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Abstract The dynamics of a hysteretic relay oscilla-
torwith harmonic forcing is investigated. Periodic exci-
tation of the system results in periodic, quasi-periodic,
chaotic and unbounded behavior. An explicit Poincaré
map is constructed with an implicit constraint on the
switching time. The stability of the fixed points of the
Poincaré map corresponding to period-one solutions
is investigated. By varying the forcing parameters, we
observed a saddle-center and a pitchfork bifurcation of
two centers and a saddle-type fixed point. The global
dynamics of the system exhibits discontinuity induced
bifurcations of the fixed points.

Keywords Relay · Hysteresis · Discontinuity induced
bifurcation · Switched system

1 Introduction

Most systems are inherently nonlinear in nature.
Hysteresis-type nonlinearity occurs in several phenom-
ena in physics, chemistry, biology, engineering, etc.
[1]. For instance, in science, we encounter hysteresis
in plasticity, friction, ferromagnetism, ferroelectricity,
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superconductivity, adsorption, desorption, and mate-
rials with shape memory [2–5]. Hysteresis is a well-
known phenomenon in relay control systems [6]. In
general, relays have two output branches, and the out-
put of a relay jumps discontinuouslywhenever the input
exceeds a certain critical value. For an ideal relay, there
is a single critical value for which the output is dis-
continuous, while for a relay with hysteresis, there
are two such critical input values as shown in Fig.
1a. Hassani et al. [7] surveyed various mathematical
models for hysteresis such as Preisach, Krasnosel’skii-
Pokrovskii, Prandtl-Ishlinskii, Maxwell-Slip, Bouc-
Wen and Duhem in terms of their applications in mod-
eling, control, and identification of dynamical systems.

Vaiana et al. [8,9] recently presented an enhanced
formulation of a class of uniaxial phenomenological
hysteresis models, to simulate complex symmetric and
asymmetric hysteresis phenomena typical of several
rate-independent mechanical systems and materials.

Andronov et al. [10] and Åström [11] investigated
the existence of periodic solutions having two relay
switches in one period. The periodic response of an
ideal relay system with sinusoidal excitation was stud-
ied in [12]. Caughley [13] focused on a system with
a bilinear hysteresis model and sinusoidal excitation,
showing a soft-type resonance with stable, single-
valued response curves. The response of a bilinear
hysteretic oscillator with sinusoidal excitation in a
hybrid systems framework was investigated in [14].
Zhusubaliyev et al. [15] presented the study of a four-
dimensional systemwith hysteresis exhibiting periodic
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and chaotic oscillations. Di Bernardo and coworkers
[16,17] studied the dynamic behavior of systems with
ideal and non-ideal relays. The dynamics of delayed
relay systems is investigated extensively in [18,19].
Sivaselvan [20] presented several hysteretic models
formulated using an energy approach with specifying
scalar-valued functions: a stored energy function and
a dissipation potential. Lacarbonara and Vestroni [21]
investigated the responses and codimension-one bifur-
cations inMasing-type andBouc–Wen hysteretic oscil-
lators. A periodically driven damped harmonic oscil-
lator coupled to a random field Ising model showing
complex hysteresis is studied in [22].

Semenov et al. [23] studied the resonance prop-
erties of an oscillating system in the case when the
energy pumping is made by an external source of hys-
teretic nature. The nonlinear dynamic analysis of non-
stiffening hysteretic mechanical systems was carried
out by using a novel rate-independent phenomenolog-
ical model with an explicit time integration in [24].
Krasnosel’skii and Rachinskii [25] investigated the
bifurcations of forced periodic oscillations for systems
with Preisach hysteresis. Kalmár-Nagy et al. [26] stud-
ied a single-degree-of-freedom forced hysteretic sys-
tem.

Hysteresis can be defined as the dependence of the
state of a system on its history. This phenomenon can
be modeled in several ways. Two of the most essential
hysteresis models are the Preisach model [27] and the
Bouc-Wen model [28,29]. The Preisach model of hys-
teresis was introduced to model magnetic hysteresis as
the relationship between magnetic field and magneti-
zation of ferromagnetic materials, but it can be used
perfectly for other scientific areas. This model is based
on non-ideal relay hysterons; see Fig. 1a. The discrete
form of the Preisach model was studied by using prop-
erties of the underlying graph in [30]. In this paper,
we will use a single symmetric elementary hysteretic
relay operator (hysteron). The hysteretic relay operator
F[x(t)] is defined as

F [x(t)] =
⎧
⎨

⎩

−1,
e,
1,

x(t) ≤ −1,
−1 < x(t) < 1,
x(t) ≥ 1.

(1)

This operator depends on the time history of the contin-
uous function x(t); i.e., the discrete variable e is either
−1 or 1, depending on whether the function x(t) enters

the hysteretic region (1,−1) from the left or right (see
Fig. 1a).

The power generated by the hysteresis element is
PF[x(t)] = F [x(t)] ẋ(t). This type of hysteretic ele-
ment can thus inject energy into the system or dissipate
energy from the system.

This paper aims to understand the dynamical behav-
ior of forced oscillations of systems containing hys-
teretic relay elements, thereby continuing the work of
Kalmár-Nagy et al. [26]. We investigate the dynamics
of the one-degree-of-freedom forced oscillator by uti-
lizing an explicit Poincaré map together with implicit
constraints [31].

The outline of the paper is as follows. Section 2
introduces the equations describing a one-degree-of-
freedom mass-spring-relay. This simple model can
describe, for example, a bang-bang controlled spring-
mass system with external forcing. The different types
of behavior of the system is demonstrated in Sect. 3.
The explicit solution of the forced system is shown in
Sect. 4. Section 5 is devoted to the switching time equa-
tions of the forced system. We show that the switching
time can be a discontinuous function of the initial con-
ditions and the forcing parameters. The Poincaré map
of the system is constructed in Sect. 6. The fixed points
of the Poincarémap and their stability were determined
analytically in Sect. 7. The local dynamics around the
fixed points is illustrated by Poincaré sections. The
global dynamics of the system is discussed in Sect.
8. Finally, conclusions are drawn in Sect. 9.

