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Abstract Analytical study of ball vibration absorber
behavior is presented in the paper. The dynamics of
trajectories of a heavy ball moving without slipping
inside a spherical cavity are analyzed. Following our
previouswork, where a similar systemwas investigated
through various numerical simulations, research of the
dynamic properties of a sphere moving in a spherical
cavity was carried out bymethods of analytical dynam-
ics. The strategyof analytical investigation enabled def-
inition of a set of special and limit cases which desig-
nate individual domains of regular trajectories. In order
to avoid any mutual interaction between the domains
along a particular trajectory movement, energy dissi-
pation at the contact of the ball and the cavity has been
ignored, as has any kinematic excitation due to cavity
movement. A governing system was derived using the
Lagrangian formalism and complemented by appropri-
ate non-holonomic constraints of the Pfaff type. The
three first integrals are defined, enabling the evaluation
of trajectory types with respect to system parameters,
the initial amount of total energy, the angular momen-
tum of the ball and its initial spin velocity. The neigh-
borhoods of the limit trajectories and their dynamic
stability are assessed. Limit and transition special cases
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e-mail: naprstek@itam.cas.cz

are investigated along with their individual elements.
The analytical means of investigation enabled the per-
formance of broad parametric studies. Good agreement
was found when comparing the results achieved by the
analytical procedures in this paper with those obtained
by means of numerical simulations, as they followed
from the Lagrangian approach and the Appell–Gibbs
function presented in previous papers.
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potentials · First integrals · Dynamic stability · Limit
trajectories
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Abbreviations

SC Separation circle
CF Characteristic function
CE Characteristic equation
SPC Southern Pole of the cavity (the lowest

point of the cavity, A)
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IHV Initial horizontal velocity γ̇0
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1 Introduction

The motivation for this work comes from the results of
two recent papers by the authors which examined the
behavior of a ball-type absorber using numerical simu-
lations [36,37]. In these engineering-oriented articles,
a number of particular phenomena were identified, the
causes of which had to be estimated from numerical
results alone. However, these phenomena can have a
major impact on the stability of the whole structure
including the absorber. The presented analysis based
on the first integrals, which is made possible by the
assumption of a fixed cavity, enables a detailed anal-
ysis of the movement of the sphere inside the cavity.
Therefore, this work does not intend to primarily exam-
ine the design details and effectiveness of the ball-type
absorber. Instead, it focuses on the theoretical explana-
tion and interpretation of phenomena observed during
numerical and physical experiments, and on a clear sep-
aration of individual cases corresponding to the natural
properties of the system.

The family of passive tunedmass vibration absorbers
is well established in the engineering literature; see
the exhaustive review paper [13] which reflects the
situation until 2017. Conventional passive absorbers
are of the pendulum type, mostly based on the auto-
parametric principle; see, for instance, [16,30,31,45].
The basic principle of ball-type absorbers comes from
the rollingmovement of ametallic ball of radius r inside
a metallic spherical cavity of radius R > r (Fig. 1),
possibly with a rubber lining. Such a simple device is
practically maintenance free; this is a topic which is
gaining increasing popularity [10]. Its vertical dimen-
sion can be relatively small, and thus, it can be used in
cases where a pendulum absorber is inapplicable due to
lack of vertical space or difficult maintenance. Not sur-
prisingly, this type of absorber is growing in popularity
in connection with wind turbines, e.g., [8].

The first papers dealing with the theory and practi-
cal aspects of ball absorbers were published during the
past decades, see [41,42], and are based on engineer-
ing approaches. However, to the best of the authors’
knowledge, the first papers that dealt with this issue
from the perspective of rational (analytical) dynamics
were published only some years ago; see [38,39]. They
presented a basic nonlinear model in 2D together with
its numerical evaluation, and a report on its practical
application, including some results of long-term in situ
measurements. The 2D approach is satisfactory when

Fig. 1 Ball vibration absorber in a dynamic testing laboratory

the absorber is limited to acting in a specific direction,
e.g., in bridges, systems of multiple one-directionally
acting elements, etc. However, structures like masts or
towers require equipment which works simultaneously
in both horizontal directions, and hence, a 3D model
must be considered.

Modeling of a homogeneous sphere rolling on a
perfectly rough surface has a long tradition in clas-
sical mechanics. Several 3D approaches are available
which respect the spatial and strongly nonlinear char-
acter of the system. The system is non-holonomic with
linear constraints in the first derivatives with respect to
time. The classical setting of several particular cases,
including the one that this paper is concerned with,
is considered by Routh [43]. He and other authors
of popular monographs use the general Lagrangian
methodology [4,32,40], which is by far the most pop-
ular approach in classical mechanics; it offers many
advantages which are actively applied in practice and
research, including the rolling sphere problems [17].
For example, a study regarding the rolling of a ball over
a spherical surface based on homogeneous Lagrange
equations has recently been published [18]. There the
author analyzes the free and undamped movement of a
ball in the vertical plane using phase portraits for dif-
ferent initial conditions together with generalizations
regarding vibro-impact dynamics.

The approach based on the Appell–Gibbs function,
even though not frequently used, has proven very effec-
tive in subsequent numerical simulations. For details
and some specific attributes of this approach, see, e.g.,
papers [11,14,26,28,46,48]. Recently, the rolling of
a ball over a curved surface was dealt with on an
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Trajectories of a ball moving inside 1593

abstract basis using the Lie group theoretical meth-
ods, e.g., [19]. Borisov et al. [7] use a similar abstract
methodology and present a more complete analysis of
the Routh solution for the solid of revolution. They
derived new integrals for the ball rolling on non-
symmetrical surfaces of the second order. Jurdjevic
and Zimmerman [20] extended the problem to a hyper-
bolic analogue in which the spheres are replaced by the
hyperboloids, and rolling is taken in an isometric sense
in either Euclidean or Riemann geometry. A numer-
ical analysis of the ball rolling in a spherical recess,
also based on the Appell–Gibbs function, was studied
numerically by Legeza [24].

Another derived topic with high publication activity
regards the rolling of a so-called Chaplygin sphere—a
dynamically non-symmetric non-homogeneous sphere—
which represents one of the best known integrable sys-
tems of classical non-holonomic mechanics [5], either
with or without considering a spin [22]. There is no
doubt that devices based on similar effects find their use
in absorbing unwanted vibrations. The usage of non-
homogeneous spheres, hemispheres or semi-elliptic
spheres would allow the absorber to be fine-tuned for
a precisely limited nonlinear damping effect or multi-
directional damping [27,28]. These topics are already
popular in the engineering literature, however, still only
partially treated analytically. For example, a prospec-
tive tuned vibration absorber based on the nested ball
principle has been vaguely described in a patent pro-
posal [33]. The theoretical analysis of this setup is par-
tially addressed in an abstract way by Borisov [6], and
a case with a semi-elliptic cavity was described by Leg-
eza [25]. It is also worth noting that the overview [13]
does not mention any text concerning the dynamic sta-
bility analysis of structures equipped with vibration
absorbers. This is despite the fact that the subject is
mentioned among the topics that require considerable
attention.

The above-mentioned abstract solutions offer valu-
able tools of investigation. From the engineering per-
spective, however, the actual trajectories that can be
encountered in a particular vibration absorbing device
are interesting because they determine its efficiency.
The authors addressed two possible strategies for this
purpose: (1) the Lagrangian formalism in 2D [38] and
(2) the Appell–Gibbs function in 3D; see [36,37]. In
each case, a governing differential system was com-
posed, and the solution itself was conducted numeri-
cally with subsequent analysis of the extensive data set.

Important physical properties of the “ball—spherical
cavity” system were discovered in these papers, and
many particular trajectory types were identified numer-
ically, however, without proper analytical explanation.
This indicates that the problem should also be inves-
tigated at an analytical level using energy, momentum
and angular momentum balance principles related to
relevant first integrals. This strategy makes a qualita-
tive investigation of the system behavior possible at
least in the setting of the homogeneous problem. A
similar technique was also adopted for investigating
a nonlinear spherical pendulum; see [35]. In general,
such an approach can significantly improve insight into
the internal character of the system and increase the
possibilities for practical applications. It enables a sys-
tematic identification of limit trajectories and the def-
inition of relevant categories. The existence of limit
trajectories depends on the system parameters and the
initial conditions setting. The possibility of delimiting
the domains of parameters can significantly contribute
to an analysis of a system’s reliability and its life-
time period. Moreover, the obtained results can serve
in constructing effective forms of the Lyapunov func-
tion intended for particular cases; see [9,23] and other
resources in the domain of dynamic stability.

Finally, it is worthmentioning that many of the alge-
braic manipulations required to derive or verify formu-
las in this paper were done using the Wolfram Mathe-
matica Package [47].

The paper is organized as follows. First, after this
introduction, the governing system and three of the first
integrals based on theLagrangian approach are derived.
A particular characteristic function is then introduced
as a basic tool for further classification of the response
trajectories. Next, the particular “separation circle” tra-
jectory is introduced, which separates two main trajec-
tory groups. Sections 4 and 5 describe settings with
and without consideration of the initial spin of the ball.
A particular type of an almost planar rocking is then
analyzed in detail in Sect. 6. Finally, the last section
concludes.

2 Governing system and first integrals

2.1 Lagrangian system and first integrals

The rolling without slipping of a ball on a surface is
a non-holonomic problem because constraints relat-
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ing to the mutual movement of a ball and a surface
include velocity components. When putting together
an expression for the kinetic and potential energies T ,
V , and external forcesQ = [Q1, . . . , Qn], the relevant
Lagrangian equations should be written as follows:

d

dt

(
∂T

∂q̇ j

)
− ∂T

∂q j
+ ∂V

∂q j
= Q j +

l∑
m=1

λm · Bmj , (1)

j = 1, . . . , n, and with non-holonomic constraints:

n∑
j=1

Bmj · q̇ j + Bm = 0. m = 1, . . . , l, (2)

where q j ( j = 1, . . . , n) are generalized coordinates.
Symbols Bmj and Bm are generally functions of q j .
Explicit time can be usually omitted as constraints are
considered scleronomous as a rule if external kine-
matic excitation is absent and only initial conditions
provide energy to the system. Provided that kinematic
excitation works, the respective parameters Bm �= 0
and should then be considered as functions of time.
Symbols λm (m = 1, . . . , l) are Lagrangian multipli-
ers which are used to add non-holonomic conditions
to the Hamiltonian functional. Therefore, the system
Eqs. (1), (2) includes n + l unknowns q j , λm ; see,
for instance, the popular monographs [2,3,12,15]. The
non-holonomic constraints Eq. (2) are formulated as
linear functions of velocities q̇ j ; this has been shown
to be satisfactory concerning the problems considered.
For more details and generalization, see [4,44].

In order to arithmetize the mathematical model, we
need to introduce three adequate coordinate systems. In
accordance with Fig. 2, the fixed Cartesian coordinates
(x, y, z) are obvious. Their origin is in the “Southern
Pole of the Cavity” (SPC) denoted A. The position of
the ball center is described in standard spherical coor-
dinates with their origin being in the center of the cav-
ity and α, γ denoting the polar and azimuthal angles,
respectively. The origin of the moving coordinates is
located in the center of the moving ball, so that it lies
on the concentric spherewith radius� = R−r .Moving
axis p follows a tangent of the concentric spheremerid-
ian in the vertical plane (x ′, z), axis q is always horizon-
tal, and axis n has the direction of the upward directed
normal at the contact of both bodies; see Fig. 2. Rota-
tion of the ball with respect to themoving coordinates is
represented by the Euler angles ϕ, θ, ψ . Components
of the angular velocity vector ω = [ωp, ωq , ωn]T in
moving coordinates are positive as corresponds to the

usual convention of the right hand rule [40]. The veloc-
ities of the ball centerwith respect to global coordinates
are v = [vp, vq , vn]T .

In further text, only the components of vectors v,ω
will be used. Nevertheless, their relation to the velocity
components q̇ j used in Eqs. (1), (2) is obvious.

