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Abstract Although deterministic compartmental
models are useful for predicting the general trend of
a disease’s spread, they are unable to describe the ran-
dom daily fluctuations in the number of new infections
and hospitalizations, which is crucial in determining
the necessary healthcare capacity for a specified level
of risk. In this paper, we propose a stochastic SEIHR
(sSEIHR) model to describe such random fluctuations
and provide sufficient conditions for stochastic stabil-
ity of the disease-free equilibrium, based on the basic
reproduction number that we estimated. Our extensive
numerical results demonstrate strong threshold behav-
ior near the estimated basic reproduction number, sug-
gesting that the necessary conditions for stochastic sta-
bility are close to the sufficient conditions derived.
Furthermore, we found that increasing the noise level
slightly reduces the final proportion of infected individ-
uals. In addition,we analyzeCOVID-19 data fromvari-
ous regions worldwide and demonstrate that by chang-
ing only a few parameter values, our sSEIHR model
can accurately describe both the general trend and the
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random fluctuations in the number of daily new cases
in each region, allowing governments and hospitals to
make more accurate caseload predictions using fewer
compartments and parameters than other comparable
stochastic compartmental models.
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1 Introduction

Over the past year, the coronavirus disease 2019
(COVID-19) pandemic has placed enormous stress
on healthcare systems worldwide. The severity of the
pandemic, given the fact that it takes a long time to
develop effective vaccines, has imposed tremendous
pressures and responsibilities onto the healthcare sys-
tems in all countries and regions, especially those with
limitedmedical resources such as available staff, equip-
ment and facilities. In particular, differing from most
infectious diseases found to date, COVID-19 is espe-
cially violent, aggressive and fast-spreading, and even
among those deemed “recovered” from the disease,
there are many for which adverse effects have lin-
gered for months after the initial symptoms [1]. Mean-
while, failure tomeet the demand for hospital resources
can lead to resource saturation and a growing backlog
of infectious patients requiring hospitalization, in turn
increasing the total transmission rate due to unisolated
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infectious individuals and causing an adverse feedback
loop.

1.1 Related studies on COVID-19

Due to an incomplete knowledge of COVID-19 dur-
ing the early stages, scientists used existing models to
forecast the pandemic andmade inaccurate predictions.
Fortunately, based on historical data, people can still
make relatively accurate predictions by applying some
kinds of model-free methods [2,3]. However, to gener-
ate policy-relevant insights into the nonpharmaceutical
interventions, people still need to understand the phys-
ical principles of the pandemic. Since the clinical data
of COVID-19 have been carefully studied [4], scien-
tists now canmakemore accurate epidemic predictions
using corresponding mathematical models [5,6]. Ref-
erence [7] presents the details of three regional-scale
models for predicting and estimating the trend of the
pandemic. We also introduced a compartmental model
andmade an accurate trend forecasting onHongKong’s
COVID-19 pandemic [8].

To predict the number of cases in a region and
the corresponding healthcare demands, epidemiolog-
ical models are very useful and have been constructed
to describe the spread of diseases like COVID-19. In
particular, compartmental models, which track the evo-
lution of the number or proportion of the individuals
in each disease state (susceptible, infected, removed,
etc.) using a system of ordinary or stochastic differen-
tial equations, have been developed for nearly a century
and have proved effective and useful [9,10].

1.2 Contributions of this paper

In this paper, we develop a stochastic version of the
modified SEIHR compartmental model established
in [8], which allows one to accurately model the ran-
domfluctuations in the number of daily newcases in the
COVID-19 epidemic process. We prove sufficient con-
ditions on the parameters of the new stochastic SEIHR
(sSEIHR)model, such that the disease-free equilibrium
(DFE) of the system is stochastically stable, based on
an estimated basic reproduction number. Our exten-
sive numerical results demonstrate strong threshold
behavior near the estimated basic reproduction number,
suggesting that the necessary conditions for stochastic

stability are actually close to the sufficient conditions
established.

