boussinesq’s equations and thereforemay sup-
ply the correct (2+1)-dimensional evolution equation
in the first order. On this basis, the authors extend the
derivations to second order in small parameters and
claim to obtain the (2+1)-dimensional fifth-order evo-
lution equation [1, Eq. (32)]. They also claim to find
the analytic solution to the equation [1, Eq. (26)] and
discuss its properties.

We do not comment here the derivation of second-
order equation nor the authors’ solutions to the first-
order equation because already first-order wave equa-
tion is incorrect. The details of the argumentation that
the equation (22), that is, [1, Eq. (26)], is wrong are
presented in Sect. 4.

3 Details of correct calculations in first-order
perturbation approach

The correct formula for the velocity potential fulfilling
(1) has the following form

φ(x, z, t) =
∞∑

m=0

(−1)m

(2m)! z
2m (β∂xx + γ ∂yy)

m f (x, y, t).

(23)

For γ = β, the explicit form of this velocity potential
up to third order in small parameters reads as

φ = f − β z2

2
( fxx + fxy) + β2z4

24

× ( fxxxx+2 fxxyy+ fyyyy) − β3z6

720
× ( f6x + 3 f4x2y + 3 f2x4y + f6y). (24)

The correct formula for the velocity potential (23) and
(24) differs from that used by the authors ((11) and
(12)) by values of coefficients in front of mixed xy-
derivatives.

With the correct formula (24), one obtains the fol-
lowing Boussinesq’s equations. From (8), limiting to
first order, one gets

ηt + fxx + fyy + α
(
fxηx + fyηy + η( f2x + f2y)

)

− 1

6
ε
(
fxxxx + 2 fxxyy + fyyyy

) = 0. (25)

The correct result from (9) in first order (after differen-
tiation over x) is

ηx + fxt + α
(
fy fxy + fx f2x

)

− 1

2
ε
(
fxyyt + fxxxt

) = 0. (26)

In variables u, v (15), equations (25)-(26) become

ηt + ux + vy + α
(
ηxu + ηyv + η(ux + vy)

)

− 1

6
ε
(
uxxx + 2uxyy + vyyy

) = 0, (27)

ηx + ut + α (uux + vvx ) − 1

2
ε
(
uyyt + uxxt

) = 0.

(28)
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Equations (25) and consequently (27) differ from equa-
tions (13) and (14) obtained from incorrect velocity
potential (11) by the factor in front of the term fxxyy .

Let us follow the authors’ approach with the correct
equations (27)–(28). In zeroth order we have (18). In
first order assume the correction functions in the same
form (19)–(20).

Substitution to (27) and limitation to first-order
terms gives

ηt + ηx + α
(
a ηy+Bx+2ηηx

)

+ε

(
Cx− 1

6
η3x− 1

3
ηx2y

)
= 0. (29)

Substitution to (28) and retention of terms up to first
order gives

ηt + ηx + α (Bt + ηηx )

+ε

(
Ct − 1

2
η2yt − 1

2
η2xt

)
= 0. (30)

Substraction of (30) from (29) gives

α(Bx − Bt + ηηx + aηy) + ε

(
Cx − Ct − 1

6
η3x

− 1

3
ηx2y + 1

2
η2yt + 1

2
η2xt

)
= 0. (31)

In (31), we use the properties Bt = −Bx , Ct = −Cx ,
η2yt = −η2yx , η2xt = −η3x valid in zeroth order.
Since expressions in (31) are already in first order it
is sufficient. Recall that the general form, e.g., Bt =
−Bx + αBa + εBe, and so on, do not change the fur-
ther results since after insertion into (31) second-order
terms have to be rejected. These properties and freedom
of α, ε allow us to obtain simple differential equations
for B and C in the form

2Bx + ηηx + aηy = 0, 2Cx − 2

3
η3x − 5

6
ηxyy = 0.

Integrating above equations one obtains

B = −1

4
η2 − 1

2
a
∫

ηy dx,

and C = 1

3
ηxx + 5

12
ηyy . (32)

Then, the function u becomes

u = η + α

(
−1

4
η2 − 1

2
a
∫

ηy dx

)

+ε

(
1

3
ηxx + 5

12
ηyy

)
. (33)

With u in the form (33), both Boussinesq’s equations
should reduce to the samewave equation. Indeed, this is
the case, and the final first-orderwave equation receives
the following form

ηt + ηx + α

(
3

2
ηηx + 1

2
a ηy

)

+ε

(
1

6
ηxxx + 1

12
ηxyy

)
= 0. (34)

Although the steps from assumed form of first-order
functions (19)–(20) to equations (22) [1, Eq. (26)] or
(34) are mathematically correct, the final equations
are incorrect because the assumptions (19)–(20) vio-
late the properties of the velocity potential. Details are
explained in the next section.

4 Critics

The authors treat u, v as independent functions, ignor-
ing that, in fact, u, v are partial derivatives of the same
function f . Since u = fx and v = fy , and these func-
tions and their partial derivatives should be continuous,
then the fundamental condition has to be fulfilled

uy = vx ≡ fxy . (35)

This condition is not fulfilled by the functions u, v in
equations (19)–(20)which are necessary for the authors
to derive new (2+1)-dimensional equation. The require-
ment that condition (35) is fulfilled by (19)–(20) leads
from one side to

fxy ≡ uy = ηy + αBy + εCy

and from the other side to

fxy ≡ vx = 0.