2 Mathematical model

The model of the system is shown in Fig. 1b. The equa-
tion of motion of the system is

ẍ(t) + x(t) + F [x(t)] = A cos(ωt + φ), (2)

where F [x(t)] is the hysteretic relay operator defined
in Eq. (1). The parameters A ≥ 0, ω > 0, and φ ∈ S

1

are the amplitude, frequency, and phase of the forc-
ing, respectively. Without loss of generality, the initial
conditions of system (2) can be specified as

x (0) = −1, ẋ (0) = vI ≤ 0. (3)
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Fig. 1 (a) The hysteresis loop of the hysteretic relay operator F[x(t)], (b) the single degree of freedom system used in this paper

The evolution of system (2, 3) can be split into two
equations (referred to as subsystems I and I I ), depend-
ing on the value of F [x(t)] operator

subsystem I : ẍ I (t) + xI (t) − 1 = A cos(ωt + φI ),

(4)
subsystem I I : ẍ I I (t) + xI I (t) + 1 = A cos(ωt + φI I ).

(5)

The dynamics of system (2) switches from subsys-
tem I to subsystem I I when the solution trajectory
reaches xI (t) = 1 from the left, i.e., ẋ I (t) ≥ 0. The
switch/transition from subsystems I I to subsystem I
occurs when the solution reaches xI I (t) = −1 from
the right, i.e., ẋ I I (t) ≤ 0.

To simplify the analysis, time is reset to zero when
the transition occurs between subsystems. To account
for this artificial time-shift, the phase of the forcing
is updated at the transitions. With this convention, the
evolution of the system is fully described by

I : ẍ I (t) + xI (t) − 1 = A cos(ωt + φI ),

xI (0) = −1, ẋ I (0) = vI ≤ 0, t ∈ [0, tI ], (6)
I I : ẍ I I (t) + xI I (t) + 1 = A cos(ωt + φI I ),

xI I (0) = 1, ẋ I I (0) = vI I ≥ 0, t ∈ [0, tI I ]
(7)

where the switching times tI and tI I are defined as

tI = min {t |I, xI (t) = 1, ẋ I (t) ≥ 0, t > 0 } , (8)

tI I = min {t |I I, xI I (t) = −1, ẋ I I (t) ≤ 0, t > 0 } .

(9)

The velocity and the phase at the transition is the new
initial velocity of the subsequent subsystem, i.e.

vI I = ẋ I (tI ), φI I = ωtI + φI , (10)

vI = ẋ I I (tI I ), φI = ωtI I + φI I . (11)

3 System behavior

Here we demonstrate the different types of behavior of
system (2) by showing time series and x − ẋ portraits.
The unforced system (A = 0) exhibits unbounded
solution, see Fig. 2. For the forcing amplitude A = 2
and frequency ω = 0.605 the system (2) exhibits
unbounded, periodic, quasi-periodic and chaotic solu-
tions depending on the phase φ and on the initial con-
ditions, see Figs. 3, 4, 5, 6.

Our goal in this paper is to better understand the
behavior of the system through analytical means.

4 The evolution of the forced system

Here we solve the forced differential Equations (6) and
(7) explicitly for ω ∈ R

+ \ {1} and A > 0. The case of
the unforced system (A = 0) and the case of resonant
forcing (ω = 1 and A > 0) is relegated to Appendices
A and B.
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Fig. 2 Unbounded solution of the unforced system (A = 0), initial conditions: xI (0) = −1, ẋ I (0) = −1

Fig. 3 Unbounded solution of the forced system, forcing parameters: A = 2, ω = 0.605, φ = 2.3, initial conditions: xI (0) =
−1, ẋ I (0) = −1

The position and velocity of subsystem I Eq. (6)
satisfying initial conditions xI (0) = −1 and ẋ I (0) =
vI are

xI (t) = − A

ω2 − 1
cos(ωt + φI )

+
(

A

ω2 − 1
cos(φI ) − 2

)

cos(t)

+
(

vI − Aω

ω2 − 1
sin(φI )

)

sin(t) + 1,

t ∈ [0, tI ], (12)

ẋ I (t) = Aω

ω2 − 1
sin(ωt + φI )

−
(

A

ω2 − 1
cos(φI ) − 2

)

sin(t)

+
(

vI − Aω

ω2 − 1
sin(φI )

)

cos(t),

t ∈ [0, tI ], (13)

where tI is the switching time defined in Eq. (8). The
final velocity and phase for the solution of subsystem I
at the transition t = tI will serve as initial velocity and
phase for the solution of subsystem I I , (see Eq. (10)),
i.e.

vI I = ẋ I (tI ), φI I = ωtI + φI . (14)
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Fig. 4 Periodic solution of the forced system, forcing parameters: A = 2, ω = 0.605, φ = 1.893, initial conditions: xI (0) =
−1, ẋ I (0) = −1.204

Fig. 5 Quasi-periodic solution of the forced system, forcing parameters: A = 2, ω = 0.605, φ = 2.27, initial conditions: xI (0) =
−1, ẋ I (0) = −1.26

The position and velocity of subsystem I I (Eq. (7))
satisfying initial conditions xI I (0) = 1 and ẋ I I (0) =
vI I are

xI I (t) = − A

ω2 − 1
cos(ωt + φI I )

+
(

A

ω2 − 1
cos(φI I ) + 2

)

cos(t)

+
(

vI I − Aω

ω2 − 1
sin(φI I )

)

sin(t) − 1,

t ∈ [0, tI I ], (15)

ẋ I I (t) = Aω

ω2 − 1
sin(ωt + φI I )

−
(

A

ω2 − 1
cos(φI I ) + 2

)

sin(t)

+
(

vI I − Aω

ω2 − 1
sin(φI I )

)

cos(t),

t ∈ [0, tI I ], (16)

where tI I is the switching time defined in Eq. (9). Sim-
ilarly, the final values of velocity and phase of the solu-
tion of subsystem I I at the transition t = tI I will
provide the next initial conditions for the solution of
subsystem I (see Eq. (11)), i.e.

vI = ẋ I I (tI I ), φI = ωtI I + φI I . (17)
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Fig. 6 Chaotic solution of the forced system, forcing parameters: A = 2, ω = 0.605, φ = 1.893, initial conditions: xI (0) =
−1, ẋ I (0) = −1.153

For a detailed analysis of the response of the forced
system, we will introduce a Poincaré map [32,33] and
study this discrete map instead of the continuous evo-
lution of the system. In the next section, we investigate
the properties of the switching times that are essential
to obtain the Poincaré map.

