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Abstract The information processing mechanisms

of the visual nervous system remain to be unsolved

scientific issues in neuroscience field, owing to a lack

of unified and widely accepted theory for explanation.

It has been well documented that approximately 80%

of the rich and complicated perceptual information

from the real world is transmitted to the visual cortex,

and only a small fraction of visual information reaches

the primary visual cortex (V1). This, nevertheless,

does not affect our visual perception. Furthermore,

how neurons in the secondary visual cortex (V2)

encode such a small amount of visual information has

yet to be addressed. To this end, the current paper

established a visual network model for retina-lateral

geniculate nucleus (LGN)-V1–V2 and quantitatively

accounted for that response to the scarcity of visual

information and encoding rules, based on the principle

of neural mapping from V1 to V2. The results

demonstrated that the visual information has a small

degree of dynamic degradation when it is mapped

from V1 to V2, during which there is a convolution

calculation occurring. Therefore, visual information

dynamic degradation mainly manifests itself along the

pathway of the retina to V1, rather than V1 to V2. The

slight changes in the visual information are

attributable to the fact that the receptive fields (RFs)

of V2 cannot further extract the image features.

Meanwhile, despite the scarcity of visual information

mapped from the retina, the RFs of V2 can still

accurately respond to and encode ‘‘corner’’ informa-

tion, due to the effects of synaptic plasticity, but the

similar function does not exist in V1. This is a new

discovery that has never been noticed before. To sum

up, the coding of the ‘‘contour’’ feature (edge and

corner) is achieved in the pathway of retina-LGN-V1–

V2.
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Abbreviations

V1 Primary visual cortex

V2 Secondary visual cortex

RF Receptive field

CV Computer vision

LGN Lateral geniculate nucleus

MT Temporal visual area

RMM Recurrent motion model

STDP Spike timing-dependent plasticity

LTP Long-term potentiation
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LTD Long-term depression

PMVICV2 Predictive model for visual information

changes in V2

DOG Difference of two Gaussians

1 Introduction

The ‘‘Brain Projects’’ have been widely implemented

throughout the world in recent years, such as those in

China [40], the USA [5], Europe [1], and Japan [36].

Such phenomenon has accordingly contributed to the

burgeoning of research on visual information process-

ing mechanisms in academic fields such as cognitive

neuroscience and computer vision (CV)

[10, 22, 30, 55]. Considered as the perfect image

information processing system, visual system of

human beings can quickly recognize such objective

information as position, size, shape, color, and orien-

tation with substantial advantages in stability, robust-

ness, efficiency, and simplicity [56]. For that reason,

scholars from fields of cognitive neurobiology, com-

putational neuroscience, and CV have shown growing

interest in examining the neural information process-

ing mechanisms of the visual nervous system [13],

[23]; [38, 39, 41, 44].

Indeed, research on visual information processing

mechanisms has kept accelerating as biological tech-

niques continue to evolve over the past few decades

[53]. In 1962, Wiesel and Hubel’s experimental

research findings on cat’s primary visual cortex (V1)

illustrated the correlation between the receptive fields

(RFs) of the lateral geniculate nucleus (LGN) and RFs

of V1, which significantly advanced research in the

field of biological vision [18]. In 1971, Dubner and

Zeki studied the characteristics of the orientation

selectivity of cells in visual area V5, initially revealing

that the middle temporal visual area (MT) belongs to

the central region of motion perception [11]. In 1994,

Ungerleider and Haxby proposed the theory of ventral

and dorsal visual processing streams, providing a

physiological basis for the visual system to process

motion and static information [51]. In 2002, Riesen-

huber and Poggio discovered mutual projection and

interaction between the dorsal and ventral pathways.

Building on this synergistic effect, the researchers

further investigated perceptions under the influence of

visual stimuli [43]. In the same year, Yifeng Zhou and

Tiande Shou (2002) revealed that the orientation

sensitivity of LGN cells could experience changes due

to visual cortex feedback. In 2010, Bin Zhu and Tiande

Shou reported that visual area V4 has a positive

correlation effect on the orientation selectivity of V1

[50]. Further, Jianbo Xiao and Xin Huang discovered

the characteristics of MT cells for distinguishing

complex orientations, indicating their great signifi-

cance for the extraction of multiple movement direc-

tions [52]. Altogether, these experimental results have

contributed considerably to understanding the basic

principles of visual information processing

[58, 32, 54].

In parallel with neurobiological experiments, a

number of neural computational models for the visual

system have been likewise put forward. As early as in

1982, Marr firstly introduced a relatively comprehen-

sive theory of visual computing informed by research

grounded in neurobiology [31]. He argued that visual

cognition obtains ‘‘what’’ and ‘‘where’’ information

through the ‘‘seeing’’ behavior and that the brain

follows the hierarchical processing of visual informa-

tion and the bottom-up principle. Such findings are

deemed to lay the groundwork for research in subse-

quent years. In 1999, Riesenhuber and Poggio pro-

posed a model named ‘‘HMAX’’ (hierarchical

nonlinear maximum operation) based on V1 cells,

mimicking the neural mapping from simple cells to

complex cells in V1 [42]. In 2001, the widespread

computing models of visual attention were brought to

the fore, consisting of environmental stimuli saliency,

saliency map, inhibition of return, attention and eye

movements, scene understanding and object recogni-

tion, etc. These models enlarged the knowledge base

concerning the neurobiological mechanisms of visual

attention [19]. In 2003, Zhaoping Li explored the

segmentation and contour enhancement of V1 cells

from the perspective of the computational model [57].

In 2006, Schölkopf and colleagues proposed a bottom-

up model of visual saliency based on bottom-up

attention, which was then employed to calculate the

visual saliency map in the corresponding scene [46]. In

2011, Xianglin Meng and Zhengzhi Wang provided a

model of enhancement strategy for region of interest

based on attentional shroud, which possesses physio-

logical and psychological rationality and can be used

for region segmentation, target recognition, and scene

analysis [33]. In 2014, George et al. proposed a model

123

3552 H. Zhong, R. Wang



for texture inhibition and contour enhancement based

on the antagonistic and reverse inhibition properties of

simple cells in V1 [3]. In the same year, Jeroen et al.

proposed a recurrent motion model (RMM) based on

the response of the preferred orientations of MT cells,

which can predict the perception of motion character-

istics of MT cells [21, 48]. In 2015, Chessa et al.

proposed a V1–MT neural model for motion estima-

tion, simulating the primary motion pathway of V1 to

MT [8]. More specifically, a two-dimensional Gabor

filter was used to simulate the RFs of simple cells in

V1, followed by obtaining the MT cells’ model

through the weighted combination of V1 cells’

response and regularization and subsequently applied

to motion estimation. In 2017, Klaus et al. constructed

an interference model of working memory about

visual object feature information, based on four

continuous-reproduction experimental data about

working memory of color and direction [35]. It is

concluded that continuous visual information and

discrete visual information have the samemechanisms

of cue-based retrieval and interference. The findings

thus paved the way for developing a unified theory of

working memory in verbal, spatial, and visual

information.