The basic formulae for kinetic and potential energies
with respect to moving coordinates read

T = 1

2
m

(
v2p + v2q + v2n + 2

5
r2

(
ω2
p + ω2

q + ω2
n

))
,

(3a)

V = mg�(1 − cosα), (� = R − r), (3b)

where m, g represent the mass of the ball and gravita-
tional acceleration, respectively. In order to relate the
angular velocity vector ω and the velocity components
expressed in Euler angles ϕ, θ, ψ , we write

ωp = −ϕ̇ sin θ cosψ + θ̇ sinψ, (4a)

ωq = ϕ̇ sin θ sinψ + θ̇ cosψ, (4b)

ωn = ϕ̇ cos θ + ψ̇. (4c)

Because the spherical cavity has a constant curva-
ture 1/� at every point regardless of direction, the rela-
tion between angles α, γ and velocities vp, vq can be
expressed simply, see Fig. 2,

vp = �α̇, vq = �γ̇ sin α, vn = 0, (5)

where the expression vn = 0 represents one of the three
contact constraints. For the same reasons, the Pfaff con-
tact conditions of perfect rolling without slipping can
be easily expressed. They specify the relations between
angular velocities ωp, ωq , ωn and angles α, γ or dis-
placements vp, vq . With respect to Eq. (5), the contact
conditions can be reformulated as follows:
vp − rωq = 0, rωq − �α̇ = 0,

vq + rωp = 0, �⇒ rωp + �γ̇ sin α = 0,

vn = 0, vn = 0.

(6)

Taking into account Eqs. (5) and (6), the expressions
for energies from Eq. (3) can be rewritten in the form

T = 1

2
m

(
7

5
�2(α̇2 + γ̇ 2 sin2 α) + 2

5
r2(ψ̇ + γ̇ cosα)2

)
, (7a)

V = mg�(1 − cosα). (7b)

With reference to the problem definition, no external
excitation or energy dissipation is assumed. Hence,
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Fig. 2 Outline of coordinate systems; left: axonometric view; right: plane ξ z view—along γ orientation

the internal energy introduced to the system by non-
homogeneous initial conditions has the form:

E0 = T + V = 1

2
m

(
7

5
�2(α̇2 + γ̇ 2 sin2 α) + 2

5
r2ω2

n

)

+ mg�(1 − cosα).

(8)

Here, the spin of the moving sphere is given in the
form ωn = ψ̇ + γ̇ cosα with respect to Eq. (4c) and
the geometric properties of the cavity.

Every conservative Lagrangian system (in the sense
of energy balance) possesses at least one first integral,
which can be considered a multiple of the total energy
of the system. Therefore, with respect to Eq. (8), it can
be formulated as follows:

α̇2 + γ̇ 2 sin2 α + μω2
n + 2ω2

0(1 − cosα) = E, (9)

where the following notations were adopted:

μ = 2r2

7�2 , ω2
0 = 5g

7�
, E = 10E0

7m�2 . (10)

The dimensionless constantμ reflects the ratio between
the ball radius and the distance between the centers of
the ball and the cavity; it is, in fact, closely related to
the ratio of both radii. ω2

0 denotes the squared natural
frequency of the rocking of the homogeneous ball in the
spherical cavity, and E relates to the internal energy of
the system.

Due to the transparent structure of the problem,
although it is non-holonomic, it can be rewritten in

three degrees of freedom only, and no procedure via
Lagrangian multipliers has to be applied. Moreover,
since no explicit external excitation is present, both
terms on the right-hand side of Eq. (1) identically van-
ish. Therefore, after some modifications, we obtain
three Lagrangian equations for the three unknowns α,
γ and ωn :

α: α̈ − (γ̇ 2 cosα − μωn γ̇ − ω2
0) sin α = 0, (11a)

γ : d

dt

(
γ̇ sin2 α + μωn cosα

)
= 0, (11b)

ψ : d

dt
(ωn) = 0. (11c)

It is obvious that Eqs. (11b,c) are the first integrals,
because γ and ωn are cyclic coordinates. Therefore,
we can write

γ : γ̇ sin2 α + μωn cosα = H, H = 5H0

7m�2 , (12a)

ωn : ωn = S. (12b)

Parameters E0 and H0 represent the energy and angular
momentum of the system, respectively; they are given
by Eqs. (8,12a) or (9, 12a), where the initial conditions
α, α̇, γ̇ , ωn are substituted.

Equations (12) are the second and third first inte-
grals of the system. The first one represents the conser-
vation of the system’s angular momentum with respect
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to axis z at the constant level H , while Eq. (12b) shows
the spin velocity (proportional to S) of the ball with
respect to the normaln.We can see that the spin velocity
is constant throughout the whole period of the system
movement, although it interacts with the other angu-
lar velocity components of the ball through relations
Eq. (4). Note that this very special character of the spin
is a direct consequence of the spherical shape of both
the cavity and the ball. Any other combination of two
bodies in contact would lead to a variable spin veloc-
ity. The general form of Eq. (11c) would encompass an
additional term dependent on differences in the princi-
pal curvatures of the two bodies. This difference is zero
for spherical surfaces.

2.2 Characteristic equation

The three first integrals Eqs. (9, 12) represent certain
invariants and an alternative description of the system
behavior; they provide a possibility for a transparent
introduction of energy and movement through initial
parameters. Thus, they enable the investigation of par-
ticular states of the system, an analytical formulation
of various characteristics of trajectories and, conse-
quently, much greater insight into the nature of sys-
tem parameters than one based solely on a numerical
integration of the original differential system.

Let δ denote the height of the ball above the bottom
of the cavity, i.e., the z coordinate of the center of the
sphere:

δ = 1 − cosα ⇒ α̇ = δ̇/ sin α, (13)

If γ̇ is eliminated from Eq. (9) using Eq. (12a), one
obtains after some manipulation

δ̇2 = (E − μω2
n − 2ω2

0δ)(2δ − δ2) − (H − μωn(1 − δ))2

= f (δ) (14a)

γ̇ = H − μωn(1 − δ)

2δ − δ2
. (14b)

In further text, we term f (δ) defined by Eq. (14) the
“Characteristic Function” (CF), and f (δ) = 0 the
“Characteristic Equation” (CE). Symbols E and H in
Eq. (14) represent the measure of energy introduced
into the ball at the instant t = 0 by means of the ini-
tial conditions: δc—the initial height of the ball, γ̇c—
“Initial Horizontal Velocity” (IHV), and ωn—“Initial
Spin Velocity” (ISV); see Eqs. (9, 12a). Based on these

Fig. 3 General shape of characteristic function f (δ) and of
the area delimiting the active spherical strip in the interval
δ ∈ (δ1, δ2)

initial conditions, the energy in the system may be
quantified using the following relations:

E = γ̇ 2
0 δc(2 − δc) + 2ω2

0δc + μω2
n,

H = γ̇0δc(2 − δc) + μωn(1 − δc).
(15)

Function f (δ) is a cubic parabola which attains pos-
itive or negative values based on system parameters
μ,ω0, state variables α, α̇, γ̇ , ωn together with their
initial values αc, α̇c, γ̇0, ωn0 (hidden in E, H ) and with
respect to independent variable δ. The general form of
theCF is obvious in Fig. 3. The interval δ ∈ (0, 2) spans
the whole diameter 2R of the cavity from the SPC to
the NPC (NPC—“Northern Pole of the Cavity”).

Obviously, it holds that

f (−∞) < 0,

f (0) = −(H − μωn)
2, f (2) = −(H + μωn)

2,

f (1) = E − H2 − 2ω2
0 − μω2

n,

f (∞) > 0.

(16)

The cubic polynomial Eq. (14a) is physically mean-
ingful only for values where f (δ) > 0, as δ̇ is con-
sidered to be real. The first derivative of f (δ) may be
formally written as a general quadratic polynomial:

d f (δ)

dδ
= Aδ2 − 2Bδ + C,

A = 6ω2
0, B = 4ω2

0 + E − μω2
n(1 − μ),

C = 2
(
E − Hμωn − μω2

n(1 − μ)
)

. (17)

Quadratic equation Eq. (17) has two real roots because
its discriminant is always positive:

B2 − A · C > 0 ⇒
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(
E − μω2

n(1 − μ) − 2ω2
0

)2 + 12ω2
0

(
ω2
0 + μωn H

)
> 0. (18)

The inequality Eq. (18) is fulfilled trivially for ωnH >

0. Otherwise, introduction of initial conditions δc, γ̇0
andωn into E, H , defined by Eqs. (9, 12a), implies that
Eq. (18) is valid for 0 ≤ δc < 2. Therefore, the cubic
parabola Eq. (14a) has two extremes. The analogous
procedure confirms that C > 0. Thus,

B2 > B2 − AC, (19)

and both the extremes are situated on the positive semi-
axis: 0 ≤ δe1 ≤ δe2; the first one is positive, and the
second is negative:

f (δe1) ≥ 0, f (δe2) ≤ 0. (20)

Summarizing the above contemplation, one can con-
clude that the CE Eq. (14a) has three real roots satisfy-
ing the following conditions:

0 ≤ δ1 ≤ δ2 < 2 < δ3. (21)

Thefirst two roots are physicallymeaningful, as they
delimit an interval on axis δ where δ̇2 ≥ 0, which is a
necessary condition for the energy accumulated in the
system to be real. For geometrical reasons, the values
δ > δ3 > 2 do not represent a physically meaningful
state, although δ̇2 ≥ 0 there as well. Note that zero and
the coinciding roots can occur. As we will see later,
they represent physically important cases.

The values used in the majority of the plots are
as follows: R = 1m, r = 1/4R, M = 1kg, J =
2/5Mr2 kgm2, g = 9.81m s−2. If not stated other-
wise, the initial position used in the example is given
as γ = 0 and δc = 1 − 1/

√
2

.= 0.3, which corre-
sponds to the polar angle αc = π/4; in the Cartesian
coordinates, it is (x, y, z) = (1/

√
2, 0, 1 − 1/

√
2).

3 The separation circle and its neighborhood

3.1 Definition and relevance of the Separation Circle

Previous studies by the authors [36,37] have shown
that the most important separation limit between tra-
jectory types (or groups) that start at a certain point
is a trajectory running at constant angular velocity Γ

along a parallel of the cavity. This trajectory will be
called the “Separation Circle” (SC), because it sepa-
rates qualitatively different trajectories. The SC can be
characterized as follows: The ball is pulled up along a

meridian of the cavity to a certain level δc to the “Start-
ing Point of the Trajectory” (SPT), and subsequently,
a horizontal impulse is applied to it. The intensity of
the impulse is so high that it sets the ball onto a hor-
izontal circular trajectory at the vertical level δc. This
condition can be used reversely to determine the neces-
sary IHV γ̇c = Γ or vqc, the values of which represent
the constant angular or tangential velocities relevant to
movement along the SC. The initial spin velocity ωn

is considered zero in the first step. The spin velocity
can also be set such that it compensates for γ̇c when
different from Γ in order to maintain the SC trajectory.

Let us evaluate the notion of the SC from the view-
point of the CE discussed above. Figure 4a shows
parabola f (δ) for a given height δc and three differ-
ent values of the IHV. Intervals where f (δ) ≥ 0 for
δ ∈ 〈0, 2〉 represent possible heights at which the tra-
jectory of the ball in the cavity can occur. In the case of
the SC trajectory, i.e., for IHV γ̇c = Γ , one double root
δ1 = δ2 = δc of f (δ) = 0 occurs; this case provides
an active area of zero width, see the dotted curve c©
in Fig. 4. The dependence of the width of the active
area on the initial horizontal velocity γ̇c is illustrated
in Fig. 4b.

For γ̇c < Γ , the active area spans between δ1 and δ2
which coincide with δc. An initial velocity higher than
Γ leads to a trajectory within the spherical strip above
the δc = δ1 boundary and goes up to δ2. In such a case, it
can occur that δ2 > 1, which means that the ball passes
into the upper hemisphere of the cavity. The limit case
is reached when the IHV approaches an infinite value.
Then, δ1, δ2 are symmetrically distributed with respect
to δ = 1. The upper boundary of the active strip is rep-
resented by the SC mirrored in the upper hemisphere.
The trajectory becomes planar again although the plane
is slanted passing the SPT and the center of the cavity.

The graph in Fig. 4b also shows the effect of nonzero
initial spin ωn . The dashed curve 2© shows the case
when ωn < 0, and the dot-dashed curve 3© corre-
sponds to positive ωn . Each of the curves also has a
second branch above δ = 2 that have no physicalmean-
ing.

The classification strategy based on the SCwas intu-
itively adopted by the authors in their earlier studies,
e.g., [36,37]. Actually it appears that this classification
well describes all possible trajectories of a ball rolling
inside a spherical cavity and starting from a certain
point. Whatever the orientation and intensity of the ini-
tial impulse are, the movement of the ball takes place
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(a) (b)

Fig. 4 Active area: a solid curve b©—trajectory below the SC:
δ ∈ (δ1,b, δ2,b = δc); solid curve a©—trajectory above the SC:
δ ∈ (δ1,a = δc, δ2,b); dashed curve c©—transition case repre-
senting the SC—no active area due to coincidence δc = δ1 = δ2.

b Schema of the dependence of δ on the initial horizontal angular
velocity γ̇c/Γ for three values of ωn : solid curve 1©: ωn = 0,
dashed curve 2©: ωn < 0, dot-dashed curve 3©: ωn > 0. Verti-
cals a©– c© correspond to curves a©– c© in plot a)

within a uniquely defined spherical strip delimited by
the two lower roots δ1, δ2 of the CE, Eq. (14), which
are related to the energy contained in the system.