5 Switching time

In order to find the switching time tI at which transi-
tion takes place from subsystem I to subsystem I I , the
switching criterion xI (tI ) = 1 (see Eq. (8)) is substi-
tuted into Eq. (12). This results in

(
A

ω2 − 1
cos(φI ) − 2

)

cos(tI )

+
(

vI − Aω

ω2 − 1
sin(φI )

)

sin(tI )

= A

ω2 − 1
cos(ωtI + φI ), (18)

where the switching time tI is the first positive root of
Eq. (18 ) and is a function of vI , φI , A, and ω. We
define the following two quantities

αI (φI ) = A

ω2 − 1
cos(φI ) − 2,

βI = vI − Aω

ω2 − 1
sin(φI ),

(19)

to rewrite the switching time equation (18) in the fol-
lowing compact form

αI (φI ) cos(tI )+βI sin(tI )− A

ω2 − 1
cos(ωtI+φI ) = 0.

(20)

The initial velocity vI ≤ 0 of subsystem I is non-
positive (cf. Eq. (6)), thus the domain of βI (defined in
Eq. (19)) is

βI ≤ − Aω

ω2 − 1
sin(φI ). (21)

Similarly, to find the switching time tI I of the transi-
tion from subsystem I I to subsystem I , the switching
criterion xI I (tI I ) = −1 (see Eq. (9)) is substituted into
equation Eq. (15 ) resulting in

αI I (φI I ) cos(tI I ) + βI I sin(tI I )

− A

ω2 − 1
cos(ωtI I + φI I ) = 0, (22)

where the switching time tI I is the first positive root of
Eq. (22). The quantities αI I (φI I ) and βI I are defined
as

αI I (φI I ) = A

ω2 − 1
cos(φI I ) + 2,

βI I = vI I − Aω

ω2 − 1
sin(φI I ),

(23)
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and the domain of βI I is

βI I ≥ − Aω

ω2 − 1
sin(φI ). (24)

5.1 Continuity of the switching time

Figure 7 illustrates the switching time function tI (β, φ)

for the fixed forcing parameters A = 0.8, ω = 0.4 and
A = 1, ω = 1.8. For these forcing parameters tI (β, φ)

is a continuous function of the initial conditions β and
φ.

Not all forcing parameters A, ω yield a continuous
switching time function. Figure 8a shows the switching
time tI (β, φ) for the forcing parameters A = 2, ω =
0.4. The discontinuous jump of the switching time by
varying φ for fixed β = 0.5 is shown in Fig. 8b.

What is the cause of the discontinuity? Geometri-
cally, the roots of the transcendental Equations (20) and
(22) represent points of intersection of two cosine func-
tions with different amplitude, phase and frequency,
see Fig. 9. The first intersection of the two cosine func-
tions is shown by a red square. It can be seen from
Fig. 9 that a small change in the initial phase causes
a large discontinuous change in the first intersection
point, which corresponds to the switching time tI . This
type of discontinuous jump in the switching time can
also be observed for systems containing bilinear hys-
teresis elements [14].

Relating back to the dynamics of the system, the
discontinuous change in the switching time is related
to reaching of the transition points xI (tI ) = 1 or
xI I (tI I ) = −1 with zero velocity, i.e. ẋ I (tI ) = 0 or
ẋ I I (tI I ) = 0. Reaching the transition point of a piece-
wise dynamical system with zero velocity is the so-
called grazing phenomenon. Grazing can lead to com-
plex dynamical behavior and bifurcations of dynamical
systems [34–36]. The resulting complexity for our sys-
tem is demonstrated in Sect. 8. In Fig. 10 the qualitative
change in the dynamical behavior of the system (6,7)
is illustrated on x − ẋ portraits.

The initial conditions were chosen, as shown in Fig.
10a, separated by the curve associated with the discon-
tinuous jump of the switching time function tI (βI , φI ).

The trajectories until the first and second transition
are shown in Fig. 10b and c. The initial conditions
βI = 0.5, φI = 1.527 and βI = 0.5, φI = 1.588
of the trajectories are indicated by squares in Fig.

10a. The switching times for the initial conditions
βI = 0.5, φI = 1.527 are tI = 2.4, tI I = 1.1, while
for the initial conditions βI = 0.5, φI = 1.588 the
switching times are are tI = 7.7, tI I = 3.1.

Let us now investigate the conditions under which
the switching time function is continuous. First we
recast the switching time equations (20) and (22) in
the following general form

cos(τ − θ) − B cos(ωτ + φ) = 0, (25)

where τ is the smallest positive root of (25), and the
quantities θ and B are

θ = arctan2(β, α(φ)), B = A

(ω2 − 1)
√

α(φ)2 + β2
.

(26)

The switching time function is continuous if

(0 < ω < 1 ∧ A < 1 − ω2)

∨ (ω > 1 ∧ A < 2ω − 2) . (27)

The proof is given in Appendix C.

6 Poincaré map

The switched nature of the problem motivates the con-
struction of a Poincaré map to investigate the behavior
of the solutions [37]. Poincaré maps are widely used in
piecewise-smooth dynamical systems [33,34,38–41].