As the above reviews suggested, exploration into

the visual information mechanisms has went through a

long developmental period giving rise to a substantial

amount of scientific achievements both in the field of

neurobiological experiments and of computational

neuroscience. Nevertheless, there has been a lack of a

well-established theory to elucidate the significant

phenomenon of visual information dynamic degrada-

tion in the visual nervous system.

Clearly, the visual information dynamic degrada-

tion occurs in the visual system. According to the

experimental data provided by Anderson and Raichle

([2]; [41], the real world can actually emanate

unlimited visual information. However, in the visual

nervous system, only about 1010 bits/sec are deposited

in the retina, which can be translated as nearly 1

million axons in each nerve from the neurobiological

point of view. As a result of this limited number of

axons in the optic nerves, only about 6 9 106 bits/sec

leave the retina, and only 104 bits/sec can get to layer

IV of V1 [41, 60]. It can be seen that during the process

of transmitting from the retina to layer IV of V1, the

visual information is reduced by about 10–6 times. Yet,

the dynamic degradation cannot prevent visual cortex

from gaining a complete visual perception of the real

world.

Previous research shows that there is a convolution

calculation approach for the pathway of retina-LGN-

V1 [60]. Not only does it contain significant visual

information dynamic degradation, it can also extract

the edge features efficiently according to the principle

of energy minimization of brain activity. Moreover,

the computational model proposed in accordance with

such findings provides quantitative methods to under-

stand the neural mechanisms of the dynamic degra-

dation mapping from the retina to V1, which can

produce results that match the experimental data noted

above.

As we mentioned earlier, however, the mechanism

of visual information mapping from V1 to the

secondary visual cortex (V2) still remains unclear as

regards the existence (or not) of degradation during the

mapping process and the way in which such visual

information can be quantitatively analyzed [20], [47];

[59]. These are vital to understanding visual informa-

tion processing in higher-order cortices.

Due to a lack of available models to address these

questions, we established a computational model in

the current paper to quantitatively predict and ana-

lyzed the visual information dynamic degradation

based on the mapping from V1 to V2. The study was

informed by the convolution calculation approach for

the pathway of retina-LGN-V1 [60], the theory of

convolutional neural networks (CNN) [26], and

anatomical architecture between V1 and V2 [14].

The novelty of this study mainly consisted in the

following three respects. First, CNN is directly

inspired by the classic notions of simple cells and

complex cells in the visual system, and the overall

architecture relies on the LGN-V1–V2 hierarchy in the

visual cortex [26]. Drawing the lesson from CNN, we

have built a computational model in the previous

study, the results of which were consistent with

experimental data and proved its feasibility. There-

fore, we extended that model based on the anatomical

architecture between V1 and V2, which is of great

value to research on visual information processing

from a new theoretical perspective.

Second, the computational model proposed by the

current paper, which includes six layers simulating the

levels of photoreceptors, ganglion cells, LGN, V1, and

V2, mimics the visual information processing. The

results indicate there still exists convolution
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calculation and a slight degree of dynamic degradation

in V1–V2. Specifically, the visual information of V2 is

0.18 times that of V1, which offers us a precise

understanding of the visual information mapping

mechanism from V1 to V2. In addition, the compu-

tational results will make up for the lack of experi-

mental data of V1–V2.

Lastly, the results demonstrated that although the

RFs of V2 have strong responses to the ‘‘corner’’ of the

visual image [17], they do not extract the feature

information to any further degree. Therefore, it can be

concluded that the significant dynamic degradation

occurs in the pathway of the retina to V1. In other

words, the novel visual information from the real

world is entirely processed in the early visual areas and

primarily processed in retina-LGN-V1. On the other

hand, following the principle of synaptic plasticity, the

RFs of V2 can accurately respond to and encode the

scarce ‘‘corner’’ information about the real world. The

contour detection (edge and corner detection) of visual

perception in natural scenes only uses lower-order

areas’ visual information.

2 Methods

2.1 The visual information changes from retina

to V1

The visual system grants animals the capability to

perceive the real world [14]. In the ventral pathway of

the visual cortex, the form perception is gradually

improved with respect to the cortical hierarchy of low

order to high order [16]. In V1, V2, and V4, their RFs

are selective for orientations, angles, and curvatures,

respectively.

The light reaching the retina, and then mapping to

LGN, and V1, the sequence of visual information

processing follows Fig. 1, as shown below [60].

The pathway of the retina to V1 is a one-to-one

neural mapping [56]. The photoreceptor converts the

external light signals into bioelectrical signals and

delivers them to ganglion cells, which finally are

transmitted to V1 through LGN. In this system, about

1010 bits/s are deposited in the retina; only 104 bits/s

can get to V1. Obviously, the visual information

changes from the retina to V1 is dynamic degradation.

The type model of ganglion cell is On-center, which

is shown in Fig. 2.

If the stimuli of light are located at the inner circle

of RFs of photoreceptors, the ganglion cells generate

action potentials. If the stimuli are located at the outer

circle of RFs, the ganglion cells inhibit action

potentials. Consequently, the central stimulation

response and the peripheral stimulation response are

mutually offset, leading to the discovery that the

ganglion cells are very sensitive to the difference in

brightness in RFs [25, 34]. High sensitivity is

positively correlated with visual information degra-

dation since high sensitivity indicates that RFs extract

the features efficiently. In our previous study [60],

convolution calculation between RFs plays an impor-

tant role in degradation. Thus, the visual information

dynamic degradation occurs [41].

The architectures of RFs of LGN are the same as

those of RFs of ganglion cells, which include two

concentric circles [14]. After the processing of LGN,

the visual information is transmitted to V1. Similarly,

LGN also can identify corresponding features. These

characteristics make the visual information further

degrade after the processing of LGN.

Both the simple cells and complex cells in V1

display a strong response to the specific preferred

orientation. The architecture of simple cells is very

Image

input

Photo-

receptors

RFs of

simple

cells

RFs of

LGN

RFs of

ganglion 

cells

RFs of

complex 

cells

Data

output

Convolution computation

Channel of edge detection of visual system

V1

Fig. 1 The visual information processing from retina to V1. The pathway of photoreceptors-ganglion cells-LGN-V1 is a one-to-one

mapping, which contains a significant degradation through the visual information flow
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similar to that of the Gabor filter [45], as shown in

Fig. 3. Complex cells have no requirement for specific

locations and are the abstraction of simple cells. These

characteristics of V1 cells further strengthen the

capability of feature detection, which also degrades

the visual information.