The proposed sSEIHR model is then fitted to pub-
lic COVID-19 data from various regions worldwide,
and it is demonstrated numerically that the model can
accurately describe both the general trend and the ran-
dom fluctuation in the number of daily new cases in
each region. The ability of our model to accommodate
a wide range of geographical regions and the varia-
tions in their various COVID-19 outcomes with mini-
mal adjustments to model parameters show the robust-
ness of our model. This can offer suggestions to gov-
ernments and hospitals for their making more accurate
caseload predictions compared to using a deterministic
model.

Recall that it has been demonstrated in [8] that
deterministic models using fewer compartments than
the SEIHR model, e.g., SIR or SEIR, fail to accu-
rately describe the evolution of COVID-19. Therefore,
except potentially bymeans of more complex compart-
ment interactions, both the SEIHR model developed
in [8] and the new sSEIHR model developed here are
the smallest compartmental models that can accurately
describe the number of active COVID-19 cases in a
region of concern. The model’s performance suggests
that it captures key hidden dynamical features of gen-
eral epidemics in general environments and deserves
independent investigation.

The true significance of this work is the generality
of the proposed model with few parameters. In par-
ticular, it is surprising to find that the model fits very
well to a number of regions/countries worldwide with
only a few parameter value changes, under the con-
sideration of the heterogeneity of economic and social
features, medical resources, quarantine measures, mit-
igation strategies and healthcare systems’ characteris-
tics in different regions/countries. In addition, within
each region, changes in non-pharmaceutical interven-
tion (NPI) strength over time can be expressed as a
single parameter, while all other parameters remaining
constant. The robustness and accuracy observed make
this model valuable for real applications.

2 Background and related work

Notation For vectors x = [x1, . . . , xn]T ∈ R
n , let Dn

denote the set {x ∈ R
n : ∑

i xi = 1} and D∗
n denote

the set {x ∈ [0, 1]n : ∑
i xi = 1}.
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2.1 The SIR model

A classical approach for epidemiological modeling is
to use compartmental models [9]. One such compart-
mental model is the SIR model, in which individu-
als are classified as susceptible (S), infected (I), or
removed (R) (either recovered or deceased). The num-
ber of individuals in each state, i.e., compartment, can
be described by a system of ordinary differential equa-
tions.

Let S(t), I(t), and R(t) denote the numbers of
susceptible, infected, and removed individuals, respec-
tively, and let N be the population size, at time t ≥ 0.
The system can then be described by

ẋ =
⎡

⎣
Ṡ
İ
Ṙ

⎤

⎦ =
⎡

⎣
μ − (β I + μ) S
βSI − (γ + μ) I

γ I − μR

⎤

⎦ (1)

with

x(t) =
⎡

⎣
S(t)
I (t)
R(t)

⎤

⎦ =
⎡

⎣
S(t)/N
I(t)/N
R(t)/N

⎤

⎦ ,

where x(t) ∈ D∗
3 , with I (0) > 0 and {β, γ, μ} > 0.

For this model, the basic reproduction number R0 =
β/(γ + μ) is important, which can be thought of as
the number of expected cases directly generated by an
infected individual, if all other individuals are suscep-
tible to infection. The epidemic is expected to persist
if R0 > 1, but will die out if R0 < 1.

It was proved [11] that for x(t) ∈ D∗
3 , R0 uniquely

determines whether the epidemic through system (1)
will die out (I (∞) = 0) or persist (I (∞) > 0), inde-
pendent of the nonzero initial conditions. This thresh-
old behavior demonstrates the power and usefulness
of compartmental modeling in the study of epidemic
spreading.

2.2 Other deterministic models

Numerical results shown in [8] demonstrate that the
SIR model is inadequate for describing COVID-19
dynamics. Reasons include:

– Like some other diseases, COVID-19 has a long
latent period. The SIR model does not take this
into account, however. As an improvement, SEIR
models have been developed to model the effect

of latent periods, where E represents an additional
“exposed” compartment [12].

– Ideally, symptomatic individuals are detected and
treated in hospitals, wherein they cannot infect the
general community. The SIR model does not take
this into account, either. As an improvement, the
SEIQR or SEIHRmodel creates an additional com-
partment for such individuals, with Q and H repre-
senting “quarantined” and “hospitalized”, respec-
tively [13].