First, consider the mapping (ẋ I (0) = vI , φI ) →
(ẋ I (tI ), φI + ω tI ) of the initial velocity and phase to
the velocity and phase at the timeof the transition t = tI
(Eq. (8)) from subsystem I to subsystem I I . The final
velocity and phase for the solution of subsystem I at
the transition (Eq. (14)) will serve as initial velocity
and phase for the solution of subsystem I I , i.e.

vI I = ẋ I (tI ) = Aω

ω2 − 1
sin(ωtI + φI )

−
(

A

ω2 − 1
cos(φI ) − 2

)

sin(tI )

+
(

vI − Aω

ω2 − 1
sin(φI )

)

cos(tI ), (28)

φI I = ωtI + φI . (29)
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Fig. 7 The switching time function tI (βI , φI ) for different forcing parameters

Fig. 8 The switching time function tI (βI , φI ) for the forcing parameters A = 2, ω = 0.4

Fig. 9 The roots of the function tI (βI , φI ) for A = 2, ω = 0.4. The smallest positive root is indicated by a red square
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Fig. 10 Trajectories of the system until the second transition

Rearranging Eq. (28) yields

vI I − Aω

ω2 − 1
sin(φI I )

= −
(

A

ω2 − 1
cos(φI ) − 2

)

sin(tI )

+
(

vI − Aω

ω2 − 1
sin(φI )

)

cos(tI ). (30)

Using variables introduced in Eq. (19) we recast Eq.
(30) as

βI I = −αI (φI ) sin(tI ) + βI cos(tI ), (31)

We can now relate initial values of the variables β, φ

to their values at the switching by the map �I defined
as

(
βI I

φI I

)

= �I

(
βI

φI

)

=
(−αI (φI ) sin(tI ) + βI cos(tI )

φI + ωtI

)

. (32)

where tI is the smallest positive root of Eq. (20). Simi-
larly, the final values of velocity and phase of the solu-
tion of subsystem I I will provide the initial conditions
for the solution of subsystem I as

vI = ẋ I I (tI I ) = Aω

ω2 − 1
sin(ωtI I + φI I )

−
(

A

ω2 − 1
cos(φI I ) + 2

)

sin(tI I )

+
(

vI I − Aω

ω2 − 1
sin(φI I )

)

cos(tI I ), (33)

φI = ωtI I + φI I . (34)

We rewrite Eq. (33) using the quantities defined in (23)
to get

βI = −αI I (φI I ) sin(tI I ) + βI I cos(tI I ). (35)

The relation between the initial values of the variables
β, φ to their values at the switching by the map �I I

defined as

(
βI

φI

)

= �I I

(
βI I

φI I

)

=
(−αI I (φI I ) sin(tI I ) + βI I cos(tI I )

φI I + ωtI I

)

.

(36)

where tI I is the smallest positive root of Eq. (22).
To specify the range and domain of these maps, we

introduce the Poincaré surfaces 	I = {(βI , φI )|x(t)
= −1} and 	I I = {(βI I , φI I )|x(t) = 1}. Clearly, �I

and �I I are maps from 	I onto 	I I and from 	I I

onto 	I , respectively. The Poincaré map (a.k.a. return
map)� is now defined as the map of the plane	I onto
itself after a pair of switchings. The map� is therefore
obtained by composing the two maps �I I and �I as

�

(
βI

φI

)

= �I I ◦ �I

(
βI

φI

)

. (37)
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Substituting Eqs. (32) and (36) for �I and �I I into
Eq. (37) and using Eq. (20) results in

�

(
βI

φI

)

=
( −αI (φI ) sin(tI + tI I ) + βI cos(tI + tI I ) − 2 sin(tI I )

φI + ωtI + ωtI I

)

.

(38)

Equation (38) defines the Poincaré map � to be used
in the subsequent analysis. We note that the switching
times tI and tI I implicitly depend on the state vari-
ables (βI , φI ). The implicit dependence of the switch-
ing time tI on the variables (βI , φI ) is due to the switch-
ing time equation (20), i.e.

αI (φI ) cos(tI ) + βI sin(tI ) = A

ω2 − 1
cos(ωtI + φI ),

(39)

where tI is the smallest positive root of Eq. (39). The
implicit dependence of tI I on the variables (βI , φI ) can
be expressed by substitutingβI I andφI I fromEqs. (31)
and (29) into Eq. (22). This results in

(αI (φI ) cos(tI ) + βI sin(tI ) + 2) cos(tI I )

+ (−αI (φI ) sin(tI ) + βI cos(tI )) sin(tI I )

= A

ω2 − 1
cos(ωtI + ωtI I + φI ), (40)

where tI I is the smallest positive root of Eq. (40).

6.1 Inverse map

The inverse of the Poincaré map (which is used in
Sect. 8 to compute backward iterations) can simply be
obtained by reversing time and appropriately changing
initial conditions. This yields

�−1
(

βI

φI

)

=
(

(αI (φI ) + 2) sin(tI + tI I ) + βI cos(tI + tI I ) − 2 sin(tI )
φI − ωtI − ωtI I

)

,

(41)

where the switching times tI I and tI are defined by the
equations

(αI (φI ) + 2) cos(tI I ) − βI sin(tI I ) − 2

= A

ω2 − 1
cos(ωtI I − φI ), (42)

((αI (φI ) + 2) cos(tI I ) − βI sin(tI I ) − 2) cos(tI )

− ((αI (φI ) + 2) sin(tI I ) + βI cos(tI I )) sin(tI ) + 2 =
= A

ω2 − 1
cos(φI − ωtI − ωtI I ). (43)

7 Fixed points

Fixed points of the Poincaré map (38) correspond
to periodic solutions of (2). The fixed points of the
Poincaré map � are given by
(

β∗
φ∗

)

= �

(
β∗
φ∗

)

. (44)

From Eq. (44) the fixed points can be expressed as

β∗ = −α∗ sin(tI + tI I ) + β∗ cos(tI + tI I )

−2 sin(tI I ), (45)

φ∗ = φ∗ + ω (tI + tI I ) , (46)

where

α∗ = A

ω2 − 1
cos(φ∗) − 2. (47)

From Eq. (46) and using that φ ∈ S
1 we get

tI + tI I = 2kπ

ω
, k ∈ Z

+. (48)

Using Eq. (48) the expression (45) can be written as

β∗ = (β∗ + 2 sin (tI )) cos

(
2kπ

ω

)

−
((

A

ω2 − 1
cos(φ∗) − 2

)

+ 2 cos (tI )

)

× sin

(
2kπ

ω

)

. (49)

From Eq. (44) the fixed points can be expressed as

((
A

ω2 − 1
cos(φ∗) − 2

)

cos(tI ) + β∗ sin(tI ) + 2

)

cos

(
2kπ

ω
− tI

)

+

+
(

−
(

A

ω2 − 1
cos(φ∗) − 2

)

sin(tI ) + β∗ cos(tI )
)

sin

(
2kπ

ω
− tI

)

= A

ω2 − 1
cos(φ∗).