2.2 The visual information changes fromV1 to V2

Section 2.1 briefly introduces and analyzes the reason

for visual information dynamic degradation from the

retina to V1 in visual nervous system. Nevertheless,

the visual information remains unknown for the

changes in transmission from V1 to V2 and for the

changes in ventral pathway transmission as the

cortical order increases.

Sparse coding theory is a critical approach in visual

information processing. Due to the restriction of

energy metabolism during brain information process-

ing and signal transmission, the number of neurons

that process large amounts of visual information is

very few [17]. To some extent, the activity of simple

cells in V1 can be summed as a linear function of RFs

in a small spatial position. We could utilize the Gabor

function to represent the characteristics of the two-

dimensional mapping of simple cells [37]. The

complex cells are regarded as the abstraction of

simple cells. There is no significant difference directly

from the morphological perceptive of simple cells and

complex cells, which seem to be the same type of cells

[15]. Some research results have shown that the

functional classification of simple cells and complex

cells is not static, and their functions can mutually

transform into each other [49]. From the perspective of

the computational model, tuning parameters achieve

continuous behavior from simple cells to complex

cells.

V2 cells have a characteristic of selectivity for the

corners [4], comprising two different lines from end to

end, each orientation of which is derived from V1

cells. Consequently, V2 cells can be represented as

two weighed Gabor filters [56, 61].

According to the hierarchical hypothesis model of

the primary visual cortex proposed by Hubel and

Wiesel [18], the external information arriving at the

visual system abides by the principles of the pathway

of retina-LGN-V1–V2. Concerning the information

separation and processing model proposed by Living-

stone and Hubel [29], the shape, color, motion, and

stereopsis are separated in V1 and V2 during the

information processing of retina-LGN-V1–V2. Since

we focused on the visual information changes, we paid

greater attention to the shape. Hosoya and Hyvärinen

have proposed a model based on a 3-layer network

consisting of simple cells, complex cells, and V2 cells

[17]. Accordingly, we contended that the visual

information processing of retina-LGN-V1–V2 in the

visual system, shown in Fig. 4, can be represented by a

structural schematic diagram, as shown in Fig. 5.

Excitatory input

Inhibitory input

Ganglion cell

Excitatory

Inhibitory

Photoreceptors

Receptive field

Fig. 2 On-center model of

ganglion cell. The RF of

ganglion cell, composed of

photoreceptors, contains an

inner circle and an outer

circle, which trigger the

antagonist mechanism to

realize the discrimination

between light and dark

Fig. 3 Simple cells for different preferred orientations
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Figure 4 shows that the red-brown line represents

the external information transmission by neural map-

ping from the retina to V2. With the model designed

on the basis of Fig. 4 and neurobiological experiments

[17], [27]), we have established a structural schematic

diagram of visual information transmitting to V2, as

shown in Fig. 5. Figure 5 allows for the calculation of

the visual information changes from V1 to V2.

2.3 The analysis of visual information changes

from V1 to V2

The visual information changes from V1 to V2 has

long mystified neuroscientists. In other words, there is

no available method to quantitatively analyze the

visual information changes from V1 to V2, whether

from the perspective of neurobiological experiments

or computational models. That hinders the under-

standing of the mechanisms of visual information

processing. Literature suggests that the edge detection

channel of the visual system, which is the functional

channel of retina-LGN-V1, has the characteristic of

one-to-one neural mapping [60]. The mapping mech-

anism from the retina to V1 is closely related to the

convolution calculation, which partly causes signifi-

cant dynamic degradation. The EDMRV1 model is

established based on the pathway of photoreceptor-

ganglion cell-LGN-V1. The simulation results turned

out to fit well with the experimental data provided by

Anderson [2] and clearly explained the dynamic

degradation phenomenon, as shown in Fig. 6.
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Fig. 4 The diagram of

visual information

processing and transmission
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diagram of visual

information from retina to

V2

Fig. 6 The visual information dynamic degradation of pho-

toreceptor-ganglion cell-LGN-V1 based on EDMRV1 model

[60]. The line that represents the visual information of LGN and

V1 is very close to the x-axis. To illustrate the y-axis values of

the points of V1 and V2 are unequal to 0, we have zoomed in to

clarify, presented in two small boxes
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Since the visual information processing is pro-

cessed by the RFs of simple cells and complex cells in

V1, the processed information is directly output to V2

cells. According to the neural mapping from V1 to V2,

it can be argued that one RF of V2 is weighted by two

RFs of V1, which are the same or different preferred

orientations [17]. Hence, the visual information is in

fact transmitted in the way of connection. Given this

connection, we established a visual information

detection model based on V2, which could predict

and calculate the visual information changes in V2

through a quantitative analysis.

As existing research uncovers [60], in the pathway

of photoreceptor-ganglion cell-LGN-V1, the visual

information hierarchical transmission from low-order

to high-order visual cortex follows the convolution

calculation. It is also the main reason for the visual

information changes from the retina to LGN to V1.

Following the convolution calculation through the

‘‘retina-LGN-V1’’ pathway, the RFs of V2 are

constructed by combining RFs of V1 (Minami &

Naokazu, 2011), which accounts for the convolution

calculation exists in the neural mapping from V1 to

V2. Therefore, it is reasonable and feasible to use the

photoreceptor-ganglion cell-LGN-V1–V2 model to

predict and calculate the visual information changes.

Due to the intricate connections between neurons,

the characteristic of connections in different RFs is

closely related to spike timing-dependent plasticity

(STDP) [6, 24, 44], which is also known as pulse-time-

dependent plasticity. The connection characteristics

are also tightly linked with the orientation selectivity

of RFs [7]. STDP comprises two types: long-term

potentiation (LTP) and long-term depression (LTD)

[14]. The relationship between the sequence of firing

and the connection strength determines the detection

of image feature information by RFs.

(1) In the area of edges of the image, the presynaptic

and postsynaptic neurons produce synchronous

and positive discharge with high probability

under the LTP effect. At this time, the synaptic

connection is continuously strengthened, as

expressed in the following:

potentiationði; jÞ ¼ tpost(i; j)

� 1þ synapse(i; j)� e� tpreði;jÞ�tpostði;jÞj j
� �

;

tpre\tpost;

ð1Þ

where potentiation(i, j) represents the decoding

information of the image features after the LTP

effect in STDP, synapse(i, j) indicates the

strength of the synapse connection.

(2) In the none-edge area, the presynaptic and

postsynaptic neurons produce non-synchronous

and high-probability non-positive discharges

under the LTD effect. At this point, the synaptic

connections are constantly suppressed,

expressed by the following:

depressionði; jÞ ¼ tpost(i; j)

� 1� synapse(i; j)� e� tpreði;jÞ�tpostði;jÞj j
� �

; else,

ð2Þ

where depression(i, j) represents image edge

decoding information after the LTD effect in STDP.