– The COVID-19 pandemic has a large number of
asymptomatic infections. The SIR model certainly
does not take this into account. Therefore, some
other models seek to divide infected individu-
als into symptomatic and asymptomatic compart-
ments. Alternatively, the E compartment in the
SEIR model can be made infectious [8].

To account for the above issues simultaneously, in
[14] a nine-compartment model is constructed, and
the model is referred to as θ -SEIHRD, in which there
are two I, H, and R compartments, respectively. How-
ever, while the θ -SEIHRD model is useful for detailed
study of COVID-19 dynamics, it may not be desirable
to use such a complicated model for more effective
parameter fitting, especially if only the total number
of active cases is required to be estimated. This prob-
lem is resolved in [8], with a model having only five
compartments:

ẋ =

⎡

⎢
⎢
⎢
⎢
⎣

Ṡ
Ė
İ
Ḣ
Ṙ

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

− (ηE + α I ) S
(ηE + α I ) S − (β + ωE ) E

βE − (γ + ωI ) I
γ I − ωH H

ωE E + ωI I + ωH H

⎤

⎥
⎥
⎥
⎥
⎦

(2)

with x(t) ∈ D∗
5 , {α, η, ωE , ωI , ωH } > 0, and E(0) +

I (0) > 0, where S, E , I , H , and R denote the pro-
portions of susceptible, exposed, infectious, hospital-
ized, and removed individuals, respectively. Note that
in our model, “infectious” denotes symptomatic infec-
tious individuals, whereas “exposed” includes both
non-infectious exposed individuals and asymptomatic
infectious individuals. The parameter η allows for
asymptomatic transmissions, a key feature of COVID-
19 propagation. The meaning of each parameter in (2)
is given in Table 1. Further interpretation about the
compartments can be found in [8].
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Table 1 Meaning of parameters in the SEIHR model (2)

Parameter Definition

η Transmission rate of exposed individuals

α Transmission rate of (symptomatic) infected individuals

β Reciprocal of the mean latent period, i.e., the rate at which exposed individuals become symptomatic

γ Rate at which infected individuals are hospitalized

ωE Rate of recovery of non-hospitalized exposed individuals

ωI Rate of recovery of non-hospitalized infected individuals

ωH Rate of recovery of hospitalized individuals

Fig. 1 Graphical depiction of the dSEIHR model

The basic reproduction number of system (2) is

R0 = η

β + δE
+ αβ

(β + δE ) (γ + δI )
.

Hereafter, the term “deterministic SEIHRmodel” or
“dSEIHRmodel” refers to the one described by system
(2). A diagram showing the transitions of the dSEIHR
model (2) is given in Fig. 1. Note that (2) differs from
the traditional SEIHR model in that the exposed indi-
viduals may also be infectious.

To further improve the model ability in prediction,
especially over a long timeperiod, a factor p(t) ∈ [0, 1]
was introduced in [8] to denote the strength of various
interventions (a smaller p(t) implies a stronger inter-
vention), leading to

ẋ =

⎡

⎢
⎢
⎢
⎢
⎣

Ṡ
Ė
İ
Ḣ
Ṙ

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

−p(t) [ηE + α I ] S/N
p(t) [ηE + α I ] S/N − (β + ωE ) E

βE − (γ + ωI ) I
γ I − ωH H

ωE E + ωI I + ωH H

⎤

⎥
⎥
⎥
⎥
⎦

,

(3)

which is called the p-dSEIHR model.
For fitting the p-dSEIHR model (3) to real COVID-

19 data, piecewise constant functions were used in [8]
to approximate p (t). This matches the discrete nature
of governmental and healthcare policy, where occa-
sional policy changes will cause immediate changes
in p (t).