(50)
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Fig. 11 Fixed points of the Poincaré map (38) as the function of ω for A = 2 and k = 1

Fig. 12 Periodic solutions in in the x − ẋ plane corresponding to the fixed points of the Poincaré map for A = 2

From Eqs. (49) and (50) we express the fixed points as
the function of the switching time tI as

β∗ = (1 − cos(tI )) cot

(
kπ

ω

)

− sin(tI ), (51)

φ∗ = ± arccos

(
ω2 − 1

A

(

cot

(
kπ

ω

)

sin(tI ) − cos(tI ) + 1

))

.

(52)

Substituting Eqs. (51) and (52) into Eq. (39) we get
the following implicit expression for the switching time
tI of the period-one solutions

cot

(
kπ

ω

)

sin(tI ) − cos(tI ) − 1

= A

ω2 − 1
cos(ωtI ± arccos

(
ω2 − 1

A

(

cot

(
kπ

ω

)

sin(tI ) − cos(tI ) + 1

)) )

.

(53)

Equation (53) can be solved numerically for the possi-
ble switching times tI ∈ (0,max(2π, 2π/ω)) for given
forcing parameters A and ω. Substituting these switch-
ing time values into (51) and (52) we get the potential
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Fig. 13 Fixed points of the Poincaré map (38) as the function of ω for A = 8 and k = 1

Fig. 14 Fixed points of the Poincaré map (38) as the function of ω for A = 15 and k = 1

Fig. 15 Fixed points of the Poincaré map (38) for A = 15 and ω > 1 for the values k = 1, 2, 3, illustrated by dots (k = 1), squares
(k = 2) and triangles (k = 3)
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Fig. 16 Periodic solutions in the x − ẋ plane for A = 15

Fig. 17 Fixed points and their stability for forcing amplitude A = 2

fixed points of the Poincaré map. Finally, we have to
check that these (β, φ) pairs are real fixed points of the
Poincaré map (38), since the property that the switch-
ing times tI and tI I are the smallest positive roots of
Eqs. (39) and (40) must be fulfilled.

Figure 11 illustrates the fixed points of the Poincaré
map (38) as the function of the forcing frequency ω for
forcing amplitude A = 2. For the forcing amplitude
A = 2 fixed points exist if ω ∈ [0.375, 1] ∪ (1, 1.721)
and k = 1.

Each of the fixed points of the Poincaré map (38)
corresponds to a period-one solution of the system (2).
Figure 12a illustrates the unique period-one solutions
in the x − ẋ plane for A = 2 and ω ∈ {0.4, 0.8, 1.2}.

If the forcing amplitude A = 2 and the frequency ω ∈
(0.575, 0.638) three fixed points coexist (see Fig. 12b).

Figures 13 and 14 illustrate the fixed points of the
Poincaré map (38) as the function of forcing frequency
ω for forcing amplitude A = 8 and A = 15, respec-
tively. For forcing amplitude A = 15 we can also
observe 1 : 2 and 1 : 3 subharmonic resonances of
the system, thus fixed points for k = 2 or k = 3 coexist
for certain ranges of forcing frequency with the k = 1
fixed point, see Fig. 15.

Two of the five different period-one solutions for
A = 15 and ω = 2.13 are illustrated in Fig. 16a, where
the solid line corresponds to 1 : 1 resonance (k = 1),
while the dash-dotted correspond to 1 : 2 resonance
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Fig. 18 Dynamics in the φ − β plane for A = 2, ω = {0.49, 0.51, 0.6, 0.7} in the vicinity of the fixed points

Fig. 19 Fixed points and their stability for A = 15 forcing
amplitude

(k = 2). For the forcing parameters A = 15 and ω =
3.5 trajectories corresponding to 1 : 1 resonance (k =
1) and to 1 : 3 coexist (k = 3), see Fig. 16b.

7.1 Stability of fixed points

To investigate the stability of the fixed points (Eqs.
(51) and (52)) of the Poincaré map Eq. (38), we calcu-
late the linearized Poincaré map about the fixed points
(β∗, φ∗). The linearized Poincarémap D� ofmap (38)
can be written as

D� =
⎛

⎝
p q

ω

(
∂tI
∂β

+ ∂tI I
∂β

)

1 + ω

(
∂tI
∂φ

+ ∂tI I
∂φ

)

⎞

⎠
∣
∣
∣
(β∗,φ∗)

,

(54)

where

p = −
(

∂tI
∂β

+ ∂tI I
∂β

)

α(φ) cos(tI + tI I )

+ cos(tI + tI I )

−
(

∂tI
∂β

+ ∂tI I
∂β

)

β sin(tI + tI I )

−2
∂tI I
∂β

cos(tI I ), (55)
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Fig. 20 Dynamics in the φ − β plane around the fixed points for A = 15 and ω = {1.5, 2.13, 2.3, 3.5}

q = −
(

∂tI
∂φ

+ ∂tI I
∂φ

)

α(φ) cos(tI + tI I )

−∂α(φ)

∂φ
sin(tI + tI I ) −

(
∂tI
∂φ

+ ∂tI I
∂φ

)

β sin(tI + tI I ) − 2
∂tI I
∂φ

cos(tI I ). (56)

The partial derivatives ∂tI
∂β

, ∂tI I
∂β

, ∂tI
∂φ

and ∂tI I
∂φ

are
obtained by differentiating Eqs. (39) and (40). The
eigenvalues of the matrix D� determine the stability
of the fixed points of the Poincaré map (Eq. (38)) or
equivalently the stability of the period-one solutions of
the system Eq. (2). The eigenvalues of D� are given
by

λ1,2 = TrD�

2
±

√
(TrD�)2 − 4 det(D�)

2
. (57)

The trace and the determinant of D� are

TrD� = 1 + ω

(
p

ω
+ ∂tI

∂φ
+ ∂tI I

∂φ

)∣
∣
∣
(β∗,φ∗)

, (58)

det(D�) =
(

p

(

1 + ω

(
∂tI
∂φ

+ ∂tI I
∂φ

))

−q

(

ω

(
∂tI
∂β

+ ∂tI I
∂β

)))∣
∣
∣
(β∗,φ∗)

. (59)

The determinant of D� is equal to 1 (for the derivation
see Appendix D). Since λ1 λ2 = det(D�) = 1, there
are three possibilities for the eigenvalues:

1. Both λ1 and λ2 are real and distinct. In this case,
one has amodulus greater than one (eigenvalue out-
side the unit circle) and the other smaller than one
(eigenvalue inside the unit circle). This fixed point
is a saddle.