Concerning Eqs. (1) and (2), tpre\ tpost indicates that

pre- and postsynaptic neurons are positively dis-

charged. Reversely, tpre C tpost indicates that pre- and

postsynaptic neurons are non-positively discharged.

The results of STDP rule are shown in Fig. 7.

Fig. 7 STDP rule. The potentiation and depression distribution

of weights. The x-axis indicates the results of potentiation(i,
j) and depression(i, j); the y-axis, the calculation times, which

means the higher value of the y-axis indicates that the higher

frequency of appearance of the corresponding x-axis value
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To this end, considering Fig. 5, in order to advance

research on the changes of visual information from V1

to V2 and the mechanism of visual information

processing of V2, we designed a 6-layer feedforward

network model, which is a predictive model for visual

information changes in V2 (PMVICV2).

In our proposed model, layer 1 represents the

photoreceptor of the retina. The real world’s informa-

tion is transmitted to the photoreceptor after being

refracted by the lens and then converted into a

bioelectric signal. At this point, the size of the entire

image on the retina is denoted as A, which depends on

the specific experiment subjects. It is assumed that A

could be divided into M 9 N patches. We defined the

image information on the photoreceptor as I(i, j)

(i = 1, 2, 3, …, M; j = 1, 2, 3, …, N), then:

A ¼
XN
j¼1

XM
i¼1

Ii;j að Þ; ð3Þ

a ¼ Di� Dj: ð4Þ

Layer 2 represents the RFs of ganglion cells; we

defined the visual information in ganglion cells as I2(i,

j), each RF of ganglion cells defined as a. Being

processed by horizontal cells and bipolar cells, I2(i, j)

is the visual information transmitted by I1(i, j) to the

ganglion cells. One ganglion cell will obtain signal

inputs of 103 * 104 photoreceptors [56]. Suppose that

the RF of a ganglion cell, shown in Fig. 2, can be

represented by DOG (i, j), the antagonism of the outer

circle and inner circle can be described by the

difference of two Gaussians (DOG) [49]

DOG i; jð Þganglion cell¼ DOG1 i; jð Þ � DOG2 i; jð Þ

¼ kce
�i2þj2

2r2c

� �
- kse

�i2þj2

2r2s

� �
; ð5Þ

where DOG1 represents the inner circle, and DOG2

represents the outer circle. kc and ks, respectively,

indicate the maximum sensitivity of the central and

peripheral areas of the RF. rc and rs represent the

radius concerning the maximum sensitivity of central

and peripheral areas of the RF when they drop to e-1.

Each Ii, j(a) contains the visual information of the

corresponding RF and feature information of some

images. In other words, the RF of each ganglion cell

has the corresponding Ii, j(a). Such neural mapping

exists extensively in the visual system. A patch

Ii, j(a) activates the corresponding ganglion cell and

triggers its higher-frequency action potential.

At this point, the visual information on the RF of the

ganglion cell is I2(i, j), shown in the following:

I2 i; jð Þ ¼ I1 � DOGganglion cell

� �
i; jð Þ: ð6Þ

In layer 3, the ganglion cells in layer 2 have

processed the visual information, which is transmitted

to LGN. The RF of LGN is divided into two

antagonistic areas, of which the structure and function

are very similar to that of the ganglion cell [14]. To this

end, we still used the DOG model for representation.

Then, we supposed the visual information on the RF of

LGN in layer 3 is I3(i, j), which is mapped from layer

2, shown in the following:

I3 i; jð Þ ¼ I2 � DOGLGNð Þ i; jð Þ: ð7Þ

In layer 4, the simple cells in V1 have orientation

selectivity for the features on the image [28], that is,

they have a strong selectivity for features with specific

orientations, at which point the corresponding neuron

responds strongest in the orientation, shown as a two-

dimensional Gabor function [49]:

Gk;h;w;r;c i; jð Þ ¼ e�
i02þc2 j02

2r2 cos 2p
i0

k
þ w

� �
; ð8Þ

i0 ¼ i cos hþ j sin h
j0 ¼ �i sin hþ j cos h

�
: ð9Þ

Equation (8) is the product of a Gaussian function

and a cosine function. k is the wavelength, which

directly affects the filter scale of the filter. h is the

direction of the filter. w is the phase shift of the tuning

function. c is the ratio of spatial vertical to horizontal.

r is the variance of the Gaussian filter.

The RFs in V1 prefer different orientations [14]; we

sampled every 60� with 3 orientations of RFs,

considering that the V1 area is not the emphasis of

the current research. Then, we supposed the visual

information on the RFs of the simple cells in layer 4 is

I4(i, j), which came after the neural mapping of layer 3;

we also defined the RF of V1 asGaborv1, shown in the

following:

I4 i; jð Þ ¼ I3 � Gaborv1ð Þ i; jð Þ: ð10Þ

In layer 5, complex cells originate from the inputs

of simple cells at the same orientation but at different
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locations, which means the abstraction of RFs of

simple cells. Since the RFs of complex cells have no

clear antagonist area, there is no strict requirement for

the location as the orientation selection. Simple cells

and complex cells can sometimes be converted

functionally. The image information on layer 5 can

be written as I5(i, j). Therefore, I5(i, j) and I4(i, j) are

considered the same function.

In layer 6, the visual information on the RFs in V2 is

the neural mapping from layer 5, recorded as I6(i, j).

The RF in V2 is composed of two RFs in V1 (defined

as Gaborv101 þ Gaborv102

� �
i; jð Þ). Each RF’s preferred

orientation could be the same or different. The RF in

V2 is selective for the angle profile, shown in the

following equation:

I6 i; jð Þ ¼ I5 � Gaborv101 þ Gaborv102

� �� �
i; jð Þ;

ð11Þ

where the visual information reaches layer 5, that

is, the neural mapping from V1 to V2, I5(i, j) is

equivalent that a series of stimuli react to the different

RFs in V2. Therefore, the RFs in V2 extract the

corresponding features according to the different

strengths of the stimuli. To this end, the model of

Layer 6 is composed of two RFs in V1 with the

preferred orientation. Such a combination forms an

angle, the value range of which is [0, 360] in degree.

Also, each angle has an orientation, the value range of

which is also [0, 360]. The unit is degree. The details

can be seen in Fig. 8.

The RFs in V2 have different preferred angles

according to varying degrees and orientations. In the

current study, each 30� can be used as the sample

angle. As such, 12 angles and 12 orientations are

shown in Fig. 9.

According to the first row of Fig. 9, each angle has

two sides, which are composed of V1; one of them is

fixed, the other is rotated. These two form the shape

with different degrees. In the first column, the shape of

the angle is fixed; the rotation forms different orien-

tations of angles. Each side of the angle is an RF in V1,

which has a specific orientation preference. Among

the RFs in V2, angles in the first column are 0, as

shown in (a) of Fig. 9. The second column of RFs has

angles with 30�, as shown in (b) of Fig. 9. Angles in

the third column are 60�, as shown in (c) of Fig. 9. The
fourth has angles with 330�, as shown in (d) of Fig. 9.