2.3 Stochastic epidemic models

While the deterministic models described in Sects. 2.1
and 2.2 have proven useful for estimating the cumula-
tive number of infections over time, these donot capture
the stochastic nature of disease propagation. This can
lead to healthcare dimensioning and resource alloca-
tion problems if the actual number of daily new cases is
significantly different from the predicted value, which
in turn can lead to resource saturation and a growing
backlog of infectious patients requiring hospitalization,
increasing the total transmission rate due to unisolated
infectious individuals and causing an adverse feedback
loop.

To describe random fluctuations, stochastic com-
partmental models are commonly used, where the sys-
tem in Sect. 2.2 is modified to be a drift-diffusion pro-
cess of the form:

dx = f (x, t) dt + g (x, t) dW (t) , (4)

where f and g are vector-valued functions and W (t)
denotes a Wiener process, i.e., derived by integrating
Gaussian white noise.

Examples of stochastic compartmentalmodels in the
literature include [15] and [16], which are the stochas-
tic analogs of the deterministic SIR and θ -SEIHRD
models described in Sect. 2.2, respectively. Notably, in
[15,16] it is assumed that the noise in these two stochas-
tic models is attributable to a single state transition, i.e.,
S → I in [15] and S → E in [16]. The same assumption
will be adopted for the new sSEIHR model.
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Fig. 2 Graphical depiction of the sSEIHRmodel (5), where ξ(t)
denotes Gaussian white noise

3 Stochastic SEIHR model with Gaussian white
noise

3.1 Model formulation

While the deterministic SEIHR model (2) addresses
the COVID-19 phenomena listed in Sect. 2.2, it can-
not model the random fluctuations in the number of
daily new cases. To address this issue, we therefore
convert system (2) to a stochastic SEIHR (sSEIHR)
model by introducing an additive random component
to the I → H transition, thus obtaining the following
drift-diffusion process:

dx = d

⎡

⎢
⎢
⎢
⎢
⎣

S(t)
E(t)
I (t)
H(t)
R(t)

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

− [ηE(t) + α I (t)] S(t)
[ηE(t) + α I (t)] S(t) − (β + ωE ) E(t)

βE(t) − (γ + ωI ) I (t)
γ I (t) − ωH H(t)

ωE E(t) + ωI I (t) + ωH H(t)

⎤

⎥
⎥
⎥
⎥
⎦
dt

+

⎡

⎢
⎢
⎢
⎢
⎣

0
0

−ϕ I (t)
ϕ I (t)
0

⎤

⎥
⎥
⎥
⎥
⎦
dW (t) , (5)

with x(t) ∈ D5 and E(0) + I (0) > 0, where W (t)
denotes a Wiener process obtained from integrating
Gaussian-distributed white noise. Here, in this model,
only the two terms I and H are considered having ran-
domfluctuations due, for example, to uncertain hospital
management.

A graphical depiction of system (5) is shown in
Fig. 2, where ξ(t) denotes Gaussian white noise.

3.2 Stability results

It is easy to see that (5) has a disease-free equilibrium
DFE = (1, 0, 0, 0, 0). Regarding the system stability
at this equilibrium, we have the following main result.

Theorem 1 If

R∗
0 = η

β + δE
+ αβ

(β + ωE )
(
γ + ωI + ϕ2

2

) < 1 ,

then the DFE (1, 0, 0, 0, 0) of system (5) is stochasti-
cally stable, in the sense defined in “Appendix A.”

For a proof of Theorem 1, see “Appendix B”.
Note that in the absence of noise, i.e., ϕ = 0, R∗

0
becomes the basic reproduction number of the corre-
sponding deterministic system (2).

3.3 Numerical results

Consider a system with a total population of N = 106,
where S, E , I, H, and R denote the numbers of sus-
ceptible, exposed, infected, hospitalized and removed
individuals, respectively, with S = S/N , E = E/N ,
I = I/N , H = H/N , and R = R/N , which evolve
according to the stochastic differential Eq. (5).

The impact of the noise term ϕ I (t) dW (t) on
the epidemic process is examined, using the Euler–
Maruyama method with initial state S = N − 1,
E = 1, and I = H =R = 0, with the system parame-
ters β = 0.14, γ = 0.7, and ωE = ωI = ωH = 0.1.