2. λ1 and λ2 are complex conjugate with |λ1| =
|λ2| = 1 (eigenvalues on the unit circle). The fixed
point is a center.

3. Either λ1 = λ2 = 1 or λ1 = λ2 = −1. The fixed
point is a non-hyperbolic fixed point and nonlinear
analysis is required to determine the behavior of the
fixed point.
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Fig. 21 (a) Dynamics in the φ − β plane for A = 2, ω = 0.6 showing the complex dynamics in the vicinity of the center type
fixed point. (b) Magnification of the boxed region showing higher periodic points: Period-6 (empty circle), Period-36 (filled circles),
Period-78 (crosses)

Fig. 22 Trajectories in the x − ẋ plane (a) Period-6, (b) Period-36, (c) Period-78, (d) Quasi-periodic

Fig. 23 (a) Dynamics in the φ − β plane for A = 2, ω = 0.6 showing the complex dynamics in the vicinity of the center type fixed
point. (b) Magnification of the boxed region showing higher periodic points: Period-3 (empty circle), Period-9 (filled circles), Period-21
(crosses)
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Fig. 24 Trajectories in the x − ẋ plane (a) Period-3, (b) Period-9, (c) Period-21, (d) Quasi-periodic

Fig. 25 (a) Sum of switching times tI (β, φ) + tI I (β, φ), (b) Dynamics in the φ − β plane for A = 2, ω = 0.6, the continuous curve
is the discontinuity of tI (β, φ) + tI I (β, φ) projected on the φ − β plane

From Eq. (57), we note that the eigenvalues λ1,2 are
real and distinct if |TrD�| > 2, and they are complex
conjugate if |TrD�| < 2.

Figure 17 illustrates the fixed points and their stabil-
ity as the function of the forcing frequency ω for forc-
ing amplitude A = 2. The center type fixed point loses
its stability at ω = 0.5 and becomes a saddle point.
At ω = 0.5 a line of non-isolated fixed points can be
observed. Further increasing the forcing frequency ω a
supercritical pitchfork bifurcation occurs, which result
the coexistence of three fixed points: two centers and a
saddle point.

Dynamics in the φ − β plane for A = 2, ω ∈
{0.49, 0.51, 0.6, 0.7} in the vicinity of the fixed points
is illustrated in Fig. 18. The invariant curves around
the center points can be observed. The attracting and

repelling directions of the saddle points are depicted by
arrows.

Figure 19 illustrates the fixed points and their stabil-
ity as the function of the forcing frequency ω ∈ [1, 4]
for forcing amplitude A = 15. Saddle-center bifurca-
tions can be observed atω = 2 andω = 4. The dynam-
ics of the system in the φ, β variables on the Poincaré
plane for A = 15 and ω ∈ {1.5, 2.13, 2.3, 3.5} are
illustrated in Fig. 20.

7.2 Higher-period and quasi-periodic solutions

The procedure of finding higher periodic solutions is
similar to calculating period-one solutions. A period-
n solution of Eq. (2) is a fixed point of the map �n .
Denoting the fixed point of the map�n as (β̂, φ̂), from
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Fig. 26 Dynamics in the φ − β plane for A = 2, ω = 0.6 showing the vicinity of the center type fixed point

(38) we have

(
β̂

φ̂

)

= � ◦ � ◦ · · · ◦ �︸ ︷︷ ︸
n−times

(
β̂

φ̂

)

. (60)

Figure 21a shows the dynamics in theφ−β plane for
A = 2, ω = 0.6 in the vicinity of the center type fixed
point. Around the center point period-six type invariant
curves can be observed. In Fig. 21b we magnified the
boxed region of Fig. 21a. In vicinity of the period-six
point we observed Period-36, Period-78 points. Similar
structures can be observed for the Bogdanov map [42].
Figure 22 illustrates the phase portrait of higher-period
and quasi-periodic solutions.

Figure 23a shows the dynamics in theφ−β plane for
A = 2, ω = 0.7. In Fig. 23b we magnified the boxed
region of Fig. 23a to show higher-period solutions and
the complex dynamics of the system. In vicinity of the
period-three point (empty circle) we observed Period-
9 (filled circles), Period-21 (crosses) points. Figure 24

illustrates the x−ẋ portraits of higher-period and quasi-
periodic solutions.

8 Global dynamics

The global dynamics of the Poincaré Map (38) is influ-
enced by the continuity of the switching time func-
tion tI (β, φ)+ tI I (β, φ). Figure 25a illustrates the sum
of switching times tI (β, φ) + tI I (β, φ), and Fig. 25b
shows the dynamics in the φ − β plane for A = 2,
ω = 0.6. The thick dashed curve is the discontinuity of
tI (β, φ) + tI I (β, φ) projected on the φ − β plane. For
the forcing amplitude A = 2 three fixed points coex-
ist if ω ∈ (0.575, 0.630). By decreasing the forcing
frequency ω the two center points move closer to the
discontinuity curve, see Fig. 26. At ω = 0.575 the two
center points collide with the discontinuity curve of the
switching time and disappear.
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Fig. 27 Dynamics in the φ − β plane for A = 2, ω = 0.605
showing transverse intersection of the stable (blue) and unstable
(red) manifolds of the saddle type fixed point, created by forward
and backward mapping

8.1 Homoclinic orbit and Smale horseshoe

The presence of centers and saddles in the φ −β plane
hints towards possible homoclinic orbits or tangles
[26]. We carried out numerical simulations to inves-
tigate the complex global dynamical behavior in the
presence of saddle-type fixed points.