The angles with different degrees and orientations

in layer 6 are defined as follows:

(1) angledegree (see (a) of Fig. 8) is indicated in

Eq. (12):

angledegreejangledegree ¼ 30� � n; n 2 0; 11½ � and n 2 N
	 


:

ð12Þ

(2) angleorientation (see (b) of Fig. 8) is shown in

Eq. (13):

angleorientationjangleorientation ¼ 15� � n; n 2 0; 23½ � and n 2 Nf g:

ð13Þ

On the effect of visual information stimuli in layer

5, layer 6 performs convolution calculation with RFs

at varying angles and orientations in V2 and finally

obtains RFs responses in V2.

90°

180°

270°

90°

180°

270°

V11

V12

angledegree angleorientation

a b

V11

V12

orientationV1

orientationV2

Fig. 8 The RFs in V2. Two RFs in V1, which exhibit different

orientation selectivity, combine an RF of V2 with varying

orientations. a. Showing the angledegree in the subfigure that we

defined. b. Showing the angleorientation in the subfigure that we

defined. In the following text, we used ‘‘orientation’’ to replace

‘‘orientationv2.’’
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3 Results and analyses

3.1 Simulation

According to the description of the above PMVICV2

model, the following four diverse scenarios are used as

experimental examples. In the V1 area, the sampling

angle is 60�; in the V2 area, the sampling angle is 30�,
60�, 90�, 120�, 150�, 180�, sequentially. In addition, as
shown in each row of Fig. 9 that contains 4 RFs with

different orientations, we used four sampling orienta-

tions in the following experiments. The phenomenon

of dynamic degradation exists on the pathway of

photoreceptor-ganglion cell-LGN-V1 and the path-

way of V1–V2. Each pixel of images was encoded in

one byte.

Fig. 9 The RFs (two gray sides, each of which is the RF of V1)

in V2 with 12 angles and 12 orientations. a. The angles of RFs
equal 0� in different orientations. The dark gray indicates two

sides of RFs are overlapped. b. The angles of RFs equal 30� in

different orientations. c. The angles of RFs equal 60� in different
orientations. d. The angles of RFs equal 330� in different

orientations
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3.1.1 Experiment of the portrayal of Lena

As shown in the (b) of Fig. 10, the picture of Lena

(original image), of which resolution was 512 9 512,

was utilized as the experimental object. The optical

signal reached the photoreceptors, the visual informa-

tion of which was 2.10 9 106 bits. Subsequently, the

visual information was processed by cones and rods

and then reached ganglion cells for processing. Since

the RFs in ganglion cells had antagonistic properties

that are highly sensitive to the change of light and

dark, the edge feature information of the image could

be detected. The dynamic degradation occurred after

the visual information was transmitted to LGN for

processing. Simple cells with different preferred

orientations are defined as h60�,120�,180�, which actively
responded to the image information and recognized

the edge feature information in the specific orienta-

tion. The visual information in V1 was 1.34 9 103

bits, 1.07 9 103 bits, and 1.14 9 104 bits, respec-

tively, which was about 6.39 9 10–4 times,

5.11 9 10–4 times, and 5.43 9 10–3 times that of the

photoreceptors. The visual information in V1 was

obtained by the processing of RFs of ganglion cells

and those of LGN. Finally, the visual information was

transmitted from V1 to V2. The RFs in V2 have a

strong response to the different corresponding angles

and orientations, which can identify the image feature

information. These angles are denoted as angledegree,

shown in Eq. (14):

angledegreejangledegree ¼ 30� � n; n 2 1; 6½ � and n 2 N
	 


:

ð14Þ

The image after processing is shown in (a) of

Fig. 10. The visual information in V2 is shown in

Table 1

The comparison of visual information between

photoreceptors and V2, shown as the following:

From the above analysis, considering the image of

Lena as the experimental object, we have indicated the

changes of visual information from the retina to V1

and V2, shown in (b) of Fig. 10. It can be recognized

that the average value of visual information of

photoreceptors was 2.10 9 106 bits; the average value

of V1 was 4.60 9 103 bits; the average value of V2

was 4.26 9 102 bits. These values demonstrated that

the visual information degrades significantly from

photoreceptors to V1. The visual information of V1

was 2.20 9 10–3 times that of the photoreceptor.

Nevertheless, during the processing from V1 to V2,

the dynamic degradation already existed but was

scanty; the visual information of V2 was 9.25 9 10–2

times that of V1.

3.1.2 Experiment of the island of Manhattan

As shown in (a) of Fig. 11, the Manhattan image

(original image), of which resolution was

1023 9 674, was used as the experimental object.

The photoreceptor received the optical signal, the

a b

Original image V1 V2(30°) V2(60°)

V2(90°) V2(120°) V2(150°) V2(180°)

Fig. 10 Lena image and PMVICV2 model responses. a. Lena
original image and the processed image in V1(60�) and V2 (30�,
60�, 90�, 120�, 150�, 180� with the same orientation). b. The
results of a: dynamic degradation of Lena image processed by

PMVICV2 model. The line that represents the visual informa-

tion of V1 and V2 is very close to the x-axis. To illustrate the y-
axis values of the points of V1 and V2 are unequal to 0, we have

zoomed in to clarify, presented in two small boxes
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visual information of which was 5.52 9 106 bits.

Afterward, the visual information was processed by

cones and rods and then passed to ganglion cells for

processing. As the RFs in ganglion cells had antag-

onistic properties, the edge features of the image could

be detected. The dynamic degradation occurred after

the visual information was transmitted to LGN for

processing. Simple cells with different preferred

orientations are defined as h60�,120�,180�, which actively
responded to the image information and recognized

the edge feature information in the specific orienta-

tion. The visual information in V1 was 3.52 9 103

bits, 3.36 9 103 bits, and 6.62 9 104 bits, respec-

tively, which was about 6.39 9 10–4 times,

6.09 9 10–4 times, and 1.20 9 10–2 times that of the

photoreceptors. The visual information in V1 was

obtained by the processing of RFs of ganglion cells

and those of LGN. Finally, the visual information was

transmitted fromV1 to V2. The RFs in V2 had a strong

response to the different corresponding angles and

a b

Original image V1 V2(30°) V2(60°)

V2(90°) V2(120°) V2(150°) V2(180°)

Fig. 11 Manhattan image and PMVICV2 model responses.