3.2 Position of the separation circle

Let us inspect Eq. (11a). Provided the ball follows the
SC at a height given by initial condition αc < π/2, i.e.,
δc < 1, its angular velocity is constant, γ̇0 = Γ , and
vertical acceleration α̈ vanishes, so that we can write

Γ 2 cosαc − μωnΓ − ω2
0 = 0, 0 < αc < π/2. (22)

This quadratic equation has two real roots:

Γ =
μωn ±

√
μ2ω2

n + 4ω2
0 cosαc

2 cosαc
⇒

vqc = 1

2
� · tgαc

(
μωn ±

√
μ2ω2

n + 4ω2
0 cosαc

)
.

(23)

When zero spin velocity is assumed, ωn = 0, these
relations simplify greatly:

Γ0 = ± ω0√
cosαc

= ± ω0√
1 − δc

. (24)

The IHV vqc or angular velocity Γ satisfying
Eq. (23) produces the SC for the given polar angle
αc. The roots represent two opposite directions with
respect to the trajectory initial point. Their ratio
depends on the sign of the spin velocity ωn . For zero

initial spin, the image is symmetrical in the horizontal
plane with respect to the initial point of the trajectory.
The schematic plots in Fig. 5 demonstrate the depen-
dence of velocity vqc on both the initial height (given by
parameter αc) and the ratio of the sphere to the cavity.
Graph (a): fixed height αc = π/4, plot (b): fixed ratio
r/R. In this latter case, the dependence starts from zero
for the SPC (αc = 0) and tends to infinity for the “Equa-
tor of the Cavity” (EQC) (αc = π/2). The bold-black
curves in plots (a) and (b) represent the spin-free state
(ωn = 0), while the color curves show the influence of
the initial spin. The relation between the velocity vqc
and the initial spin ωn , which maintains the trajectory
in the SC, may be deduced from Eq. (22) and is illus-
trated in picture (c). A decrease in horizontal velocity
is compensated by a negative spin, whereas an increase
in horizontal velocity implies a proportional increase
in positive spin. One-sided limits of ωn for vqc → 0+
and vqc → ∞ exist and equal ±∞.

3.3 Dynamic stability of the separation circle

We now examine the neighborhood near the SC. We
revisit Eq. (11a) and also the first integral Eq. (12a).
The vertical position of the ball on the SC is given by
the angle αc, and the horizontal angular velocity Γ is
determined by Eq. (23). These are the nominal values
which are subjected to small perturbations generated
by dispersion in the initial conditions setting. Thus, we
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(a) (b) (c)

Fig. 5 Initial horizontal velocity producing the trajectory of the SC: a fixed initial height αc = π/4, varying ratio r/R, b fixed ratio
r/R, varying polar angle αc; color curves in a, b correspond to various spin values, c compensation spin. (Color figure online)

reformulate the initial conditions as

γ̇0 ≈ Γ + η, α ≈ αc + ζ, (25)

where ζ and η are small values.
Substituting perturbed initial conditions Eq. (25)

into Eq. (11a), a linearized equation for ζ(t) can be
deduced.Disregarding thehigher-order terms ζ 2, η2, η·
ζ , one obtains

α̈c −
(
Γ 2 cosαc − μωnΓ − ω2

0

)
sin αc

+ ζ̈ −
((

Γ 2 cosαc − μωnΓ − ω2
0

)
cosαc

−Γ 2 sin2 αc+
)

ζ

− (2Γ cosαc − μωn) sin αc · η = 0.

(26)

The first line of Eq. (26) vanishes due to Eq. (11a), and
the coefficient of the termwith cosαc on the second line
disappears because of Eq. (22). Hence, it holds that

ζ̈ + Γ 2 sin2 αc · ζ

+ (μωn − 2Γ cosαc) sin αc · η = 0. (27)

This equation is solvable for zero initial conditions in
a closed form:

ζ = 2η (2Γ cosαc − μωn)

Γ 2 sin αc
sin2

(
t · 1

2
Γ sin αc

)
.

(28)

At the level of the first approximation, supposing
that a small increase in initial tangential velocity is con-
sidered, it is obvious that the trajectory lies above the
SC within the narrow spherical strip δ ∈ (δc = δ1, δ2),
where δ1 < δ2. Similarly, decreasing the IHV, we get
a trajectory below the SC within the limits 0 < δ1 <

δ2 = δc. The width of the strip in both cases is |η|/Ωv .

The explicit form of perturbation Eq. (28) represents
a form of harmonic ripples which oscillate above or
below the separation circle. The period of perturbations
is

Tper = 4π

Γ sin αc
. (29)

One loop around the SC takes Tloop ≈ 2π/(Γ + η).
Therefore, the number of small waves during one loop
is
Nper = 2(Γ + η)

Γ sin αc
≈ 2

sin αc
, (30)

which, in general, is not a rational number, and the
trajectory alternating above or below the SC does not
pass the SPT.

We should be aware that the estimates Eq. (25) and
also the results Eq. (28) are applicable if 0 < αc < π/2.
Indeed, for small αc, the values αc and ζ are com-
measurable as are the values Γ, η, and classification
according to the powers of a small parameter becomes
invalid. Of course, the perturbations η, ζ should also
remain small in order for linear approximation to be
justified.

Finally, one can conclude that the SC (perhaps with
the exception of the SPC neighborhood) is dynamically
stable, and a small initial perturbation does not cause a
receding of this trajectory from the original SC.

Let us show an example of a time history of the tra-
jectory corresponding to the SC; see Fig. 6. The time
history shows a harmonic process in both horizontal
coordinates and a constant value in the vertical coordi-
nate, plot (a).
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(a) (b) (c)

Fig. 6 Example of the trajectory of the SC type without influence of the ISV (ωn = 0): a time history, b top view, c axonometric
demonstration

4 Trajectories not influenced by initial spin of the
ball

4.1 Trajectories above the SC

4.1.1 Roots of the CE

Let us examine the case where δc = δ1 ≤ δ2 and ωn =
0, i.e., the ball is rolling above the SC and no spin is
assumed, γ̇0 > Γ0; see also curve (a) in Fig. 4.

Setting the position for the SPT on a meridian of the
cavity at a certain level characterized by polar angle
0 < αc < π/2 or equivalently by height δ1 ∈ (0, 1) (in
the lower hemisphere of the cavity) in fact means that
the lowest root δ1 = δc of the CE is fixed. Considering
that one root is known, we can rewrite Eq. (14a) in the
form of a partial decomposition with respect to the root
factors:

f (δ) = (δ − δc)(K δ2 + 2Lδ + M) = 0,

K = 2ω2
0, L = −

(
2ω2

0 + 1

2
γ̇ 2
0 δc(2 − δc)

)
,

M = γ̇ 2
0 δc (2 − δc)

2 , γ̇0 > Γ0. (31)

The detailed form of coefficients K , L , M is derived
from the full CE, Eq. (14a), where a zero ISV was sub-
stituted. The energy E , Eq. (9), and the angularmomen-
tum H , Eq. (12a), contained inEq. (14a), were included
in the initial parameter values for the SPT.

The SC is regarded as the lower boundary of the
spherical strip on the cavity surface within which a par-

ticular trajectory runs. The upper boundary is then the
lower of the remaining roots δ2, δ3. They can be calcu-
lated from the quadratic equation, which is outlined in
Eq. (31):

δ2,3 = 1

K

(
−L ±

√
L2 − K · M

)
, (32a)

D = L2 − K · M = (32b)

=
(
2ω2

0 + 1

2
γ̇ 2
0 δc(2 − δc)

)2
− 2ω2

0 γ̇
2
0 δc(2 − δc)

2

=
(
2ω2

0 − 1

2
γ̇ 2
0 δc(2 − δc)

)2
+ 2ω2

0 γ̇
2
0 δ2c (2 − δc) > 0.

(32c)

ThediscriminantD is alwayspositive,Eq. (32c),which
fact confirms that Eq. (14a) has three real roots. Fur-
thermore, 0 < D < L2 and, consequently, all roots are
positive and fulfill conditions 0 < δc = δ1 < δ2 < 2
and δ3 > 2. Of course, root δ3 is geometrically out of
scope, and it is no longer considered; see Sect. 2.2.

4.1.2 Circumferential periodicity of trajectories

In order to outline the basic character of a trajectory
occurring between boundaries δc = δ1, δ2, we inspect
the expression for the circumferential velocity γ̇ fol-
lowing from Eq. (14b). In general, it can be assumed
that the trajectory is periodical in the vertical direction,
where the ratio of the period to the SC lengths is not
a rational number. Therefore, one round along the SC
will not contain a whole number of periods. The angu-
lar momentum H is always positive, see Eq. (12a),
and the second term of the numerator vanishes since
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ωn = 0. The denominator in this fraction is also pos-
itive, because δ(2 − δ) > 0 for δ ∈ (0, 2). There-
fore, γ̇ > 0 regardless of the settings for the initial
conditions at the SPT. Moreover, it can be supposed
that the variability of γ̇ during one period for given
initial settings will not be dramatic. Indeed, it is obvi-
ous that the angular momentum H is constant during
one period. Consequently, the horizontal angular veloc-
ity at the point where the trajectory touches the upper
boundary of the strip, δ2, follows from Eq. (12), where
ωn = 0, and it holds that

γ̇2 sin
2 α2 = γ̇0 sin

2 αc, (33)

where αc, γ̇0 or α2, γ̇2 are values of the respective
parameters at the initial point (δc = δ1) or at the touch-
ing point on the upper boundary (δ2). Hence, it can be
written:

γ̇2T = γ̇0

(
sin αc

sin α2

)2

= γ̇0
(δc − 2) δc

(δ2 − 2) δ2
(34a)

γ̇2T ≈ γ̇0 (1 − 2Δα cot αc) ≈ γ̇0

(
1 − 2 (δc − 1) Δδ

(δc − 2) δc

)

(34b)

where Eq. (34b) is valid for small values of the differ-
ence Δα = α2 − αc or Δδ = δ2 − δc.

The horizontal velocity is slightly lower at the upper
apex due to an increase in potential energy. At the same
time, some qualitative confirmation of this fact follows
from the constant angular momentum H and δ, which
changes more or less monotonously. This implies that
no singular points emerge during one vertical period,
and that the angular velocity along the trajectory is
mildly variable. Thus, the trajectory has the shape of
a simple periodic curve without any turnabout points
reversing velocity γ̇ .

4.1.3 Vertical periodicity of trajectories

Here, we assess the length and duration of one vertical
period of the trajectory. The IHV leads to a trajectory
that is symmetrical with respect to both points where it
touches the lower boundary (δc = δ1, where the IHV is
applied) and theupper boundary (δ2); seeFig. 7.Thus, it
is sufficient to examine only the first half of the period
for δ increasing between δ1 and δ2. We revisit both
relations in Eq. (14). Assuming ωn = 0, the following

differential system can be written:

δ̇2 = (E − 2ω2
0δ)(2δ − δ2) − H2, (35a)

γ̇ = H

2δ − δ2
. (35b)

The first equation is γ̇ independent, and, therefore, it
can be solved as the first step. The pair ±δ could be
put into the second equation to obtain γ (t) by means
of integration between δc and δ2. However, it comes to
light that both points on the strip boundaries δc, δ2 are
singular and represent bifurcation points. In addition,
the relevant Jacobi matrix is also singular and, con-
sequently, does not enable us to predict the principal
directions in the point neighborhood. Three solutions
start from the SPT (including the constant δc), and all
of them have the zero derivative. Therefore, neither
an analytical nor a numerical stable solution can be
deduced from these points. This difficulty can be over-
come by differentiating Eq. (35a) with respect to time.
After reducing by δ̇, the modified system reads

δ̈ = E(1 − δ) − ω2
0δ(4 − 3δ), (36a)

γ̇ = H

2δ − δ2
, (36b)

where E = γ̇ 2
0 δc(2−δc)+2ω2

0δc, H = γ̇0δc(2−δc),
cf. Eq. (15).

The denominator in Eq. (36b) is always positive
because δ ∈ (δc, δ2). Then, Eq. (36) can be solved
for initial conditions γ (0) = 0, δ(0) = δc, δ̇(0) = 0
sequentially putting partial results of Eq. (36a) into
Eq. (36b). Finally, the time is eliminated, and one
obtains δ as a function of γ . Some samples of the tra-
jectory are plotted in Fig. 7, in which a set of five cases
were γ̇0 > Γ0 for the selected δc = 1 − 1/

√
2 ≈0.3

and the relevant Γ0 = 3.63 is demonstrated.
Notice the shape of the high curves in this figure.