Figure 3 shows the simulated value of 1 − S(∞) =
1 − limt→∞ S(t) and R∗

0 , for various values of α = ε

and ϕ. It shows that the value of 1 − S(∞) undergoes
a sharp transition in the vicinity of the line R∗

0 = 1,
suggesting that the necessary conditions for stochastic
stability are close to the sufficient conditions provided
in Theorem 1. Furthermore, Fig. 3 demonstrates that
when the noise parameter ϕ increases, the final value
1 − S(∞) slightly decreases.

Figure 4 shows the impact of the noise parameter ϕ

on the epidemic process. Note that for large values of
ϕ, the probability Pr{γ + ϕξ(t) < 0} becomes signif-
icant, such that patients can return to the state I from
state H and even cause H(t) to become negative, as can
be seen clearly from Fig. 4a. Therefore, smaller values
of ϕ are generally more suitable for modeling the ran-
dom fluctuations at the hospitalization rate dH(t) of

123



1316 R. Niu et al.

(a)

(b)

Fig. 3 Comparison between the simulated value of 1−S(∞) and
R∗
0 of the sSEIHR model (5) for the initial values and parameter

settings defined in Sect. 3.3

the system. Furthermore, as the primarily concern is to
estimate some rough probabilistic bounds on the num-
ber of daily new cases, the simulation with Gaussian
white noise is sufficient.

3.4 Real-data analysis

Analogous to our modification of the dSEIHR model
to produce the p-dSEIHRmodel, the sSEIHRmodel is
modified by introducing a scaling factor p(t) to denote

the strength of various anti-epidemic interventions:

dx = d

⎡

⎢
⎢
⎢
⎢
⎣

S(t)
E(t)
I (t)
H(t)
R(t)

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

−p [ηE(t) + α I (t)] S(t)
p [ηE(t) + α I (t)] S(t) − (β + ωE ) E(t)

βE(t) − (γ + ωI ) I (t)
γ I (t) − ωH H(t)

ωE E(t) + ωI I (t) + ωH H(t)

⎤

⎥
⎥
⎥
⎥
⎦
dt

+

⎡

⎢
⎢
⎢
⎢
⎣

0
0

−ϕ I (t)
ϕ I (t)
0

⎤

⎥
⎥
⎥
⎥
⎦
dW (t) .

(6)

This will be referred to as the p-sSEIHR model.

3.4.1 Hong Kong

Now, consider the number of daily new cases �n =
S(n)−S(n+1) of COVID–19 in HongKong, between
June 25 and October 8, 2019. This is compared to
the expected values �∗

n obtained from the p-dSEIHR
model (3).

The fitted parameters of the p-dSEIHR model are
given in Table 2, where ωE = ωI = ωH = ω and
p(t) = pn for t in each period tn shown, with p(t) = 1
for t prior to t1. Note that this dataset corresponds to
H(t) and H is the only observable compartment in the
model. Note that the parameters N , β, γ , ωE = ωI =
ωH = ω, and tn (n = 1, 2, 3, 4) are fixed parameters,
so only η, α, and pn (n = 1, 2, 3, 4) are fitted.

Since the noise term ϕ I (t)dW (t) in the p-sSEIHR
model is proportional to I (t), we are interested in the
values rn = �n/�

∗
n . As shown in Fig. 5b, the values

rn roughly follow a left-truncatedGaussian distribution
with mean μ = 0.97 and standard deviation σ = 0.28.
Figure 5a shows �n , �∗

n , and �∗
n(1± σ) for the Hong

Kong dataset.
Next, using the same fitted parameters as that in the

p-dSEIHR model, the task is to find a value for ϕ such
that ρn = �∗∗

n /�∗
n has an standard deviation of σ ,

where �∗∗
n denotes the mean value of S(n) − S(n +
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Table 2 Parameter setting for the Hong Kong dataset

Parameter Value Parameter Value

N 7500700 p1 0.635

ϕ 0.03 t1 4/7 ∼ 23/7

η 0.48 p2 0.345

α 0.5 t2 24/7 ∼ 13/8

β 0.14 p3 0.235

γ 0.7 t3 14/8 ∼ 27/8

ω 0.1 p4 0.4445

t4 28/8 ∼ 8/10

(a)