a. Manhattan original image and the processed image in V1(60�)
and V2 (30�, 60�, 90�, 120�, 150�, 180� with the same

orientation). b. The results of a: dynamic degradation of

Manhattan image processed by PMVICV2 model. The line that

represents the visual information of V1 and V2 is very close to

the x-axis. To illustrate the y-axis values of the points of V1 and
V2 are unequal to 0, we have zoomed in to clarify, presented in

two small boxes

Table 2 Relationship between photoreceptors and V2 of the experiment of Lena

Orientation\degraded rate\angledegree 30� 60� 90� 120� 150� 180�

1 3.02 9 10–4 4.41 9 10–5 5.65 9 10–6 1.42 9 10–5 1.27 9 10–4 5.89 9 10–4

2 1.27 9 10–4 1.42 9 10–5 5.65 9 10–6 4.41 9 10–5 3.02 9 10–4 8.64 9 10–4

3 3.02 9 10–4 4.41 9 10–5 5.65 9 10–6 1.42 9 10–5 1.27 9 10–4 5.89 9 10–4

4 1.27 9 10–4 1.42 9 10–5 5.65 9 10–6 4.41 9 10–5 3.02 9 10–4 8.64 9 10–4

Average 2.15 9 10–4 2.92 9 10–5 5.65 9 10–6 2.92 9 10–5 2.15 9 10–4 7.27 9 10–4

Table 1 Visual

information in V2 of the

experiment of Lena (Unit:

bits)

Orientation\angledegree 30� 60� 90� 120� 150� 180�

1 6.33 9 102 92.5 11.85 29.75 2.66 9 102 1.23 9 103

2 2.66 9 102 29.75 11.85 92.5 6.33 9 102 1.81 9 103

3 6.33 9 102 92.5 11.85 29.75 2.66 9 102 1.23 9 103

4 2.66 9 102 29.75 11.85 92.5 6.33 9 102 1.81 9 103

Average 4.50 9 102 61.13 11.85 61.13 4.50 9 102 1.52 9 103
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orientations denoted as angledegree, which can identify

the image feature information, shown in Eq. (14). The

processed image is shown in (a) of Fig. 11. Lastly, the

visual information in V2 is shown in Table 3:

The comparison of visual information between

photoreceptors and V2 is shown in the following:

From the above analysis, taking the image of the

island of Manhattan as the experimental object, we

have indicated that the visual information changes

from the retina to V1 and V2, as shown in (b) of

Fig. 11. It can be recognized that the average value of

visual information of photoreceptors was 5.52 9 106

bits; the average value of V1 was 2.43 9 104 bits; the

average value of V2was 1.65 9 103 bits. These values

demonstrated that the visual information degraded

significantly from photoreceptors to V1. The visual

a b

Original image V1 V2(30°) V2(60°)

V2(90°) V2(120°) V2(150°) V2(180°)

Fig. 12 Sydney image and PMVICV2 model responses.
a. Sydney original image and the processed image in V1(60�)
and V2 (30�, 60�, 90�, 120�, 150�, 180� with the same

orientation). b. The results of a: dynamic degradation of Sydney

image processed by PMVICV2 model. The line that represents

the visual information of V1 and V2 is very close to the x-axis.
To illustrate the y-axis values of the points of V1 and V2 are

unequal to 0, we have zoomed in to clarify, presented in two

small boxes

Table 4 Relationship between photoreceptors and V2 of the experiment of Manhattan

Orientation\degraded rate\angledegree 30� 60� 90� 120� 150� 180�

1 3.61 9 10–4 9.20 9 10–5 2.87 9 10–5 8.95 9 10–5 4.80 9 10–4 8.56 9 10–4

2 4.80 9 10–4 8.95 9 10–5 2.87 9 10–5 9.20 9 10–5 3.61 9 10–4 6.27 9 10–4

3 3.61 9 10–4 9.20 9 10–5 2.87 9 10–5 8.95 9 10–5 4.80 9 10–4 8.56 9 10–4

4 4.80 9 10–4 8.95 9 10–5 2.87 9 10–5 9.20 9 10–5 3.61 9 10–4 6.27 9 10–4

Average 4.20 9 10–4 9.07 9 10–5 2.87 9 10–5 9.07 9 10–5 4.20 9 10–4 7.41 9 10–4

Table 3 Visual information in V2 of the experiment of Manhattan (Unit: bits)

Orientation\angledegree 30� 60� 90� 120� 150� 180�

1 1.99 9 103 5.07 9 102 1.58 9 102 4.94 9 102 2.65 9 103 4.72 9 103

2 2.65 9 103 4.94 9 102 1.58 9 102 5.07 9 102 1.99 9 103 3.46 9 103

3 1.99 9 103 5.07 9 102 1.58 9 102 4.94 9 102 2.65 9 103 4.72 9 103

4 2.65 9 103 4.94 9 102 1.58 9 102 5.07 9 102 1.99 9 103 3.46 9 103

Average 2.32 9 103 5.01 9 102 1.58 9 102 5.01 9 102 2.32 9 103 4.09 9 103
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information in V1 was 4.41 9 10–3 times that in the

photoreceptor. Nevertheless, during the processing

from V1 to V2, the dynamic degradation already

existed but was scanty; the visual information in V2

was 6.77 9 10–2 times that in V1.

3.1.3 Experiment of the harbor of Sydney

As shown in (a) of Fig. 12, the Sydney image (original

image), the resolution of which is 1663 9 934, was

used as the experimental object. The photoreceptor

received the optical signal of the visual information,

which was 1.24 9 107 bits. Subsequently, the visual

information was processed by cones and rods, and then

passed to ganglion cells. The RFs in ganglion cells

easily detected the edge features of the image. The

dynamic degradation occurred after the visual infor-

mation was transmitted to LGN. Simple cells with

different preferred orientations are defined as

h60�,120�,180�, the visual information of which in V1

was 7.17 9 103 bits, 6.83 9 103 bits, and 2.02 9 104

bits, respectively, which was about 5.77 9 10–4 times,

5.50 9 10–4 times, and 1.63 9 10–3 times that of the

photoreceptors. The visual information in V1 was

obtained by the processing of RFs of ganglion cells

and LGN. Finally, the visual information was

transmitted from V1 to V2. The RFs in V2 had a

strong response to the different corresponding angles

and orientations denoted as angledegree, which can

identify the image feature information, as shown in

Eq. (14). The processed image is shown in (a) of

Fig. 12. Lastly, the visual information in V2 is shown

in Table 5

The comparison of visual information between

photoreceptors and V2 is shown in the following:

From the above analysis, taking the image of

Sydney as the experimental object, we have shown

that visual information changes from the retina to V1

and V2, as illustrated in (b) of Fig. 12. It can be

recognized that the average value of visual informa-

tion of photoreceptors was 1.24 9 107 bits; the

average value of V1 was 1.14 9 104 bits; the average

value of V2 was 4.26 9 103 bits. These values

demonstrated that the visual information degrades

significantly from photoreceptors to V1. The visual

information in V1 was 9.17 9 10–4 times that in the

photoreceptor. Nevertheless, during the processing

from V1 to V2, the dynamic degradation was scanty;

the visual information in V2 was 3.74 9 10–1 times

than that of V1.