They correspond to the dominating first term in the
right-hand side of Eq. (36a) when γ̇0 is large. Omit-
ting the second term when γ̇0 � Γ0, we obtain a
linear equation of harmonic oscillation with an ade-
quate constant right-hand side. The resulting equation
for γ̇0 → ∞ is analytically resolvable; its compli-
cated resulting expression δ(γ ) is 2π periodic with
the extremal values δc and 2 − δc at γ = 2kπ and
2(k + 1)π, k ∈ Z, respectively. The shape of the lim-
iting function is indicated by the dashed black curve
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Fig. 7 Shape of the
trajectory above the SC for
various IHV, αc = π/4,
δc = 1 − 1/

√
2 ≈0.3

(a) (b)

Fig. 8 Trajectory above the SC (no spin applied), a spatial period dependent on the IHV (γ̇0); b upper boundary of the strip δ2 as a
function of γ̇0 (αc = π/4, δc = 1 − 1/

√
2 ≈0.3)

segments. This limit case of γ̇0 → ∞will be discussed
separately in Sect. 4.2. On the other hand, γ changes
in steps from 0 to π whenever δ(t) passes the SPC for
γ̇0 = 0, which makes γT = π .

In a general case, for given initial height δc, the verti-
cal component of the trajectory δ(γ ) increases its angu-
lar period and amplitude as the initial angular velocity
γ̇0 increases. This can be observed in Fig. 8; the blue
curves above the SPT, γ̇0 > Γ0 are regarded in this
section. For a fixed Γ0 and increasing IHV, the angular
period γT slowly rises and approaches the full angle for
γ̇0 → ∞; see picture (a). Picture (b) demonstrates the
rising of the strip’s upper level δ2 with increasing IHV.
The parameter δ2 approaches the horizontal asymptote
2− δc, symmetrically placed with respect to the EQC,
in the particular case from 0.3 to 1.7. When δc changes

its value, the dependences shown in Fig. 8 remain valid,
but the strip (δc, 2 − δc) decreases/increases its width.

4.1.4 Discussion

Using the above analytical results, we can outline some
detailed trajectory properties with respect to IHV and
the height of the SPT above the SPC. A typical trajec-
tory shape is plotted in Fig. 9. Comparing Figs. 6 and
9, we can see that the trajectory time history is still a
simple periodic curve synchronous in both horizontal
coordinates with a slight modulation. This modulation
depends on both values of δc and γ̇0. It relates to the
difference between frequencies of γ (t) and δ(t) and
vanishes when γ̇0 = Γ0 or γ̇0 → ∞.

The frequency of vertical displacement ucz in Fig. 9a
is related to that of horizontal displacements via the
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(a) (b) (c)(a) (b) (c)

Fig. 9 Example of the trajectory above the SC with no ISV (ωn = 0): a time history, b top view, c axonometric demonstration

angular period γT which depends on the δ1 = δc and
δ2 boundaries of the spherical strip. No visible influ-
ence of higher harmonics is observed, although a very
light quasi-periodic character can be noticed, as it fol-
lows from the geometric character of the system. The
shape in the top view is helical and resembles the form
of a prolate-type hypotrochoid close to a hypotrochoid
form of prolate types. As no sharp apexes or loop mul-
tiple points are detected, we can conclude that no basic
cycloid or curtate trochoid is approached.

4.2 High initial horizontal velocity

4.2.1 General shape of the trajectory

Let us discuss the trajectories above the SC that emerge
when the IHV distinctly exceeds the velocity Γ0 or vqc,
and simultaneously, no ISV is applied,ωn = 0. The CF
for an infinite IHV has a form corresponding to Fig. 3,
which means that zero points δ1, δ2 are symmetrically
distributed with respect to the point δ = 1. A lower
IHV shifts δ2 to the left, and the position of δ1 remains
the same.

The trajectories are again concentrated within the
spherical strip delimited by roots 0 < δ1 = δc <

δ2 < 2 of the characteristic equation Eq. (14a).Wewill
inspect its evolution when γ̇0 � Γ0. While it is always
true that δ1 < 1, the upper boundary, being given by δ2,
can enter the upper hemisphere of the cavity reaching a
value in the interval 1 < δ2 < 2. The IHV correspond-
ing to the transition case δ2 = 1 follows from equation
Eq. (14a), where the two lowest roots δ1, δ2 are con-

sidered as known. After some manipulation, one can
write

γ̇ 2
0 = 8ω2

0 cosαc

sin2 2αc
,

1 − cosαc = δ1= δc, 0 < αc < π/2,

(37)

where both the boundary values of αc leading to an
infinite IHV are obviously not admissible, as could be
expected.

Increasing the IHV beyond all limits, the upper limit
of the strip approaches a theoretical maximum:

δ2 = 2 − δ1. (38)

It is an asymptotic position, which is monotonously
approached as the initial velocity rises to infinity. In this
theoretical state, the trajectory becomes planar, having
a circular form with the diameter 2R. This plane is
inclined, being determined by the horizontal tangent at
the SPT and by the cavity center; see Fig. 11a.

4.2.2 Rotation of the osculating plane

In the case when γ̇0 is high but finite, 0 < Γ0 � |γ̇0| <

∞, the root δ2 is adequately lower:

δ2 = 2 − δ1 − ε, 0 < ε � 1. (39)

Trajectories maintain their spatial character, but it is
worthwhile to define an osculating plane at each point.
The osculating plane makes sense from a physical per-
spective if it enables us to characterize the basic posi-
tion of the trajectory using simpler elements than in
the general case for lower IHV. In the case we are dis-
cussing, it can be assumed that the spiral does not differ
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much from a planar shape, and that its projection into
the osculating plane at each point represents a good
approximation. In other words, we can define an affine
space which meets a sub-manifold at a point in such a
way as to have a second order of contact at that point.
The osculating plane passes the initial point δ1 and a
point in the upper hemisphere at the upper boundary
of the strip δ2 − ε, which is slightly below the level
of the limit case Eq. (38). Therefore, its inclination is
slightly lower than that corresponding to the limit case
for γ̇0 → |∞|. The osculating plane rotates around
the vertical axis of the cavity with rotational speed Ωv ,
which decreases as γ̇0 rises, and vanishes for an infinite
IHV (γ̇0).

The velocity Ωv can be estimated based on the
position of the contact point of the trajectory and the
upper boundary δ2 evaluated at the conclusion of a
single period. Although an explicit formula cannot be
expressed, the process can be carried out observing the
outline in Fig. 10. A sketch of the osculating plane
behavior is graphically demonstrated in Fig. 11 for infi-
nite IHV—picture (a), and finite IHV—pictures (b) and
(c), showing position of this plane after the 1st and 3rd
half-period, respectively. (A negative movement sense
has been selected for graphical reasons.)

For a high but finite γ̇0, a ball starting at the SPT cov-
ers a distance of 2π −η along a nearly planar trajectory
in the advancing osculating plane, where η → 0 when
γ̇0 → |∞|; see Fig. 10. Let us again consider Eq. (36),
in particular equation (a) and the expression for E .
Assuming that velocity γ̇0 is high, the second term of
the right-hand side in Eq. (36a) can be neglected and
also enables E to be reduced. Then, it can be approxi-
mately written:

δ̈ + Eγ δ = E, (40)

where coefficient Eγ can be determined due to the
equality of values at the lower and upper limits, Eγ =
E0 = γ̇ 2

0 δc(2−δc) and Eγ = Eη = (γ̇0−η̇)2δc(2−δc),
respectively. For initial conditions δ(0) = δc, δ̇(0) =
0, the solution to equation Eq. (40) has the form

δ = 1 + (δc − 1) cos
(
t
√
Eγ

)
. (41)

The length of the period in time is

T t
0 = 2πE

− 1
2

0 or T t
η = 2πE

1
2
η , (42)

and, therefore, for the rotational speed of the osculation
plane around the z axis, we can approximately write

Ωv ≈ 1 − (γ̇0 − η)/γ̇0. (43)

Fig. 10 Outline of the trajectory layer for high and infinite IHV

Since η → 0 when γ̇0 → |∞|, limγ̇0→|∞| Ωv = 0
and δ2 → 2 − δc as it corresponds with Eq. (38).
These results can be confirmed intuitively by exam-
ining both of the graphs in Fig. 8. Indeed, the length of
the period approaches the horizontal asymptote on the
2π level more or less exponentially. Because the tan-
gential velocity along the trajectory is approximately
constant, γ̇ (t) ≈ γ̇0 + η̇, the relation between γ (t) and
t can be expressed simply as γ (t) ≈ (γ̇0 + η̇)t . Then,
it holds approximately that

Ωv ≈ −2T0 − 2Tη

2Tη

· γ̇0 ≈ − exp (−κγ̇0)

2Tη

· γ̇0, (44)

whereκ, [s] is a positive constant. EmployingL’Hospital’s
rule, it is obvious that limγ̇0→|∞| Ωv = 0 holds as
before.

4.2.3 Discussion

Let us point out some properties of the trajectory dis-
cussed above, such as features of a curve passing
through a layer of thickness ε; see Eq. (39) and Fig. 10.
An analysis using the small parameter approach cannot
be done directly because the solution for γ̇0 → |∞|,
which serves as a zero approximation, does not exist
in an explicit form for several reasons (infinite energy,
infinite angular momentum, indefinite derivatives with
respect to time, etc.). Despite this fact, we have seen
that all trajectories are stable, whatever their parame-
ter setting is. Consequently, the existence of the zero
approximation can be assumed in an implicit meaning
of a certain limit. Therefore, analogously with Eq. (25),
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(a) (b) (c)

Fig. 11 Osculating plane (light gray) of a trajectory for high IHV (ISV is not applied): a infinite IHV; b finite IHV:—3rd half-period;
c finite IHV:—5th half-period; γb1, γb2: starting or finishing points of one full period

we are entitled to write

γ̇ ≈ γ̇0 − η̇, α ≈ α2 + ζ, (45)

where α2, γ̇0 are relevant to the planar trajectory inci-
dent with the inclined plane, see Fig. 11a, and η̇, ζ

are small unidirectional deviations. They enable us to
define high values of γ̇ , α but still finite values of the
initial approximations α2, γ̇0.

We recall Eq. (11). By the way, let us note that
despite the fact that the ISV is not included in this sec-
tion (ωn = 0), we can see that the proportion of the spin
energy at high velocity γ̇ is negligible anyway. Thus,
putting approximations Eq. (45) into Eqs. (11a,b), and
comparing terms that involve the same powers of η̇, ζ ,
we can write

η̇0: α̈2 −
(
γ̇ 2
0 cosα2 − ω2

0

)
sin α2 = 0, (46a)

γ̇0 sin
2 α2 = H, (46b)

η̇1: ζ̈ + γ̇0 sin 2α2 · η̇

−
(
γ̇ 2
0 cos 2α2 − ω2

0 cosα2

)
· ζ = 0, (46c)

sin2 α2 · η̇ − γ̇0 sin 2α2 · ζ = 0. (46d)

Equations (46a,b) are implicitly fulfilled and approx-
imately represent a circular trajectory in the inclined
osculating plane. Equations (46c,d) represent a rough
approximation of the trajectory behavior, provided a
high IHV in the sense of Eq. (45) is applied. The sys-
tem Eqs. (46c,d) is linear because α2, γ̇0 are known
parameters. Variable η̇ can be eliminated, so it holds

that

ζ̈ +
(
γ̇ 2
0 (2 + cos 2α2) + ω2

0 cosα2

)
· ζ = 0. (47)

It is obvious that for high values of γ̇0, the term
ω2
0 cosα2 is negligible. The remaining coefficient is

always positive. In a ratio to the length of the cir-
cular trajectory, it represents a parameter analogous
with Eq. (30). It is proportional to the velocity Ωv of
the osculating plane rotation around the z axis, which
approaches zero for γ̇2 → |∞|. This result is identical
with the one obtained above in this section.