(b)

Fig. 4 Impact of the noise intensity ϕ on the epidemic process
described by the sSEIHR model (5)

(a)

(b)

Fig. 5 Ratios rn and the estimated (1 ± σ)-range of fluctuations
in the number of daily new COVID-19 cases in Hong Kong,
where t = 0 refers to 25 June 2020

123
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(a)

(b)

Fig. 6 Actual and predicted numbers of COVID-19 cases in
Hong Kong, as estimated using the p-sSEIHR model (5)

1) obtained from 1000 sample paths of the p-sSEIHR
model. From thedata, the result is found to beϕ = 0.03.

Figure 6 shows the cumulative and daily numbers of
COVID-19 cases in Hong Kong between June 25 and
October 8, 2019, the p-dSEIHR model estimate, and
the (2.5,97.5)-percentile range of sample paths from the
corresponding p-sSEIHR model. As shown in Fig. 6b,
this range (colored gray) closelymatches the�∗

n(1±σ)

envelope obtained from the p-dSEIHR model for all
time points.

3.4.2 Other regions worldwide

In simulation, the process described in Sect. 3.4.1 is
repeated for four global regions, namely Germany,
Spain, South Africa, and the state of New York, using

data obtained from [17]. The parameter settings of the
fitted p-dSEIHR and p-sSEIHR models are given in
Table 3. Again, the values of rn roughly follow a left-
truncated Gaussian distribution, with standard devia-
tions σ ranging from 0.24 to 0.33.

Figure 7 shows the distributions of rn for each of
the four global regions, as well and the mean μ and
standard deviation σ for each distribution.

Figure 8 shows the cumulative and daily numbers of
COVID-19 cases in each global region during the spec-
ified time periods, the corresponding p-dSEIHR esti-
mates, and the (2.5,97.5)-percentile ranges of sample
paths from the corresponding p-sSEIHR model. It can
be seen that these ranges, colored gray, closely match
the �∗

n (1 ± σ) envelope obtained from the p-dSEIHR
model for the number of daily new cases (right col-
umn) in each region. This result not only demonstrates
the usefulness of the p-sSEIHRmodel, but also reveals
that the noise profiles in different regions may have a
similar nature.

3.5 Discussion

Section 3.2 shows the theoretical significance of the
sSEIHRmodel. By studying the stability of the disease-
free equilibrium, an estimated basic reproduction num-
ber R∗

0 was obtained, which helped understand the crit-
ical condition of the COVID-19 outbreak. Section 3.3
confirms the numerical results in accordance with the
theoretical results. The numerical results also show the
critical value of the noise intensity where the pandemic
happened. Most importantly, Sect. 3.4 shows the accu-
racy of our sSEIHR model on COVID-19 pandemic
predictions in different irrelevant regions.

The key to the success achieved on COVID-19 pan-
demic forecasting/fitting can be appreciated by as fol-
lows. First, our deterministic SEIHR model captures
the critical features of the COVID-19 transmission pro-
cess, such as the disease transmission during the latent
period, the hidden infections, and the isolation pol-
icy. Then, using only a few parameters, we success-
fully developed a deterministic model that accurately
described the COVID-19 pandemic trend. In order to
predict the daily caseload, the corresponding stochas-
tic SEIHR model only needs one more parameter than
the deterministic SEIHR model. Surprisingly, the real
data analysis shows that the noise intensities in different
regions are very close to each other. In the end, we used
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(a) (b)

(c) (d)

Fig. 7 Distributions of rn in four global regions

one parameter to describe the policy changes during
the pandemic. Based on the timing of local interven-
tion in each region, we changed the parameter accord-
ingly and obtain an accurate prediction of the trend of
the COVID-19 pandemic. All of this proves that our
model has excellent performance in COVID-19 pan-
demic prediction.