So, the condition uy = vx (35) can be fulfilled only
when ηy + αBy + εCy = 0 which, due to freedom of
α, ε, imply By = Cy = ηy = 0 ! This means that the
surface profile does not dependent on y (there is transla-
tion symmetry in y-coordinate). In otherwords, search-
ing for the solution in the form (19)–(20) reduces the
problem to be only (1+1)-dimensional (with ηy = 0
the final equation reduces to the usual KdV equation).
Therefore, the derived first-order (2+1)-dimensional
evolution equation cannot be the solution to the Boussi-
nesq set (13)–(14). In the same way the equation (34)
cannot be the solution to the correct Boussinesq’s set
(25)–(26).
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Can we extend the form of corrections (19)–(20)
in such a way that they fulfill the condition (35)? We
assume the most general form of first-order functions
u, v, that is

u = η + α B(x, y, t) + εC(x, y, t), (36)

v = a(x, t) + α R(x, y, t) + ε S(x, y, t). (37)

Inserting (36)–(37) into (27)–(28) and neglecting terms
of second order one obtains

ηt + ηx + α
(
a ηy + Bx + 2ηηx + Ry

)

+ ε

(
Cx − 1

6
ηxxx − 1

6
ηxyy + Sy

)
= 0 (38)

and

ηt + ηx + α (Bt + ηηx + a ax )

+ ε

(
Ct − 1

2
ηyyt − 1

2
ηxxt

)
= 0. (39)

Substraction of (39) from (38) and use the properties
Bt = −Bx , Ct = −Cx allows us to obtain two equa-
tions

2Bx + η ηx − a ax + a ηy + Ry = 0, and (40)

2Cx − 2

3

(
ηxxx + ηxyy

) + Sy = 0. (41)

Integration over x gives

B = −1

4
η2 + 1

4
a2 − 1

2
a
∫

ηy dx − 1

2

∫
Ry dx, (42)

C = 1

3
(ηxx + ηyy) − 1

2

∫
Sy dx .

So, in principle, the functions

u = η + α

(
−1

4
η2 + 1

4
a2 − 1

2
a
∫

ηy dx − 1

2

∫
Ry dx

)

+ ε

(
1

3
(ηxx + ηyy) − 1

2

∫
Sy dx

)
, and (43)

v = a(x, t) + α R(x, y, t) + ε S(x, y, t), (44)

can make Boussinesq’s equations compatible. But, is
it possible to find such functions a, R, S which ensure

fulfilling the condition (35), that is ensure uy = vx?
Because

uy = ηy + α

(
−1

2
ηηy − 1

2
a
∫

ηyy dx − 1

2

∫
Ryy dx

)

+ ε

(
1

3
(ηxxy + ηyyy) − 1

2

∫
Syy dx

)

(45)

vx = ax + α Rx + ε Sx , (46)

this task seem to be hopeless.

5 Another possibile approach

The above considerations imply that in a shallow water
problem, it is practically impossible to obtain (2+1)-
dimensional evolution equation for the profile of sur-
face wave η(x, y, t), even in first-order approximation.
However, this model can supply differential equations
of any order for the function f (x, y, t) ≡ φ(0)(x, y, t).
Below, we present such an equation in first order.

Recall, that from (8) and the velocity potential (24)
one obtains the first Boussinesq’s equation in the form
(25). The corresponding Boussinesq’s equation result-
ing from (9) is

η + ft + 1

2
α

(
f 2x + f 2y

)
− 1

2
ε
(
fxxt + fyyt

) = 0.(47)

Now, inserting

η = −
(
ft + 1

2
α

(
f 2x + f 2y

)
− 1

2
ε
(
fxxt + fyyt

))

from (47) into (25) and neglecting second-order terms
one obtains first-order evolution equation for the func-
tion f (x, y, t)

fxx + fyy − ft t +α
[− ft

(
fxx+ fyy

)−2
(
fx fxt + fy fyt

)]

(48)

+ ε

[
1

2

(
fxxtt + fyytt

)− 1

6

(
fxxxx+2 fxxyy+ fyyyy

)] = 0.

It can be further simplified utilizing zeroth-order solu-
tion ft t = fxx + fyy . Since the term ε 1

2

(
fxxtt + fyytt

)

is already first order, we can use the equalities

fxxtt = ( ft t )xx = ( fxx + fyy)xx = fxxxx + fxxyy,

fyytt = ( ft t )yy = ( fxx + fyy)yy = fxxyy + fyyyy
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to replace it by ε 1
2

(
fxxxx + 2 fxxyy + fyyyy

)
. There-

fore an equivalent, simpler form of (48), still valid up
to first order, is

fxx + fyy − ft t + α

[
− ft

(
fxx + fyy

)

− 2
(
fx fxt + fy fyt

) ]

+ ε

(
1

3

(
fxxxx + 2 fxxyy + fyyyy

)) = 0. (49)

If the solution to (48) or (49) is known, the equation
(47) supplies the surface profile function η(x, y, t).

In general, for a flat bottom, one can extend this pro-
cedure to arbitrary order. However, even in first-order
approximation partial differential equation (49) corre-
sponding to (2+1)-dimensional shallow water problem
is highly complicated.There is little hope tofind either a
solution to (49) or a (2+1)-dimensional wave equation
for wave profile η(x, y, t) without further significant
simplifications.

6 Conclusions

We have proved that the (2+1)-dimensional KdV-type
equation [1, Eq. (26)] has been inconsistently obtained
by the authors and therefore cannot describe (2+1)-
dimensional surface waves. Moreover, we have shown
that when assumptions for first-order functions [1,
Eqs. (14)-(15)] are used consistentlywith the properties
of the velocity potential, then the solution reduces to
the usual KdV equation. Additionally, we have demon-
strated that even a consistent extension of the authors’
method [1] gives no hope for obtaining appropriate

first-order (2+1)-dimensional evolution equation for
shallow water problem.
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