To demonstrate the character of the upper root δ3
during the IHV limitation to±∞, let us assess its value
respecting Eq. (39), and the fact that the trajectory is
running in a thin layer following the scheme in Fig. 10.
The process is limited to within this domain, and, con-
sequently, it can be linearized in the framework of this
layer. Making use of these facts and a factored form of
the polynomial, we can reformulate the CE, Eq. (14a),
because two roots δc, δ2 are known:

(δ − δc) (δ − (2 − δc − ε)) (K δ + L) = 0,

K = 2ω2
0, L = (γ̇ 2

0 δc(2 − δc) + 2ω2
0(δc + ε)),

(48)

which results in the third root:

δ3 = 1

2ω2
0

(
γ̇ 2
0 δc(2 − δc) + 2ω2

0(δc − ε)
)

. (49)

This formula demonstrates that 2 < δ3 → ∞ for γ̇ 2
0 →

±∞.
For completeness, let us demonstrate an example of

a trajectory based on a high IHV (Fig. 12). The time
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(a) (b) (c)

Fig. 12 Example of the trajectory above the SC with no ISV (ωn = 0) for a high IHV: a time history, b top view, c axonometric
demonstration

history due to the high and nearly constant tangential
velocity of the ball is homogeneous at all coordinates
which interact rather on a geometrical basis. The cir-
cular character of the trajectory is obvious in pictures
(b) and (c).

4.3 Trajectories below the SC

4.3.1 Roots of the CF

The CF has a form corresponding to curve (b) in Fig. 4.
In general, δ1 can descend to zero, as we can easily
deduce fromEq. (50) or from the original characteristic
equation [Eq. (14)], with the vanishing absolute term.
This case, together with the neighborhood of this value
(0 ≤ δ1 < ε), will be discussed in a separate section
(Sect. 6). For these initial settings, the spin-free and
the spin-considered cases of initial settings intermingle,
and, hence, it is worthwhile to discuss the two of them
together.

The spherical strip in which the trajectory for IHV
γ̇0 < Γ0 emerges is below the SC. The strip is limited
by the SC, which forms its upper boundary, δc = δ2,
and by the lower boundary δ1, which is given by the
quadratic term in Eq. (31). The basic analysis is simi-
lar to that which has been performed in the beginning
of Sect. 4.1. The only difference is that the roots are
ordered as follows: 0 < δ1 ≤ δc = δ2 < 1 < δ3. The
roots δ1,3 may be symbolically written as in Eq. (32):

δ1,3 = 1

K

(
−L ±

√
L2 − K · M

)
, (50)

where the discriminant has the same form as in
Eq. (32b) for δc = δ2.

In order to determine velocity γ̇ at the tangent point
at the δ1 boundary, we refer to Eq. (34), where α1 is to
be substituted instead of α2:

γ̇1T = γ̇0

(
sin αc

sin α1

)2

= γ̇0
(δc − 2) δc

(δ1 − 2) δ1
. (51)

It is obvious that γ̇1T > γ̇0 due to a lower poten-
tial energy at the δ1 level. Inspecting Eq. (14), where
ωn = 0 is substituted, we can see that γ̇ is a simple
continuous function of δ, which is integrable on any
interval δ ∈ (a, b) with 0 < a, b < 2. This implies
that no singular points emerge within one period, and
the velocity along the trajectory is mildly variable. The
trajectory has the shape of a simple curve without any
multiple or turnabout points reversing its velocity.

4.3.2 Vertical periodicity of trajectories

As for the length of a single vertical period, a similar
deduction can be made like in Sect. 4.1. However, care
should be taken when the IHV approaches zero and the
system Eqs. (36) becomes unstable or discontinuous in
the neighborhood of γ = π/2. For details, see Sect. 6.
Nevertheless, in a common case, like in Sect. 4.1, we
can assume once again that one period consists of two
identical halves symmetrically distributed around the
tangent point on the lower boundary δ1, and, therefore,
it is sufficient to examine only one half of the period.

Hence, the differential system Eq. (36) can also
be used here, except that the zero initial conditions
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Trajectories of a ball moving inside 1607

are formulated for the upper strip boundary, δ(0) =
δc, δ̇(0) = 0 and the position of the lower boundary
δ1 should either be evaluated using Eq. (50e) or during
solution of system Eq. (36).

Let us follow Fig. 13 demonstrating several trajecto-
ries comparable in their initial conditions for γ̇0 < Γ0.
Recalling Eq. (36a):

δ̈ = E(1 − δ) − ω2
0δ(4 − 3δ) (36a)

for E = γ̇ 2
0 δc(2 − δc) + 2ω2

0δc, cf. Eq. (15), we can
see that unlike cases with γ̇0 > Γ0, the first term of
the right-hand side loses dominance, and a significant
nonlinear character of the equation emerges. Retain-
ing only the second term, we obtain an equation solv-
able using elliptic functions. This effect is obvious in
Fig. 13, where the curves for decreasing IHV become
more and more similar to an elliptic sinus. Returning to
properties of the rational or irrational spiral form, see
also Sect. 4.1, we can conclude that the vertical period
length varies in the interval 2Tγ ∈ (π, 2π) throughout
all |γ̇0| ∈ (0,∞), and, therefore, obviously no syn-
chronization of the primary type can occur.

4.3.3 Discussion

We shall point out some properties of the length and
shift of periods that are specific for the trajectories
below the SC. Characteristics of the vertical period
length and the lower strip boundary position δ1 as a
function of the IHV and SPT level are demonstrated in
Fig. 14; see the solid orange curves below Γ0 = 3.63.
Both curves are smooth on thewhole interval γ̇0 includ-
ing the SPT. It is typical that the period 2γT shortens
to π for γ̇0 → 0, as it also corresponds to the character
of an elliptical sinus that characterizes the shape of the
trajectory; see [1,21]. The lower boundary of the strip
δ1 evidently tends to zero, i.e., toward the SPC.

With reference to Sect. 6, we can see that the period
for γ̇0 → 0 does not approach 2π , as could be intu-
itively expected. However, even cases discussed in this
section evince some attributes which are distinctly vis-
ible for low IHV values. It is obvious, for instance,
that the shape of the relevant curve depends on the SPT
level. The phenomenon of period “shift” becomesmore
prominent as the height of the SPT or the boundary δ1
level increases. This effect is discussed in more detail
for both zero and nonzero ISV for low IHV in Sect. 6.

An example of a trajectory below the SC is plotted
in Fig. 15. The time history in this domain appears as
a simple periodic curve without any higher harmonics
and with a weak multiplicative modulation. The SPC
always lies inside individual loops. They run round the
SPC and never pass it, whatever the SPT and IHV are.
The spatial character of the trajectory is obvious in plot
(c) of Fig. 15. As in Sect. 4.1, no visible intervention
of higher harmonics is observed, although a very light
quasi-periodic character can be noticed. The shape in
the top view is helical and close to a hypotrochoid form
of a prolate type. As no sharp apexes or loop multi-
ple points are detected, we can conclude that no basic
cycloid or curtate hypotrochoid is approached.

5 Trajectories influenced by an initial spin of the
ball

5.1 Roots of the CE

We again revisit Eq. (14). This time the ISVwill be con-
sidered nonzero, ωn �= 0. The characteristic function
Eq. (14a) can be decomposed as in Eq. (31); however,
the coefficients L , M will be different:

f (δ) =(δ − δc)(K δ2 + 2Lδ + M) = 0, (52a)

K =2ω2
0, M = 1

δc
(H − μωn)

2,

L =ω2
0δc − 1

2
(E + 4ω2

0 − μω2
n(1 − μ)), (52b)

As in Sect. 4, either the lower or upper boundary of the
strip is one of the roots δi , i = 1, 2, which are deter-
mined by initial condition δc, i.e., δc = δ1 or δc = δ2
for the strip situated above or below the SC, respec-
tively. The remaining two roots δ1, δ3 or δ2, δ3 can be
calculated from the quadratic term in Eq. (52a) as in
Eqs. (32a) or (50):

δi,3 = 1

K

(
−L ±

√
L2 − K · M

)
, i = 1, 2,

(32a,50)

D = L2 − K · M

=
(

ω2
0δc − 1

2

(
E + 4ω2

0 − μω2
n(1 − μ)

))2

− 2ω2
0

δc
(H − μωn)

2 . (53)
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Fig. 13 Shape of the
trajectory below the SC for
various IHV

(a) (b)

Fig. 14 A trajectory below the SC. a Spatial period dependent on the IHV (γ̇0), b lower boundary of the strip δ1 as a function of γ̇0

(a) (b) (c)

Fig. 15 Example of a trajectory below the SC with no ISV (ωn = 0): a time history, b top view, c axonometric demonstration
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Trajectories of a ball moving inside 1609

The expressions above can be reformulatedwith ref-
erence to Eqs. (9, 12a). Provided E, H are specified
with respect to initial conditions, cf. Eq. (15), we obtain

K = 2ω2
0, M = δc (γ̇0(2 − δc) − μωn)

2 ,

L = −1

2

(
γ̇ 2
0 δc(2 − δc) + 4ω2

0 + μ2ω2
n

)
, (54a)

D = 1

4

(
μ2ω2

n + γ̇ 2
0 δc(2 − δc) + 4ω2

0

)2
− 2ω2

0δc (μωn − γ̇0(2 − δc))
2 . (54b)

Discriminant D is positive with the exception of two
cases when D = 0:

ωn = 0, γ̇0 → ∞ �⇒
{

δ1,2 = 0, δ3 = 2
δ1 = 0, δ2,3 = 2

ωn = − γ̇0δc

μ
, γ̇ 2

0 = 2
ω2
0

δc
�⇒ δ1 = δc, δ2,3 = 2.

The first option represents two singular cases when
ωn = 0 and δ1,2,3 ∈ {0, 2}, while the latter one
describes a particular trajectory which occurs for
a given negative spin (assuming positive γ̇0) and
passes through the NPC. This case, however, generally
requires IHV γ̇0 �= Γ0; only for δc = 2/3 does

γ̇0 = Γ0 = √
3ω0 and ωn = −2

ω0√
3μ

. (55)

The other particular case occurs when M = 0, i.e., for

ωn = γ̇0
2 − δc

μ
. (56)

Then, δ1 = 0 and δ3 = 2 + γ̇0(2 − δc)/ω
2
0 > 2.

In other cases, K > 0, M > 0, and thus, 0 < D <

L2. Hence, both roots are real and positive and fulfill
the relation: 0 ≤ δ1 ≤ δ2 < 2 < δ3. Here, δc is either
δ1 or δ2, depending on what is considered given. For
the rest of this section, we consider the IHV to always
be equal to positive velocity Γ0, as it corresponds to the
IHV of the SC.

5.2 Trajectories above the SC—negative spin

5.2.1 General considerations

We can see that the trajectories influenced by a negative
ISV, ωn < 0, lie within a spherical strip above the

SC, with the bottom boundary δc = δ1 and the upper
boundary δ2, which follows fromEq. (53). Note that the
third first integral, Eqs. (11c) or (12b), specifies thatωn

is constant throughout the whole investigated process.
First, we briefly outline the basic character prelimi-

narily inspecting Fig. 19 and taking into consideration
also Figs. 16, 17 and 18.

In general, observing the time history of the hori-
zontal and vertical components of the response, it is
noticeable that each trajectory consists of two basic
components (except for some higher marginal harmon-
ics). They are independent in their frequencies, as the
first one is related to the basic spin-free movement and
the second follows from the spinning rotation of the
ball. The latter one proves to be more or less distinct in
its amplitude according to the width of the strip where
the particular trajectory is operating. In other words, it
is determined by the active area δ ∈ (δc, δ2). In gen-
eral, the influence of the spin on the overall shape of the
trajectory increases with the value of |ωn| and acquires
a significant dominance for ωn above limit ωns, given
by Eq. (60), and in particular for 0 > ωns � ωn or
ωn → −∞.

It follows fromEq. (14) that just three types of trajec-
tories can be encountered whenωn �= 0. Let us remem-
ber that the same equations, presented in Sect. 4.1, con-
clude that only one type of trajectory can exist within
the strip if no spin of the ball is applied. The main
reason for this alteration follows from the fact that the
right-hand side of Eq. (14b) can have both positive or
negative values, when ωn �= 0 is considered. The three
types of trajectories can be classifiedwith respect to the
parameters and initial conditions of the system, namely
the ISV. The shapes of the trajectory types differ sig-
nificantly in the neighborhood of the contact point on
the upper boundary of the strip; see Figs. 16 and 17.