Table 6 Relationship between photoreceptors and V2 of the experiment of Sydney

Orientation\degraded rate\angledegree 30� 60� 90� 120� 150� 180�

1 2.61 9 10–4 7.51 9 10–5 2.80 9 10–5 2.09 9 10–4 7.59 9 10–4 1.02 9 10–3

2 7.59 9 10–4 2.09 9 10–4 2.80 9 10–5 7.51 9 10–5 2.61 9 10–4 4.33 9 10–4

3 2.61 9 10–4 7.51 9 10–5 2.80 9 10–5 2.09 9 10–4 7.59 9 10–4 1.02 9 10–3

4 7.59 9 10–4 2.09 9 10–4 2.80 9 10–5 7.51 9 10–5 2.61 9 10–4 4.33 9 10–4

Average 5.10 9 10–4 1.42 9 10–4 2.80 9 10–5 1.42 9 10–4 5.10 9 10–4 7.24 9 10–4

Table 5 Visual information in V2 of the experiment of Sydney (Unit: bits)

Orientation\angledegree 30� 60� 90� 120� 150� 180�

1 3.24 9 103 9.33 9 102 3.48 9 102 2.60 9 103 9.43 9 103 1.26 9 104

2 9.43 9 103 2.60 9 103 3.48 9 102 9.33 9 102 3.24 9 103 5.37 9 103

3 3.24 9 103 9.33 9 102 3.48 9 102 2.60 9 103 9.43 9 103 1.26 9 104

4 9.43 9 103 2.60 9 103 3.48 9 102 9.33 9 102 3.24 9 103 5.37 9 103

Average 6.34 9 103 1.76 9 103 3.48 9 102 1.76 9 103 6.34 9 103 9.00 9 103
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3.1.4 Experiment of Mount Fuji

As shown in (a) of Fig. 13, the Mount Fuji image

(original image), of which the resolution was

3840 9 2160, was used as the experimental object.

The photoreceptor received the optical signal, of

which the visual information was 6.64 9 107 bits.

Subsequently, the visual information was processed

by cones and rods and then passed to ganglion cells,

and the edge features of the image can be detected. The

dynamic degradation occurred after the visual infor-

mation was transmitted to LGN. Simple cells with

different preferred orientations are defined as

h60�,120�,180� as well. The visual information in V1

was 22.4 bits, 26.9 bits, and 5.83 9 102 bits, respec-

tively, which was about 3.38 9 10–7 times,

4.05 9 10–7 times, and 8.79 9 10–6 times that of the

photoreceptors. The visual information in V1 was

a b

Original image V1 V2(30°) V2(60°)

V2(90°) V2(120°) V2(150°) V2(180°)

Fig.13 Mount Fuji image and PMVICV2 model responses.
a. Mount Fuji original image and the processed image in

V1(60�) and V2 (30�, 60�, 90�, 120�, 150�, 180� with the same

orientation). b. The results of a: dynamic degradation of Mount

Fuji image processed by PMVICV2 model. The line that

represents the visual information of V1 and V2 is very close to

the x-axis. To illustrate the y-axis values of the points of V1 and
V2 are unequal to 0, we have zoomed in to clarify, presented in

two small boxes

Table 7 Visual

information in V2 of the

experiment of Mount Fuji

(Unit: bits)

Orientation\angledegree 30� 60� 90� 120� 150� 180�

1 5.71 9 102 0.9 0.8 1.25 5.80 9 102 3.50 9 103

2 5.80 9 102 1.25 0.8 0.9 5.71 9 102 3.21 9 103

3 5.71 9 102 0.9 0.8 1.25 5.80 9 102 3.50 9 103

4 5.80 9 102 1.25 0.8 0.9 5.71 9 102 3.21 9 103

Average 5.76 9 102 1.075 0.8 1.075 5.76 9 102 3.35 9 103

Table 8 Relationship between photoreceptors and V2 of the experiment of Mount Fuji

Orientation\degraded rate\angledegree 30� 60� 90� 120� 150� 180�

1 8.61 9 10–6 1.36 9 10–8 1.21 9 10–8 1.88 9 10–8 8.74 9 10–6 5.28 9 10–5

2 8.74 9 10–6 1.88 9 10–8 1.21 9 10–8 1.36 9 10–8 8.61 9 10–6 4.83 9 10–5

3 8.61 9 10–6 1.36 9 10–8 1.21 9 10–8 1.88 9 10–8 8.74 9 10–6 5.28 9 10–5

4 8.74 9 10–6 1.88 9 10–8 1.21 9 10–8 1.36 9 10–8 8.61 9 10–6 4.83 9 10–5

Average 8.67 9 10–6 1.62 9 10–8 1.21 9 10–8 1.62 9 10–8 8.67 9 10–6 5.06 9 10–5
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obtained by the processing of RFs of ganglion cells

and those of LGN. Finally, the visual information was

transmitted fromV1 to V2. The RFs in V2 had a strong

response to the different corresponding angles and

orientations denoted as angledegree, identifying the

image feature information, as shown in Eq. (14). The

processed image is displayed in (a) of Fig. 13. Lastly,

the visual information in V2 is shown in Table 7

The comparison of visual information between

photoreceptors and V2 is shown in Table 8

From the above analysis, drawing on the image of

Mount Fuji, we have indicated that visual information

changes from the retina to V1 and V2, as shown in

(b) of Fig. 13. It can be recognized that the average

value of visual information of photoreceptors was

6.64 9 107 bits; the average value of V1 was

2.11 9 102 bits; the average value of V2 was

7.51 9 102 bits. These values demonstrated that the

visual information degraded significantly from pho-

toreceptors to V1. The visual information in V1 was

3.18 9 10–6 times that in the photoreceptor.

a

c

b

d

Fig.14 Results and analyses of visual information dynamic

degradation of four experiments. a. Showing visual information

of photoreceptors. b. Showing visual information of V1.

c. Showing visual information of V2. d. According to a–c, we
drew a subfigure d, which shows the visual information dynamic

degradation of photoreceptor-V1–V2. The lines that represent

the visual information of V1 and V2 are all overlapped and very

close to the x-axis. To illustrate the y-axis values of the points of
V1 and V2 are unequal to 0, we have zoomed in to clarify,

presented in three small boxes
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Nevertheless, during the processing from V1 to V2,

the visual information in V2 remained constant, which

was 3.57 times that of V1.

Results and analyses.

Based on the above experimental images, the visual

information of photoreceptors from the PMVICV2

model was 2.10 9 106 bits, 5.52 9 106 bits,

1.24 9 107 bits, and 6.64 9 107 bits, respectively.