4 Concluding remarks

In this paper, we developed a model described by a
system of stochastic differential equations to describe

a stochastic SEIHR (sSEIHR) process. We proved
that the disease-free equilibrium is stochastically sta-
ble when the estimated basic reproduction number R∗

0
is less than one. Extensive numerical results demon-
strate strong threshold behavior near the estimated
basic reproduction number, suggesting that the nec-
essary conditions for stochastic stability are close to
the sufficient conditions given in Theorem 1. We also
included a factor p(t), denoting the strength of various
anti-epidemic interventions, to establish a p-sSEIHR
model, and used this model to fit the daily number of
hospitalized cases in Hong Kong and other four global
regions worldwide. We find that the five regions have
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(a)

(b)

(c)

(d)

Fig. 8 Real COVID-19 data and p-sSEIHR predicted values for four global regions

123



A stochastic SEIHR model for COVID-19 data fluctuations 1321

Table 3 Parameter settings for four global regions, with β = 0.14, γ = 0.7, and ωE = ωI = ωH = 0.1 for all regions

Germany Spain South Africa New York

N 83783945 47431256 59622350 19745289

ϕ 0.035 0.035 0.03 0.03

η 0.338 0.57 0.47 0.638

α 0.46 0.6 0.54 0.7

p1 0.476 0.635 0.47 0.87

t1 27/3 ∼ 25/5 13/3 ∼ 27/3 22/3 ∼ 16/4 13/3 ∼ 21/3

p2 0.64 0.345 0.555 0.35

t2 26/5 ∼ 8/7 28/3 ∼ 12/4 17/4 ∼ 12/7 22/3 ∼ 14/4

p3 – 0.235 0.378 0.253

t3 – 13/4 ∼ 10/5 13/7 ∼ 13/9 15/4 ∼ 14/5

p4 – 0.4445 0.47 0.31

t4 – 11/5 ∼ 31/5 14/9 ∼ 12/10 15/5 ∼ 6/7

a very similar noise profile, with an estimated σ value
from 0.24 to 0.33 and a fitted ϕ parameter from 0.03 to
0.035 for the p-sSEIHR model.

As the new p-sSEIHR model not only predicts the
mean number of daily new cases of COVID-19 in a
region, but also specifies a possible range of values,
it can provide healthcare practitioners with a clearer
picture of potential demands for medical resources due
to epidemics. Furthermore, the similarity of the noise
parameterϕ for different regions suggests that the infor-
mation about a disease learned from one region can be
used for other regions regarding management policies,
even at a less advanced stage of an epidemic, as long as
the transmission parameters η and α in the model can
be estimated with a reasonable accuracy.
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A Concepts of stochastic stability

Without loss of generality, consider a stochastic sys-
tem with a zero-vector equilibrium state, i.e., xe =
[0 . . . 0]T, which is referred to as the trivial solution.

Let |x| denote the Euclidean norm of a vector x =
x(t) for t ≥ 0. Assume that there exists a unique solu-
tion to the stochastic system, i.e., x(t) exists and is
unique, for any initial value x0 and Wiener process
W (t).

Recall some definitions and lemmas from the liter-
ature, e.g., [18,19].

Definition 1 The trivial solution of a stochastic system
is said to be stochastically stable, or stable in proba-
bility, if for all ε > 0 and r > 0, there exists a δ > 0
such that |x(t)| > r for all t > 0 (i.e., x(t) remains
within Euclidean distance r of the trivial solution) with
probability 1 − ε. Otherwise, the system is said to be
stochastically unstable.

Definition 2 Let R+ = {x : x ≥ 0}, and let C2,1

(R+ × R+;R) denote the set of functions V (x, t) ∈
(R+ × R+) → R that are twice differentiable in x ∈
R
d and once in t ∈ R+. Then, for the stochastic system

(4) and some function V ∈ C2,1 (R+ × R+;R), define

LV (x, t) = ∂V

∂t
+ f T (∇xV ) + 1

2
Tr

[
gT (HxV ) g

]
,

(7)

where ∇xV and HxV are the gradient and Hessian
matrix of V with respect to x, respectively.