5.2.2 Wavy trajectories

Let us now discuss some specific details of the individ-
ual trajectory types. The general form of the first type is
obvious fromFig. 19 (i). The trajectories reflect the ISV
in interval ωn ∈ (0, ωns), where ωns is the ISV of the
separating case, Eq. (60). Roughly observed, these tra-
jectories are not too far from those discussed in Sect. 4,
although some influence of the response component
caused by the spin is discernible. However, the basic
form again resembles an irrational spiral with slightly
distorted detailed periods. The difference in the basic
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1610 J. Náprstek, C. Fischer

Fig. 16 Shape of the
trajectory above the SC for
various initial spin
velocities; colors of curves:
ωn = 0—black,
ωns < ωn < 0—red,
ωn—bold green (“kings
crown” shape—separating
case), ωn < ωns—blue.
(Color figure online)

Fig. 17 Shapes of trajectories in the neighborhood of the con-
tact point on the upper boundary of the strip (δ2); ωn = 0—
black, ωns < ωn < 0—red, ωn—bold green (“kings crown”
shape—separating case),ωn < ωns—blue. The symbolΔγ (hor-
izontal axis) means a local coordinate within one period or an
increase/decrease of γ with respect to γ = γT (position of the
tangential point on the δ2 boundary). (Color figure online)

shape is rather quantitative, as the frequency of the spin
is more or less related with that generated by the basic
movement of the ball, and that is why it is hidden in
the primary component influencing its amplitude. The
trajectory shape is obvious from Fig. 16, where it is
plotted as a function of angle γ (the two red curves
relevant to ωns < ωn < 0).

Details of the trajectory character near the contact
point on the upper boundary are demonstrated inFig. 17
(the two red curves). For the sake of a better visual com-
parison of individual trajectory behavior in the neigh-
borhood of the contact point on the upper boundary
δ2, all trajectory graphs have been shifted and concen-
trated around this point, which serves as the origin of
local coordinate Δγ . The starting and finishing points
of one period on the lower boundary δc are denoted
γb1, γb2. The width of the strip increases with descend-
ing ωn from zero until a maximumwidth is reached for
ωn = ωns; see Figs. 17 and 18a, b. This corresponds to
the total energy conservation principle.

The assessment of the length and duration of one
period of the trajectory can be done analogously to
Sect. 4.1. The reasoning which brought us to the dif-
ferential system Eq. (36) is more or less the same,
being based on the fact that contact points on the strip
boundaries represent points with unavoidable singular-
ity. Hence, with reference to Sect. 4.1, we can deduce
the following modified system:

δ̈ = E(1 − δ) − ω2
0δ(4 − 3δ)

− μωn (ωn(1 − μ)(1 − δ) + H) , (57a)

γ̇ = H − μωn(1 − δ)

δ(2 − δ)
, (57b)

where

E = Γ 2δc(2 − δc) + 2ω2
0δc + μω2

n,

H = Γ δc(2 − δc) + μωn(1 − δc).

The denominator in Eq. (57b) is identical with that
in Eq. (36b) and is positive in the considered interval.
The system Eq. (57) is solved for initial conditions:
δ(0) = δc, δ̇(0) = 0, and, eliminating the time, one
obtains δ as the function of γ .

For the selected δc = 0.3 and the relevant Γ0 =
3.63, two samples for ωns < ωn < 0 are plotted in
Figs. 16 and 17.

Together with the three diagrams in Fig. 18, we can
evaluate the character of a single period. Pictures (a)
and (b) show the strip width as the difference between
relevant angles α and parameters δ, respectively. Pic-
ture (c) presents the spatial width of a single period as
a function of ωn . It is obvious that a decrease in ISV
(ωn < 0) leads to an increase in amplitude δ2 or α2

until a maximum is reached for ωn = ωns. The length
of the period simultaneously decreases. The trajectory
for ωn ∈ (ωns, 0) could only have a periodic character
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(a) (b) (c)

Fig. 18 Width of the strip above the SC for descending ISV or
ωn < 0 passing throughout all three types of trajectories; a rep-
resentation as α2 − αc or b representation as δ2 − δc; c width

of the space period along the coordinate γ as a function of spin
frequency ωn < 0

if the ratio 2πρ sin αc/2Tγ is a rational number, where
Tγ denotes the half-period in the angular scale.

5.2.3 The limit case—the pointed trajectory

The second type of trajectory, see Fig. 19 (ii), occurs for
the spin frequency ωn = ωns, see the bold green curve
in Figs. 16 and 17. It represents a limit case separat-
ing groups below and above ωns. The trajectory shape
in the axonometric view resembles a “kings crown.” It
contains a sharp apex in the midpoint of every period
which touches the upper boundary δ2. The derivative
with respect to the circumferential coordinate γ is dis-
continuous in this singular point, jumping from ∞ to
−∞. All velocity components vanish, and both tangen-
tial acceleration components are discontinuous. A spin
energy that is proportional to ω2

n is retained.
To determine the ISV needed to achieve this special

type of trajectory, we take advantage of the fact that
values of the first integrals for E and H , Eqs. (9, 12a),
are constant throughout the entire time history. Indeed,
at the SPT they can be expressed as follows:

Eδc = Γ 2δc(2 − δc) + μω2
n + 2ω2

0δc,

Hδc = Γ δc(2 − δc) + μωn(1 − δc),
(58)

while in the sharp apex, at the δ2 level, it holds that

Eδ2 = μω2
n + 2ω2

0δ2, Hδ2 = μωn(1 − δ2). (59)

Evaluating the relevant equivalences Eδc = Eδ2 and
Hδc = Hδ2 , after some manipulations one obtains

ωns = ωn = − 2ω2
0

μΓ
, δ2 = δc

(
1 + Γ 2

2ω2
0

(2 − δc)

)
. (60)

Substituting Γ from Eq. (23) only provides real results
in an unrealistic situationwhen δc > 1. However, when
Γ = Γ0, Eq. (24), Eq. (60) transforms to

ωns = −2ω2
0

μ

√
1 − δc, δ2 = δc

4 − 3δc
2(1 − δc)

. (61)

Relations Eqs. (59–61) are valid only when the apex
occurs at δ2. This is characterized by an infinite curva-
ture of the trajectory, i.e., when 0 = (γ̇ 2 + δ̇2)3/2. The
necessary condition for γ̇ = 0, given by Eqs. (9), (15),
(24), is 0 < δc ≤ 2/3, cf. also Eq. (55).

It holds obviously that δ2 > δc, and that the upper
boundary of the trajectory can reach into the upper
hemisphere of the cavity. This effect occurs when
δc > 1− 1/

√
3. When δc is increased further, the apex

may reach the NPC for δc = 2/3; this case also nulli-
fies the discriminant Eq. (54b). For even larger δc, the
apex ceases to exist. These remarks are only theoreti-
cal, because in the upper hemisphere the contact force
becomes negative particularly at the apex point, where
all the components of the velocity vector v identically
vanish.

5.2.4 Curly trajectories

The third type of trajectories, see Fig. 19 (iii), emerges
provided ωn < ωsn and possibly descending as ωn →
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(a) (b) (c)

Fig. 19 Examples of trajectories with negative initial spin velocity ISV (ωn < 0): 1st row: ωns < ISV < 0; 2nd row: ISV = ωns; 3rd
row: ISV < ωns. Column a time history, b top view, c axonometric demonstration

−∞. The trajectory has a curly form making a loop
every period; see Figs. 16 and 17. As before, one period
starts and finishes at the same vertical level, which is
given by the root δc = δ1. The highest point, reached
in half a period, lies on the upper circle boundary. It
is given by the root δ2 according to Eqs. (53, 54). Let
us turn our attention to the monotonously descending
width of the strip, Fig. 18a, b for ωn < ωns depicted
either with respect to angle α or to parameter δ.

The sharp apex—encountered in the previous type—
delimiting the first and third types of trajectories prefig-
ures a formation of two turnabout points γv1, γv2 with
tangents following their relevant meridians and with
vanishing velocity γ̇ ; see Figs. 16, 17 (blue curves).

The vertical position of points γv1, γv2 above δc can
be found with respect to conservation of E and H val-
ues along the trajectory and due to the fact that γ̇ = 0
at turnabout points and α̇ = 0 at the SPT. Indeed, using
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(a) (b) (c)

Fig. 20 Top view of one loop of the trajectory: a red: ISV ωn < ωns, b green: ωn = ωns (passing the SPC—“separating case”), c blue:
ωn > ωns. (Color figure online)

Fig. 21 Trajectory shapes
below the SC for various
initial spin velocities. Colors
of curves: ωn = 0—black,
0 < ωn < ωns—red,
ωn = ωns—bold green
(separating case),
ωns < ωs—blue. (Color
figure online)

Eqs. (9, 12), we can write the following relations for
unknown values α̇v, δv at turnabout points:

α̇2v + μω2
n + 2ω2

0δv = Γ 2δc(2 − δc) + μω2
n + 2ω2

0δc,

μωn(1 − δv) = Γ δc(2 − δc) + μωn(1 − δc).
(62)

Simple manipulations result in

α̇v =
(

Γ δc(2 − δc)(Γ + 2
ω2
0

μωn
)

)1/2

,

where α̇v1 = α̇v, α̇v2 = −α̇v,

δv =δc

(
1 − Γ

μωn
(2 − δc)

)
,

(63)

which indicates that velocity α̇ is positive or negative
in γv1 or γv2, respectively, i.e., the trajectory is rising
or descending. The level δv > δc, but the difference
δv − δc descends to zero as ωn → −∞; see Sect. 5.4.
Both expressions remind us that ωn should exceed a

certain limit in order for the formulae to bemeaningful;
otherwise, a curly form of the trajectory can exist.

The horizontal position of points γv1, γv2 can be
determined using the same system Eq. (57) as in the
case of the first and second trajectory types, where
γb1 = 0 is taken as a reference point. The position of
the remaining points γv2, γb2 follows from the symme-
try of the second half-period. Evaluation of the period
length is already obvious and represents the difference
γb2 − γb1. Note that the point γb1 always precedes the
point γb2 on the advancing coordinate γ like in the case
of the first and second types of trajectories, and, con-
sequently, the difference γb2 − γb1 is always positive,
but monotonously approaches zero forωn → −∞; see
Fig. 18c.

Points γv1, γv2 delimit the boundaries of the upper
part of the loop, which is defined in the interval γ ∈
(γv1, γv2) in the framework of one trajectory period;
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see Fig. 18. The velocity γ̇ in the upper part of the loop
between the points γv1, γv2 is of the opposite sign than
that in the lower part of the loop. The width of interval
γ ∈ (γv1, γv2) starts from zero for ωn = ωns, where
the curly form arises, and it increases for descend-
ing ωn < ωns. This width reaches the period length
and then becomes larger than the distance between the
starting and finishing points γb2 − γb1 of one period.
Although both widths subsequently approach zero, the
width of the loop becomes more and more dominant.
In addition, the total (curvilinear) length of one loop
significantly exceeds the simple distance γb2 − γb1.

It is useful to define a certain average (or effective)
velocity Ωav of the ball advancement along the hori-
zontal SC; it is given by the time and length of one
period. This ratio drops as ωn increases. Consequently,
the average velocity Ωav decreases accordingly. It
approaches zero for high values ωn ; see Sect. 5.4. Due
to the arrangement of points γb1, γb2 on the γ axis, it
holds that Ωav > 0. This positive sign is maintained
throughout the whole interval ωn < 0.

5.3 Trajectories below the SC—positive spin

5.3.1 General considerations

This section will be devoted to trajectories resulting
from the same IHV Γ0 and a positive ISV. The trajecto-
ries lie in a spherical strip below the SC, with the given
upper boundary δc = δ2 and lower boundary δ1, which
is determined by means of Eq. (53), i = 1. Similarly
as before, we go through the main properties of these
trajectories inspecting Figs. 20, 21, 22 and 23 together
with three examples of the trajectory with positive ωn ,
which are presented in Fig. 24.

Trajectories below the SC can also be classified into
three types or, in other words, into two groups sepa-
rated by the special limit case corresponding to a fixed
frequencyωn = ωns like in the previous section. In gen-
eral, all trajectories apparently have a spiral form of the
prolate hypotrochoid type, as we can see in the top view
presented in Fig. 24 (pictures in column (b) for the three
types). However, the shape of these spirals differs from
those above the SC. The difference between particular
types for ωn > 0 consists mainly in their relation to
point A (SPC). Let us point out that the time history
again has the distinct form of a two-component peri-
odic process resulting from the movement of the ball

Fig. 22 Shapes of trajectories in the neighborhood of the contact
point on the lower boundary of the strip (δ1); ωn = 0—black,
0 < ωn < ωns—red, ωn = ωns—bold green (discontinuous—
separating case), ωns < ωn—blue. The symbol Δγ (horizon-
tal axis) means a local coordinate within one period or an
increase/decrease of γ with respect to γ = γT (the position
of the tangential point on the δ1 boundary). (Color figure online)

and its rotation around the moving normal specified by
the ISV (ωn); see Fig. 24 column (a).