The average value of those was 2.16 9 107 bits, as

shown in (a) of Fig. 14.

After transmitting the visual information to the RFs

of ganglion cells and LGN and V1 area, the data were

calculated as 4.60 9 103 bits, 2.43 9 104 bits,

1.14 9 104 bits, and 2.11 9 102 bits, respectively.

The average value was 1.01 9 104 bits, which is

shown in (b) of Fig. 14.

Ultimately, the processed visual information was

transmitted from V1 to V2, of which the value was

4.26 9 102 bits, 1.65 9 103 bits, 4.26 9 103 bits,

7.51 9 102 bits, respectively, and the average value

was 1.77 9 103 bits, shown in (c) of Fig. 14.

Figure (a)–(c) of Fig. 14 shows that the visual

information changes of the PMVICV2 model in these

four scenarios could be obtained, as shown in (d) of

Fig. 14 and Table 9. The visual information transmit-

ted to V2 was 8.19 9 10–5 times that to photoreceptor

and 0.18 times that to V1; the degradation percentage

was 99.992% (3 digits after the decimal point to ensure

accuracy). Despite the different test images, there

were no significant differences across the experimen-

tal results. Relatively, it can be concluded that the

significant dynamic degradation existed in the

photoreceptor to V1 during the pathway of photore-

ceptor-ganglion cell-LGN-V1–V2. In the subsequent

process of transmitting from V1 to V2, there had only

a short dynamic degradation. Taken the analyses

together, the significant dynamic degradation existed

in the pathway of photoreceptor-ganglion cell-LGN-

V1, which exhibited substantial differences between

light and dark were retained by convolution calcula-

tion. Then, the edge signal of the image was obtained.

In the process of visual information processing of the

pathway of V1–V2, although the RFs in V2 had a

strong response to the corner, they did not further

extract the image feature, which accounted in part for

the small dynamic degradation.

4 Conclusions

Taking into account energy metabolism, the brain

capacity is actually limited in terms of fully transmit-

ting visual information into the visual cortex, leading

inevitably to visual information degradation. Then,

how could the brain perceive the environment effi-

ciently? Chumbley and Friston contend that surprise,

captured by prediction error (defined as the difference

between observed and expected quantities), drives

learning [9, 12]. Our previous research showed one

reason for degradation, which is related to prediction

error, is that retina-LGN-V1 contains the convolution

calculation, which acts to extract the pivotal visual

information, ignore the unnecessary, thus effectively

saving brain power consumption. The findings served

Table 9 Visual information changes in four experimental scenarios from PMVICV2 model

Scene\data Photoreceptor/

bits

V1/bits V2/bits Photoreceptor

to V2

V1 to V2 Degradation percentage (photoreceptor

to V2) (%)

Lena 2.10 9 106 4.60 9 103 4.26 9 102 2.03 9 10–4 9.25 9 10–2 99.980

Manhattan 5.52 9 106 2.43 9 104 1.65 9 103 2.99 9 10–4 6.77 9 10–2 99.970

Sydney 1.24 9 107 1.14 9 104 4.26 9 103 3.43 9 10–4 0.37 99.966

Fuji 6.64 9 107 2.11 9 102 7.51 9 102 1.13 9 10–5 3.57 99.999

Average 2.16 9 107 1.01 9 104 1.77 9 103 8.19 9 10–5 0.18 99.992
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as a further elaboration of the ‘‘prediction error’’

proposed by Friston. Building on this discovery, we

were driven to further explore the visual information

degradation or changes in V1–V2. As a result, in

undertaking this study, we sought to shed light on the

mechanism by which the visual information is mapped

from V1 to V2. Through establishing an original

PMVICV2 model and conducting a quantitative

analysis, we reached four major conclusions stated

as follows:

(1) A quantitative description of visual information

degradation in V1–V2.

According to the results of the PMVICV2model,

we achieved Table 9, which shows the visual

information in V2 is 8.19910-5 times that of the

photoreceptor and 0.18 times that of V1. It yields

an exact quantitative interpretation of the visual

information dynamic degradation in V2 by

developing and experimenting with a new com-

putational model. In doing so, it complements

previous research wherein the neuroscientific

experiment of the dynamic degradation focused

chiefly on V1, which promotes a more accurate

and specific understanding of the way visual

information is encoded and managed in V2.

(2) A strong response to the ‘‘corner’’ information,

but a slight degradation in V1–V2.

While moving from low-order to high-order

visual signal processing, the visual information

degrades significantly from the pathway of

photoreceptor-ganglion cell-LGN-V1 [41, 60].

However, according to (d) of Figure 13 and

Table 9, the dynamic degradation has been

scarcely observed during the mapping from V1

to V2. Whereas the RFs in V2 exhibit a strong

response to the ‘‘corner’’ information [17], they

do not further extract the image feature infor-

mation. This demonstrates that a significant

amount of dynamic degradation only has

occurred on the pathway of photoreceptor-gan-

glion cell-LGN-V1, leaving limited visual infor-

mation existing in V1 for the RFs in V2 to

encode. This is a new discovery that has never

been noticed before.

(3) Convolution calculation in V1–V2.

During the visual information processing [26],

the convolution calculation can be found on the

pathway of photoreceptor-ganglion cell-LGN-

V1 [60]. Moreover, the anatomical architecture

between V1 and V2: one RF of V2 is weighted

by two RFs of V1 [17], suggesting that the

convolution calculation also exists in V1–V2.

(4) STDP rule making a more effective response to

‘‘corner’’ information.

As we mentioned in Fig. 7, STDP rule intensifies

the edge of the image and moderates the non-edge of

the image. Therefore, the RFs of V2 can effectively

respond to and encode ‘‘corner’’ information about the

real world, dealing with the scarcity of visual infor-

mation mapped from V1.

Despite the quantitative calculation and interpreta-

tion of the visual information changes in V1–V2, the

study also has limitations. Structurally, we did not take

all the details of retina-LGN-V1–V2 into account due

to the fact that the human visual system is complicated

(see Fig. 4) and that the visual information processing

mechanisms have not been clearly uncovered [41, 60].

Therefore, we concentrated on the basic contour

features such as edge and corner, which are considered

highly relative to the degradation. Furthermore, we

have not counted the top-down predictions since the

novel visual information of the real-world mapping

from the retina to V2, which involves degradation, is a

bottom-up transmission. According to Chumbley and

Friston [9, 12], bottom-up inputs make prediction

errors, which originate from the novel visual infor-

mation and are linked to degradation. The mutual

exchange of bottom-up prediction errors and top-down

predictions from higher-order areas proceeds until

prediction error is minimized. It means the degrada-

tion during the mapping from the retina to higher-

order areas can be minimized likewise. This complex

operative mechanism merits continued investigation

in our future research.
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