Lemma 1 If there exists a positive-definite function
V (x, t) ∈ C2,1 (R+×[t0,∞);R) such that LV (x, t) ≤
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0 for all (x, t) ∈ R+ ×[t0,∞), then the trivial solution
to system (4) is stochastically stable.

The method of proving the stability of a stochastic
system using V (x, t) and LV (x, t) is known as Lya-
punov’s second method [18].

B Proof of Theorem 1

Since dS(t), dE(t), and dI (t) do not depend on H(t)
or R(t), the compartments H and R can be decomposed
from the system, yielding

dx = d

⎡

⎣
S
E
I

⎤

⎦ =
⎡

⎣
− [ηE + α I ] S

[ηE + α I ] S − (β + ωE ) E
βE − (γ + ωI ) I

⎤

⎦ dt

+
⎡

⎣
0
0

−ϕ I

⎤

⎦ dW (t) .

Substituting u = [u1, u2, u3]T = [1 − S, E, I ]T, one
obtains

du =
⎡

⎣
− [ηu2 + αu3] (1 − u1)

[ηu2 + αu3] (1 − u1) − (β + ωE ) u2
βu2 − (γ + ωI ) u3

⎤

⎦ dt

+
⎡

⎣
0
0

−ϕu3

⎤

⎦ dW (t) (8)

with disease-free equilibrium DFEu = (0, 0, 0). It suf-
fices to show that DFEu is stochastically stable.

Linearizing (8) around the pointDFEu (by removing
the u1u2 and u1u3 terms), one obtains

du =
⎡

⎣
− (ηu2 + αu3)

(ηu2 + αu3) − (β + ωE ) u2
βu2 − (γ + ωI ) u3

⎤

⎦ dt

+
⎡

⎣
0
0

−ϕu3

⎤

⎦ dW (t) . (9)

It then suffices to prove the following:

Proposition 1 The trivial solution to (9) is stochasti-
cally stable.

Proof Lyapunov’s secondmethod [18] will be applied.
Select a Lyapunov function of the form

V (u) = 2u1 + u2 + Qu23 ,

where Q > 0. Using the differential operator L defined
in (7), one has

LV (u, t) = ∂V

∂t
+ f T (∇uV ) + 1

2
Tr

[
gT (HuV ) g

]

= 0 +
⎡

⎣
− (ηu2 + αu3)

(ηu2 + αu3) − (β + ωE ) u2
βu2 − (γ + ωI ) u3

⎤

⎦

T

×
⎡

⎣
2
1

2Qu3

⎤

⎦

+ 1

2

[
0 0 −ϕu3

]
⎡

⎣
0 0 0
0 0 0
0 0 2Q

⎤

⎦

⎡

⎣
0
0

−ϕu3

⎤

⎦

= − (ηu2 + αu3) − (β + ωE ) u2

+ 2Qβu2u3 − 2Q (γ + ωI ) u
2
3 + Qϕ2u23

≤ − (ηu2 + αu3) u3 − (β + ωE ) u2u3

+ 2Qβu2u3 − 2Q (γ + ωI ) u
2
3 + Qϕ2u23

= [−η − β − ωE + 2Qβ] u2u3

−
[

α + 2Q

(

γ + ωI − ϕ2

2

)]

u23

≤ [η − β − ωE + 2Qβ] u2u3

−
[

α − 2Q

(

γ + ωI + ϕ2

2

)]

u23

Next, choose

Q = α

2
(
γ + ωI + ϕ2

2

)

such that

LV (u, t) ≤
⎡

⎣η − (β + ωE ) + αβ
(
γ + ωI + ϕ2

2

)

⎤

⎦ u2u3

= (β + ωE )
(
1 − R∗

0

)
u2u3 ,

where

R∗
0 = η

(β + ωE )
+ αβ

(β + ωE )
(
γ + ωI + ϕ2

2

) .

Thus, for R∗
0 < 1, V (u) is positive definite and

LV (u, t) ≤ 0. By Lemma 1, the disease-free equi-
librium (0, 0, 0) of system (9) is stochastically stable.
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