The shape of the trajectory in the neighborhood of
the contact point on the lower boundary of the strip and
the development of a curly trajectory are obvious in
Figs. 21 and 20. The width of the strip δc − δ1 ∈ (0, 1)
changes from zero (ωn = 0, δ1 = δc) until reaching
δc (maximal width) when ωn = ωns and δ1 = 0. In
this latter case, the trajectory passes through the SPC
and represents the transition case. A further increase of
ωn > ωns leads to rising of δ1 backwards to the SC,
which is reached for an infinite ISV; the width of the
strip vanishes.

5.3.2 Trajectories running around the SPC

Let us point out some important features of particu-
lar trajectory types. The first type of trajectory, see
Figs. 20a, 22 (red curves) and 24 (i), is related to an ISV
in the interval 0 < ωn < ωns. The trajectory has a spiral
shape, where individual loops are prolate and running
around the SPC. The influence of the second periodic
component is small but still discernible; see Fig. 24(i).
This phenomenon becomes more pronounced as the
limit case ωns is approached.

Roughly observed (as in Sect. 5.2), the trajecto-
ries do not differ significantly from those discussed in
Sect. 4.3. The basic form resembles again an irrational
spiral with slightly distorted detailed periods. The tra-
jectory shape is obvious from Fig. 21, where three red
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curves are plotted relevant to ωns < ωn < 0 as func-
tions of angle γ .

Details of the trajectory character near the contact
point on the lower boundary δ1 are demonstrated in
Fig. 22 (three red curves) within a single period. This
depiction in Fig. 22 was used in order to facilitate a
comparison of the trajectory behavior throughout all
ωn considered in the neighborhood of the contact point
on the lower strip boundary δ1. The width of the strip
increaseswith ascending 0 < ωn < ωns from zero until
a maximum is reached for ωn = ωns as it corresponds
to the principle of conservation of total energy.

The vertical position of the lower boundary δ1 was
determined using Eqs. (53, 54). To assess the angular
length and duration of one period of the trajectory and
the horizontal position of other important points, the
same procedure as in Sect. 5.2 can be applied. The
systemEq. (57a) is solved for initial conditions: δ(0) =
δc, δ̇(0) = 0, and the results of Eq. (a) are put into
Eq. (b). Thisway the time is eliminated, and one obtains
δ as a function of γ .

For the selected δc = 0.3 and the relevant Γ0 =
3.63, three samples for 0 < ωn < ωns are plotted in
Figs. 21 and 22 (red curves) in γ and Δγ coordinates.
The starting and finishing points of one period on the
upper boundary δc are denoted γb1, γb2 in Figs. 20 and
22. Together with three diagrams in Fig. 23, we can
evaluate the character of one period. The graphs in
Fig. 23a, b show the strip width expressed in α or δ

variables. Picture (c) presents the spatial width of one
period as a function of ωn . It is obvious that increas-
ing the ISV leads to increasing the amplitude δ1 (or
α1) up to a maximum reached for ωn = ωns. At the
same time, the length of the period reaches its maxi-
mum for ωn = ωns. The periodicity of the trajectory in
the interval 0 < ωn < ωns is obvious. The half-period
is denoted Tγ (angular scale). Doubtlessly, it can be
expected that the spiral is irrational like in Sect. 4.1,
except for some special cases.

5.3.3 The limit case—the trajectory passing through
the SPC

The second trajectory type represents the trajectory that
separates the “lower and upper” groups with respect to
frequency ωns, see the bold-green curve in Figs. 20b,
21, 22 and also case (ii) in Fig. 24. In this separating
case, all loops pass through the SPC (point A). This
means that the cubic equation Eq. (14a) possesses one

zero root, in particular δ1 = 0. The absolute term in
Eqs. (14a) or (52) vanishes, a condition which allows
us to determine the corresponding ISV ωns:

H − μωns = 0, ⇒ Γ sin2 αc + μωns cosαc − μωns = 0. (64)

This means that for the fixed elevation δc of the SPT,
and the implicitly defined velocity Γ0, the following
ISV should be applied:

μωns = Γ0(2 − δc), 0 < δc < 1, (65)

in order to produce a trajectory the loops of which go
through the SPC; see also Eq. (56).

Coordinateγ becomesdiscontinuouswhenapproach-
ing theSPC; see the discontinuity in the green curve and
the jump of length π in Fig. 22. For the same reason,
the derivative of the curve describing the width of the
strip in ωns is non-continuous (Fig. 23a). However, the
one-sided derivatives with respect to ωn at point ωns

are finite and equal in absolute value. Therefore, the
non-smooth character of the curve is merely a result
of maintaining the polar angle α as positive. Similar
reasoning regards the discontinuity in the length of the
spatial period in Fig. 23c. The 2π jump originates also
from the fact that the relevant radius-vector length is
always positive.

5.3.4 Trajectories passing by the SPC

The third type of trajectory can be observed when
ωn > ωns and possibly ωn → ∞ as the blue curves in
Figs 20c, 21, 22 and also in case (iii) of Fig. 24. These
initial conditions result in trajectories that pass by the
SPC, which remains outside each loop; see Fig. 20c.
The position of the lower boundary δ1 can be obtained
from Eq. (53). It rises monotonously toward δc for
an increasing ωn . Accordingly, as ωn → ∞, we can
observe that the width of the spherical strip diminishes;
see Fig. 23a, b.

The angular length of one half of the period and the
position of the turnabout points γv1, γv2, see Fig. 22,
can be evaluated in a similar way as in the case of the
third-type trajectories for the ωn < 0, i.e., to employ
system Eq. (57). The analogous deduction from the
previous section concerning limitations, singular points
and numerical stability remains in force. The results are
included in Figs. 21 and 22 (two blue curves).

The turnabout points are characterized by the verti-
cal tangents in Figs. 21 and 22. Two of them, γv1, γv2,
are indicated in Fig. 22. At these points, velocity γ̇
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(a) (b) (c)

Fig. 23 Width of the strip below the SC for rising ISV orωn > 0
covering all three types of trajectories; a representation asαc−α1
or b representation as δc − δ1; cwidth of the spatial period along

the coordinate γ as a function of spin frequency ωn > 0; note a
jump in the point ωn = ωns

changes direction. Their attributes are similar to those
encountered in the previous section, although their geo-
metrical interpretation is slightly different. Also here,
we can define a bottom part of the loop within points
γv1, γv2 where velocity γ̇ is of the opposite sign. In con-
trast toSect. 5.2 (negative ISV), the loops donot include
any twofold point, and the period length γb2 − γb1
becomes negative forωns < ωn ; see the twoblue curves
with an indication of themovement direction in Fig. 22.
Both properties of the loops follow from the ordering
of starting and finishing points of the period and are
typical for trajectories with a positive ISV. It is obvious
that as ωn → ∞, the particular loops approach a zero
amplitude; see also Sect. 5.4. The same also applies to
the length of period Tγ .

With reference to points γv1, γv2 and the start-
ing and finishing points of the period γb1, γb2, we
can define the average (or effective) angular velocity
Ωav < 0 of the ball movement forward along the SC
for ωns � ωn . It is obvious that the clockwise move-
ment of points γb1, γb2, γv1, γv2 between consecutive
loops gets slower for increasing ωn , i.e., as Ωav → 0.
The limit case of ωn → ∞ is discussed in detail in
Sect. 5.4; see also Fig. 26.

5.4 High initial spin values

In this section, we will investigate trajectories starting
from the SC, when an extremely high ISV is applied

in either the positive or negative sense. We have seen
in Sects. 5.2 and 5.3 that the shape of individual tra-
jectories differs significantly if a positive or negative
velocity of initial spin is introduced, even though some
analogy can be noticed.

Significantly increasing the ISV, the trajectory prop-
erties for ωn � 0 and ωn � 0 become more and more
related and finally produce a symmetric image with
respect to the SC. Both of them are far from the transi-
tion case, in which the curly form trajectories start. For
ωn � 0, the curly trajectory is located on the upper side
of the SC. The upper boundary δ2 descends from a level
above the SC to root δc = δ1 as ωn → −∞. Provided
ωn � 0, the lower boundary (root δ1) moves upwards
to the SC, represented by δc = δ2, when ωn → ∞.

Let us outline approximately this process. Either
roots δ2, δ3 or δ1, δ3 (depending on which trajectory
group is being analyzed) can be determined using the
quadratic equation Eq. (52) or its symbolic solution
Eq. (53), respectively. For a high |ωn|, the term L
becomes dominant due to the higher power of |ωn|,
so it holds: L2 � K · M , and, consequently, it can be
approximately written for i = 1, 2:

δi,3 ≈ 1

K

(
−L ±

(
L − 1

2

KM

L
− 1

8

(KM)2

L3
− · · ·

))
. (66)

It is obvious that δ3 → ∞ and is therefore of no interest.
The other root can be approximated:

δi = −1

2

M

L
− 1

8

K · M2

L3 − · · · (67)
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(a) (b) (c)

Fig. 24 Examples of trajectories with a positive “Initial Spin Velocity ISV” (ωn > 0): 1st row: 0 < ωn < ωns; 2nd row: ωn = ωns;
3rd row: ωn > ωns. Column a time history, b top view, c axonometric demonstration

The second and higher terms can be neglected, as they
vanish for |ωn| → ∞. Substituting now for K , M from
Eq. (54b), and neglecting terms with the zero degree of
ωn , we obtain

δi = δc

(
1 − 2

Γ (2 − δc)

μωn

)
, i = 1, 2. (68)

Formula Eq. (68) shows that δi converges to δc from
above or below depending on the sign of the ISV. The

width of the spherical strip decreases for increasing
|ωn| and so does thewidth of the curly trajectory period,
as it has been defined in Sects. 5.2 and 5.3; see the
plots in Fig. 25. Graph (i) represents the case ωn � 0
advancing from left to right, whereas (ii) regardsωn �
0 from right to left. The shape of the individual loops
for |ωn| � 0 approaches a circle, which is followed in
a negative or positive angular sense (with respect to the
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(a) (b) (c)

Fig. 25 Shape of the trajectory in the neighborhood of the contact point γT ; (i) upper boundary δ2 of the spherical strip for very low
ISV: columns a–c—descending ωn � ωns; (ii) lower boundary δ1: columns a–c—rising ωn � ωns

(a) (b) (c)

Fig. 26 Example of a trajectory with negative ISV (ωn � 0): a time history, b top view, c axonometric demonstration

normal n), whenωn � 0 orωn � 0, respectively. This
approximative circle decreases in diameter and moves
slowly along the upper or lower part of the SC.

The increment of the distance which the circle per-
forms during one loop decreases rapidly with grow-
ing |ωn| because the distance between the starting
and finishing points γb1, γb2 of one period (positive
or negative) decreases faster than the circle diame-
ter. In general, the effective distance passed along the
SC within one period of a curly trajectory is mostly

exploited by the approximating circle. Therefore, the
effective velocity Ωav of the ball advancement along
the SC decreases. Let us remind the reader, referring to
Sects 5.2 and 5.3, that the sense of this slow rotation
around the z axis is either positive (Ωav > 0, ωn �
0)—above the SC, or negative (Ωav < 0, ωn � 0), but
at any time it holds that Ωav → 0, when |ωn| → ∞.

This deduction concludeswith a phenomenonwhich
seems paradoxical at first glance. As we have seen, as
ωn → ±∞, both the diameter and effective horizontal
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velocity of the approximating circle degenerate to zero.
Therefore, the ball does not evince anymovement along
the SC, the loops reduce to a single point, and the ball
is apparently at rest, only spinning around its normal
at the SPT with an infinite spin velocity. Its position,
which seems to be out of static equilibrium, is fixed by
an infinitely strong gyroscopic effect,whatever the IHV
is. This type of trajectory is illustrated as a numerical
simulation in Fig. 26: (a) displacement time history, (b)
top view, (c) axonometric demonstration. The results
correspond to negativeω � 0; comparewith Fig. 25(i).

6 Vertical plane-related trajectories

6.1 Transformation of the governing system

We examine trajectories which emerge for a very small
initial horizontal velocity (0 ≤ |γ̇0| � Γ ) and a zero
or small initial spin. If both IHV and ISV are zero, the
trajectory of the ball defines a vertical plane passing
through the initial point, ball center and point A of the
cavity (SPC). With an injection of a small IHV or ISP,
the trajectory mildly declines from this vertical plane.
However, the distance from the vertical plane remains
small. To describe the character of this spatial curve,
it is worthwhile to consider the difference from the
vertical plane as a small parameter. This simplification
enables us to get into some special properties of this
trajectory family.

With reference to Fig. 3, root δ1 will either coincide
with the origin, i.e., δ1 = 0, or get a small positive
value. The position of root δ2 = δc depends on the
initial position of the ball.

To conveniently describe themovement of the ball in
a narrow strip adjacent to plane yz, where the azimuthal
angle γ exhibits a jump of 2π when α passes the zero
value, it is advisable to rotate the coordinate system
around the y axis.