Figure 27 illustrates the dynamics in the φ−β plane
for A = 2, ω = 0.605 showing transverse intersec-
tion of the stable (blue) and unstable (red) manifolds
of the saddle type fixed point. This Figure is the result
of forward and backward iterations of 50 × 50 points
in a small neighborhood of the saddle. This numerical
evidence shows the existence of a Smale horseshoe,
which implies the existence of an infinite number of

higher periodic and bounded aperiodic/chaotic solu-
tions [32,43].

For the forcing parameters A = 2, ω = 0.605
chaotic solutions were also observed, see Fig. 28.

9 Conclusions

The dynamics of a spring-mass systemwith a hysteretic
relay operator with simple harmonic forcingwere stud-
ied in this paper. The energy injected and dissipated by
the hysteretic element results in complex dynamical
behavior. An explicit Poincaré map with implicit con-
straints for the switching times has been constructed to
facilitate the analysis.

Implicit expression for the existence of periodic
solutions have been obtained. On the Poincaré plane
center, saddle and non-isolated fixed points were iden-
tified. By varying the forcing frequencyω three types of
bifurcations occur: saddle-center, supercritical pitch-
fork bifurcation (two centers and a saddle point) and
discontinuity induced bifurcation. At the discontinuity
induced bifurcation two fixed points disappear, simi-
larly as in [44].

Higher-period solutions and invariant curves sur-
rounding the center on the Poincaré plane (correspond-
ing to quasi-periodic solutions) have been obtained
numerically. The observed homoclinic tangles imply
the presence of chaotic solutions.

Fig. 28 Chaotic solution, forcing parameters: A = 2, ω = 0.605
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Appendix A

The unforced system

In the absence of forcing all solutions of the system (2)
become unbounded (see Fig. 2). To show this, we first
solve the system Equations (6,7) with A = 0 :
ẍ I (t) + xI (t) − 1 = 0, xI (0) = −1,

ẋ I (0) = vI ≤ 0, t ∈ [0, tI ], (61)

ẍ I I (t) + xI I (t) + 1 = 0, xI I (0) = 1,

ẋ I I (0) = vI I ≥ 0, t ∈ [0, tI I ]. (62)

The solutions of the two subsystems are

xI (t) = −
√

v2I + 4 cos
(
t + arctan

(vI

2

))

+1, t ∈ [[0, tI ], (63)

xI I (t) =
√

v2I I + 4 cos
(
t − arctan

(vI I

2

))

−1, t ∈ [[0, tI I ], (64)

and the velocities are given by

ẋ I (t) =
√

v2I + 4 sin
(
t + arctan

(vI

2

))
,

t ∈ [0, tI ], (65)

ẋ I I (t) = −
√

v2I I + 4 sin
(
t − arctan

(vI I

2

))
,

t ∈ [0, tI I ]. (66)

Equations (8) and (9) determine the switching times tI
and tI I , respectively:

xI (tI ) = −
√

v2I + 4 cos
(
tI + arctan

(vI

2

))

+1 = 1, (67)

xI I (tI I ) =
√

v2I I + 4 cos
(
tI I − arctan

(vI I

2

))

−1 = −1. (68)

The switching times tI and tI I of subsystem I and I I
will be the smallest positive root of equations (67) and
(68), respectively

tI = π

2
− arctan

(vI

2

)
, (69)

tI I = π

2
+ arctan

(vI I

2

)
. (70)

Substituting (69) into (65), we get the velocity at the
switching from subsystem I to I I

ẋ I (tI ) =
√

v2I + 4 = vI I . (71)

To get the velocity at switching form subsystem I I to
I we substitute (70) into (66).With this substitution we
get

ẋ I I (tI I ) = −
√

v2I I + 4 = −
√

v2I + 8, (72)

which is the next initial velocity of subsystem I . From
Eq. (72) we conclude that the absolute velocity of the
system at switchings is monotonically increasing with-
out bound. The time series and the x − ẋ portrait of the
unforced system (61) and (62) with initial conditions
x(0) = −1, ẋ(0) = −1 are illustrated in Fig. 2.
From Eq. (72) we can create the sequence of switch-
ing velocities in a closed form. Starting the solution
from subsystem I with the initial conditions xI (0) =
−1, ẋ I (0) = vI ≤ 0 the velocity at the nth switching
will be

vn = (−1)n−1
√

v2I + 4n, n = 1, 2, 3, . . . (73)
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FromEqs. (69), (70) and (73) the sequence of switching
times will be

tn = π

2
+ arctan

⎛

⎝

√

v2I + 4(n − 1)

2

⎞

⎠ ,

n = 1, 2, 3, . . . (74)

The limit of the sequence of the switching times is

lim
n→∞ tn = π. (75)

Appendix B

Resonant case ω = 1

In this sectionwe solve the forced differential equations
(6) and (7) explicitly for the case ω = 1. The position
and velocity for subsystem I are

xI (t) = At

2
sin(t + φI ) − 2 cos(t)

+
(

vI − A

2
sin(φI )

)

sin(t) + 1, t ∈ [0, tI ], (76)

ẋ I (t) = At

2
cos(t + φI )

+ A

2
sin(t + φI ) + 2 sin(t) +

(

vI − A

2
sin(φI )

)

cos(t), t ∈ [0, tI ]. (77)

The final velocity and phase for the solution of sub-
system I at the transition t = tI will serve as initial
velocity and phase for the solution of subsystem I I ,
i.e.

vI I = ẋ I (tI ), (78)

φI I = ωtI + φI . (79)

For the position and velocity of subsystem I I weobtain

xI I (t) = At

2
sin(t + φI I ) + 2 cos(t)

+
(

vI I − A

2
sin(φI I )

)

sin(t) − 1,

t ∈ [0, tI I ], (80)

ẋ I I (t) = At

2
cos(t + φI I )