The polar angle of the new coordinate system is
denoted by ξ , and it represents an almost constant value
perturbed by a small parameter, ξ = π/2±ε (Fig. 27).
The azimuthal angle ζ then describes movement in the
vertical plane parallel to axis y. This way the formula
for kinetic energy T [Eq. (7a)] remains identical when
we formally substitute α = ξ and γ = ζ , and the
potential energy V [Eq. (7b)] is modified as follows:

Vmod = mg�(1 − sin ξ cos ζ ). (69)

Fig. 27 Arrangement of coordinates for investigation of cases
with low IHV

The constant term mg� · 1 does not influence the
dynamic equilibria, and, therefore, the total energy
Eq. (9) can be rewritten in the form

ξ̇2 + ζ̇ 2 sin2 ξ + μω2
n − 2ω2

0 sin ξ cos ζ = E . (70)

Revisiting Eq. (1), one can write Lagrangian equations
for coordinates ξ and ζ :

ξ : ξ̈ −
(
ζ̇ 2 cos ξ − μωn ζ̇

)
sin ξ − ω2

0 cos ξ cos ζ = 0,

(71a)

ζ : ζ̈ sin ξ + 2ξ̇ ζ̇ cos ξ − μωn ξ̇ + ω2
0 sin ζ = 0.

(71b)

6.2 Approximated governing system and relevant
trajectories

The small parameter can be introduced as follows: ξ ≈
π/2 − ε; see Fig. 27. Hence, Eq. (71) gets a modified
form:

ξ : ε̈ + ζ̇ 2ε − μωn ζ̇ + ω2
0 cos ζ · ε = 0, (72a)

ζ : ζ̈ − 2ε̇εζ̇ + μωn ε̇ + ω2
0 sin ζ = 0. (72b)

Provided no IHV or ISV is applied, ε vanishes. Equa-
tion (72a) is fulfilled identically, andEq. (72b) degener-
ates into a nonlinear pendulum equation. This equation
can be solved in elliptic functions. Depending on the
initial velocity ζ̇ (0), the solution is either periodic—for
small ζ̇ (0)—or continuously increasing in time with
periodically variable velocity. Detailed discussion can
be found, for instance, in [29,34].
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On the other hand, cases for ζ0 ≥ π/2 are physically
meaningless due to a negative contact force. Note that
the case considering ζ = 0 and ε �= 0 represents only
a perturbation, which can be treated using linearized
expressions.

Under the assumption that the amplitudes of ζ are
small, the nonlinear terms in Eq. (72) may be approxi-
mated as

sin ζ ≈ y

ρ
, cos ζ ≈ 1 and ζ̇ 2ε ≈ 0, ε̇εζ̇ ≈ 0,

and the system can be linearized. The following
reduced system can be formulated:

ξ : z̈ − μωn ẏ + ω2
0 · z = 0, (73a)

ζ : ÿ + μωn ż + ω2
0 · y = 0. (73b)

For a nonzero ISV, equations Eq. (73) are coupled
by a pair of gyroscopic forces which cause the spatial
character of the trajectory even if the IHV vanishes. For
a zero ISV, the system is characterized by two indepen-
dent linear oscillators with identical eigenfrequencies.
Consequently, no rosette form trajectory can occur for
a non-trivial IHV, and a simple ellipse-like curve is
observed. Indeed, considering initial conditions: IHV:
ż(0) = z∗0, and an initial deviation along the meridian
in the plane xy: y(0) = y0, a solution to linear system
Eq. (73) can be expressed as follows:

w = 1

2d

(
(y0(d − Ωv) + z∗0) exp(i(d + Ωv)t)

+(y0(d + Ωv) − z∗0) exp(−i(d − Ωv)t)
)
,

w = y + iz, d2 = Ω2
v + ω2

0, Ωv = −μωn

2
, (74)

which produces a pair of independent components:
w = y0 cosω0t + iz∗0/ω0 sinωt , if the ISV ωn = 0.
Provided ωn �= 0, but is rather small, the top view of
the trajectory obviously has the form of a strongly pro-
late hypotrochoid. Therefore, it is worthwhile to define
an affine space which meets a sub-manifold at a point
in such a way as to have a second order of contact at
this point. From a geometrical point of view, this case
is similar to the one we discussed in Sect. 4.2. Indeed,
we can assume that the shape of the spiral does not
deviate much from the vertical plane during one cycle.
The osculating plane rotates slowly around the vertical
axis with an angular velocity Ωv = −μωn/2. Several
plots of trajectories following this linear approach are
demonstrated in Fig. 28, row (i), without or with an
ISV, pictures (a) or (b), respectively.

When the ζ amplitude is large and the nonlinear
character of the system must be respected, the second
terms in Eq. (72) remain in force. In a certain sense,
they also have the character of gyroscopic forces and
lead to a rosette character of the trajectorywhen a small
IHV is applied, see Fig. 28, row (ii), including details
near the upper boundary of the strip. Observing picture
(b) (a nonlinear approach), we can see that Ωv > 0
when only IHV is considered and no ISV is applied
(counterclockwise). If ωn > 0, then Ωv < 0 (clock-
wise).

As a demonstration, we show a trajectory resulting
from a numerical simulation; see Fig. 29. The scheme
of this figure is the same as that in Fig. 6. Although
an ISV was introduced in this initial setting, we can
see in the top view that a slightly counterclockwise
rotating spiral emerges. Subsequent simulations for the
descending SPT level showed a decreasing value of
this rotation velocity and vice versa, just as we have
seen above for small initial amplitudes (the level of
the SPT) [Eq. (74)], and higher amplitudes [Eq. (72)],
where the nonlinear character was respected. Hence,
the top view of the trajectory is similar to that of the
Foucault pendulum even if no ISV is applied. Note that
the individual loops go aroundpoint A (SPC) regardless
of the initial setting if no ISV is applied, i.e., forωn = 0.

7 Conclusions

The dynamic behavior of a non-holonomic system rep-
resented by a ball moving inside a spherical cavity has
been investigated using an analytical approach based
on the Lagrangian governing system. The rolling of
the ball is considered to be slipping-less and free of
damping at the contact of the ball and cavity. The cav-
ity is assumed to be fixed. Energy is introduced into
the system by means of appropriate settings of initial
conditions. The reason for this system layout consists
in the possibility to differentiate individual groups of
trajectory types and to investigate each one separately.
This method of investigation indicated a set of trajec-
tory types and limit cases that either separate them or
demonstrate a process of limitation of some parame-
ters to certain special values (infinity, zero, etc.). The
results were compared to those obtained numerically
by the principally different method following from the
Appell–Gibbs approach. It can be concluded that the
results coincide perfectly. The two sets of results com-
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(a) (b)

Fig. 28 Trajectory at a low IHV: line (i) linear approach—low level SPT, line (ii) nonlinear approach; column a no initial spin, column
b initial spin included

plement one another well with regard to their strengths
and weaknesses. The positions of limit cases match
with respect to their relevant parameter settings. Using
the analytical approach, the transition zones were also
qualitatively and quantitatively examined and inter-
preted, which was impossible using solely numerical
simulations.

For the investigation of particular properties of the
system, two types of basic relations were used: (1) a
Lagrangian governing system with incorporated Pfaff-
type non-holonomic constraints and (2) its three first
integrals corresponding to the total energy of the ball,

the constant angular momentum with respect to fixed
vertical axis and the constant angular momentum with
respect to the commonnormal at the contact point of the
ball and cavity. The last one showed that spin velocity is
constant throughout thewhole period the ball ismoving
along its trajectory.

A cubic algebraic equation makes up the back-
bone, characterizing the energy flow within the sys-
tem. This equation always possesses three real roots,
where the two lower roots are physically meaningful.
They delimit a spherical strip on the spherical surface
of the cavity inside of which the relevant trajectory
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(a) (b) (c)

Fig. 29 Example of the trajectory below the SC without ISV (ωn = 0) for low IHV: a time history, b top view, c axonometric
demonstration

emerges. The properties of these roots enabled us to
define individual trajectory types, indicate transition,
limit and other cases as well as perform parametric
analyses within each group of trajectories.

– The “Separation Circle” (SC), a horizontal circular
trajectory at a certain level of the lower hemisphere
of the cavity, was revealed to be the main classi-
fication element. The selected level on a meridian
of the cavity determines the particular critical value
of “Initial Horizontal” and/or “SpinVelocity” (IHV
or ISV, respectively) necessary to maintain this tra-
jectory. Trajectories within the close neighborhood
of the SC were examined, confirming the stability
of the SC trajectory with respect to perturbation
in initial conditions and to a small cross-impulse
imparted to the ball.

– Trajectory types above the SC, assuming a positive
IHV, are characterized by an IHV that is higher than
the critical velocity and/or a nonnegative ISV. As a
rule, spin-free trajectories have a form of irrational
spirals similar to a prolate hypotrochoid occurring
within the spherical strip. Increasing IHV beyond
all limits, one approaches the limit state, which is
represented by a planar trajectory that is symmet-
rically distributed with respect to the cavity center.

– Settings with a positive ISV can be classified into
two sub-groups separated by the case that is rep-
resented by a “kings-crown” shaped trajectory. In
this particular case, every loop contains a singu-
lar point (apex) which lies on the upper boundary
of the spherical strip. A closed loop expands from
this point for higher spin velocities, imparting a

curly form to the trajectory. Lower spin velocities
produce spirals without loops analogously to cases
without spin, despite the fact that the shape of the
spiral itself is different.

– Trajectories below the SC have a significantly dif-
ferent character. Depending on the decreasing IHV,
the lower limit of spin-free trajectories successively
descends down to the “Southern Pole of the Cavity”
(SPC), where it degenerates into a point. Regard-
ing cases with negative spin, they can also be clas-
sified into two sub-groups. The separating case
is represented by a curly trajectory, where every
loop passes through the SPC. Higher spin veloc-
ities result in trajectories the individual loops of
which go round the SPC, while lower spin veloc-
ities produce loops that miss this point. Thus, the
lower boundary of the strip again rises toward the
SC.

– An interesting process is encounteredwhen the ISV
velocity tends to ±∞. The width of the spherical
strip where the trajectory is being traced decreases
to zero; the trajectory has a shape approaching a
small circle slowly moving along the SC. For infi-
nite spin velocity, the ball is seemingly fixed at the
initial point of the trajectory due to infinite energy
concentrated in the spin of the ball producing an
infinite gyroscopic effect.

– The last group includes associated cases charac-
terized by low initial energy of the ball, i.e., the
IHV and/or ISP of the ball is small or vanishing
when the trajectory starts at a certain height. For
zero ISV and low-level initial position, the prob-
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lem can be linearized. In the top view, a simple
ellipse emerges, degenerating into a line segment
for zero IHV. If nonlinear terms are respected, then
this ellipse-like curve slowly rotates counterclock-
wise and remotely resembles the Foucault pendu-
lum trajectory. Introducing a slight ISV, the ellip-
tical trajectory shape changes into a significantly
prolate hypotrochoid.

Ball-type vibration absorbers are equally effective
regardless of the particular direction of excitation,
yet they are mostly designed for unidirectional cases,
sometimes with the assumption of small angles. It is
rare to take into account the auto-parametric effects that
stem from the nonlinear nature of the system, andwhich
cause the spatial movement of the sphere in the cavity
even under a unidirectional load. Although the move-
ment of the sphere in the presence of external excita-
tion differs from the trajectories described in this work,
their character is broadly similar. As shown by numer-
ical simulations of an externally excited case and also
by experiments in analogous pendulum absorbers, the
spatial motion of the damping mass along paths related
to those described above shows an undesirable stability
against fluctuations of possible ambient excitation. In
the case of pendulum absorbers, such phenomena can
be effectively mitigated by applying sufficient damp-
ing. However, this can be a problem in the case of ball-
type absorbers. The spatial resonance movement of the
ball in a limit cycle may negatively affect the structure.
Thus, it seems necessary to include a detailed auto-
parametric analysis of the complete system during the
design stage.

As regards future investigation in this area, non-
conservative systems should be paid attention on
the basis of analytical processes. Specific difficulties
should be expected related to first integrals, which
will need to be generalized significantly in order to
overcome variable total energy, angular momentum
and spin velocity. The mutual penetration of groups
and sub-groups when moving along one particular tra-
jectory will have to be taken into account. Chaotic
response processes will doubtlessly emerge, as has
already been shown when doing numerical simula-
tions. It will be necessary to reconcile with the fact that
some steps used in this paper will become inapplicable.
Nevertheless, some alternative methods of analysis are
emerging and seem promising.
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