+ A

2
sin(t + φI I ) − 2 sin(t)

+
(

vI I − A

2
sin(φI I )

)

cos(t), t ∈ [0, tI I ]. (81)

Similarly, the final values of velocity and phase of the
solution of subsystem I I at the transition t = tI I will
provide the next initial conditions for the solution of
subsystem I as

vI = ẋ I I (tI I ), (82)

φI = ωtI I + φI I . (83)

In order to find the switching time tI at which transi-
tion takes place from subsystem I to subsystem I I , the
switching criterion xI (tI ) = 1 is substituted into Eq.
(76) resulting in

AtI
2

sin(tI + φI ) − 2 cos(tI )

+
(

vI − A

2
sin(φI )

)

sin(tI ) = 0. (84)

The switching time tI is the first positive root of Eq.
(84) and is a function of vI and φI for fixed A and
ω. Analogously the switching time tI I is the smallest
positive root of

AtI I
2

sin(tI I + φI I ) + 2 cos(tI I )

+
(

vI I − A

2
sin(φI I )

)

sin(tI I ) = 0. (85)

Appendix C

Sufficient conditions for the continuity of the switch-
ing time

The switching time function τ is continuous, if Eq. (25)
does not have double roots, i.e.

cos(τ − θ) − B cos(ωτ + φ) = 0, (86)

sin(τ − θ) − Bω sin(ωτ + φ) �= 0. (87)

Condition (87) is equivalent with | sin(τ − θ)| >

|Bω sin(ωτ +φ)| or | sin(τ − θ)| < |Bω sin(ωτ +φ)|.
This in turn is equivalent to the following 4 conditions:

0 < ω < 1 ∧ |B| < 1 (Figure29a) or (88)

0 < ω < 1 ∧ |B| > 1/ω (Figure 29b) or (89)

ω > 1 ∧ |B| < 1/ω (Figure 29c) or (90)

ω > 1 ∧ |B| > 1 (Figure 29d). (91)
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Substituting the expression of B (defined in Eq. (26))
into condition (88) we get

0 < ω < 1 ∧ A

1 − ω2

<

√
(

A

1 − ω2 cos(φ) + 2

)2

+ β2. (92)

Rearranging condition (92) yields

0 < ω < 1 ∧
(

A

1 − ω2

)2

−
(

A

1 − ω2 cos(φ) + 2

)2

− β2 < 0. (93)

The switching time function τ(β, φ)will be continuous
for fixed forcing parameters A, ω if condition (93) is
satisfied for ANY φ and β. To establish this criterion
we take the maximum of the expression

max

((
A

1 − ω2

)2

−
(

A

1 − ω2 cos(φ) + 2

)2

− β2

)

=
(

A

1 − ω2

)2

−
(

2 − A

1 − ω2

)2

(94)

If 0 < ω < 1 and expression (94) is smaller than 0 then
switching time τ(β, φ) will be continuous, i.e.

0 < ω < 1 ∧
(

A

1 − ω2

)2

−
(

2 − A

1 − ω2

)2

< 0.

(95)

Carrying out a similar calculation for the remaining 3
cases (89)-(91) results in

(0 < ω < 1 ∧ A < 1 − ω2)

∨ (ω > 1 ∧ A < 2ω − 2) . (96)

Appendix D

Translation and rotation mapping

First we introduce the following variables

β = v − Aω

ω2 − 1
sin(φ), η = A

ω2 − 1
cos(φ),

γ = H(sin(φ)), (97)

and utilize the Heaviside function

H(ξ) =
{−1,
1,

ξ < 0,
ξ ≥ 0.

(98)

The composed translation and rotation map is

�

⎛

⎝
β

η

γ

⎞

⎠ =
⎛

⎝
cos(tI I ) − sin(tI I ) 0
sin(tI I ) cos(tI I ) 0

0 0 δ

⎞

⎠

⎛

⎝
1 0 0
0 1 2γ
0 0 1

⎞

⎠

×
⎛

⎝
cos(tI ) − sin(tI ) 0
sin(tI ) cos(tI ) 0

0 0 1

⎞

⎠

⎛

⎝
1 0 0
0 1 −2γ
0 0 1

⎞

⎠

⎛

⎝
β

η

γ

⎞

⎠ .

(99)

The constants are A ≥ 0, ω ∈ R
+ \ {1}. The domains

of the variables defined in Eq. (97) are

β ≤
√

1 −
(

ω2 − 1

A
η

)2

, η ≤
∣
∣
∣

A

ω2 − 1

∣
∣
∣,

γ ∈ {−1, 1}. (100)

Time tI is the smallest positive root of

(η − 2) cos(tI ) + β sin(tI )

= A

ω2 − 1
cos

(

ωtI + γ arccos

(
ω2 − 1

A
η

))

,

(101)

and time tI I is the smallest positive root of

((η − 2) cos(tI ) + β sin(tI ) + 2) cos(tI I )

+ (− (η − 2) sin(tI ) + β cos(tI )) sin(tI I ) =

= A

ω2 − 1
cos

(

ωtI + ωtI I + γ arccos

(
ω2 − 1

A
η

))

.

(102)

The function δ ∈ {−1, 1} is defined as

δ = γ H

(

sin

(

ωtI + ωtI I + γ arccos

(
ω2 − 1

A
η

)))

.

(103)

Mapping matrix of the composed map (99) is

M =
⎛

⎝
cos(tI I ) − sin(tI I ) 0
sin(tI I ) cos(tI I ) 0

0 0 δ

⎞

⎠

⎛

⎝
1 0 0
0 1 2γ
0 0 1

⎞

⎠
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Fig. 29 The roots of the function τ . The smallest positive root is indicated by a red square

×
⎛

⎝
cos(tI ) − sin(tI ) 0
sin(tI ) cos(tI ) 0

0 0 1

⎞

⎠

⎛

⎝
1 0 0
0 1 −2γ
0 0 1

⎞

⎠ . (104)

The determinant of M is

det(M) = δ. (105)

At a fixed point δ = 1, thus

det(M)

∣
∣
∣
(β∗,η∗,γ ∗)

= 1. (106)
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