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Abstract In this study, a novel reaction–diffusion
model for the spread of the new coronavirus (COVID-
19) is investigated. The model is a spatial extension
of the recent COVID-19 SEIR model with nonlin-
ear incidence rates by taking into account the effects
of random movements of individuals from different
compartments in their environments. The equilibrium
points of the new system are found for both diffusive
and non-diffusive models, where a detailed stability
analysis is conducted for them. Moreover, the stabil-
ity regions in the space of parameters are attained for
each equilibrium point for both cases of the model
and the effects of parameters are explored. A numer-
ical verification for the proposed model using a finite
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difference-based method is illustrated along with their
consistency, stability and proving the positivity of the
acquired solutions. The obtained results reveal that the
random motion of individuals has significant impact
on the observed dynamics and steady-state stability of
the spread of the virus which helps in presenting some
strategies for the better control of it.

Keywords COVID-19 · Reaction–diffusion · Finite
difference · Stability

1 Introduction

In the late December 2019, the new coronavirus
(COVID-19) spreads first from the Wuhan province
in China to all parts of the world causing a devastat-
ing effect. This virus infects people through the tiny
droplets emerging when infected person coughs or
sneezes from a short distance to susceptible individ-
ual making him infected with the virus. This is con-
sidered as the primary source of infection according
to WHO [1]. Infection can be also caused when an
uninfected person touches an infected surface and then
touches his nose, eye or mouth which may cause him
to catch the virus. It is reported that almost every coun-
try in the world has been affected by this virus and the
reported total cases until now is more than 155 mil-
lion and more than three million deaths are recorded so
far. Poor countries as well as developed countries are
continuously reporting new cases every day, and all
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the countries in the world are facing increasing case of
infection. China was the first country to act against the
deadly virus by performing lock down and mandatory
face masks in public areas and practicing social dis-
tancing to slow the spread of the virus to some extent
until newly developed vaccines become available to
everybody.

The major symptoms of COVID-19 are high fever
over 38◦, dry cough and tenderness. Some patients may
have different symptoms such as aches, runny nose,
nasal congestion, diarrhea and sore throat. These com-
mon symptoms occur almost to each infected person
and are considered normally mild and gradually the
symptoms become severe. More than 80 percent of
infected people have mild symptoms, and they recover
without receiving any special treatment for the virus.
They need only some domestic or minor medication to
reduce the symptoms. One patient out of six gets seri-
ously ill and is required to be admitted in the hospital
with shortness of breathing. The people most affected
by the virus are old people with underlying health con-
ditions such as diabetes, cardiovascular disease, cancer
and chronic respiratory disease.

In general, the basic model of the COVID-19 pan-
demic can be simulated by an SIR model which
divides the population into three categories, namely
S(t) which represents the susceptible to infection indi-
viduals, I (t) which represents the infected individuals
and R(t) which refers to the eliminated or recovered
individuals [2]. The division of these categories was
investigated through an integer-order model by several
researchers for the better simulationof the virus dynam-
ics. For example, a mathematical model for the spread
of COVID-19 in India is presented in [3] by Biswas
et al. Also, in [4], an SEIR model for the dynamics
at Hubei province in China with some control strate-
gies is studied. A mathematical model is studied in
[5] to simulate the spread in Spain along with study
of the effects of different parameters in the model. A
generalized logistic function model has been studied
by Xianbo et al. [6] to forecast the spreading of the
infections of this disease. An estimation for the out-
break of the virus in Harbin, China, is investigated
different categories and parameters in [7] . The effect
of the awareness programs and different hospitaliza-
tion schemes to study the transmission dynamics of
the virus through an epidemic model is presented in
[8]. A new proposed model is given in [9] to simu-
late the new cases and deaths of the virus outbreak in

India. The study of the virus impact in Brazil through
a multiple-delay mathematical model and the opti-
mal control strategies is illustrated in [10]. Other rel-
ative studies of integer-order models can be found in
[11,12].

Moreover, iterative methods in the Gompertz model
are employed to estimate the total number of infec-
tions and deaths caused by COVID-19 in Brazil and
also in Rio de Janeiro and Sao Paulo Brazilian states
[13]. Qualitative and quantitative study is presented to
investigate the key factors affecting the development of
COVID-19 epidemic in two different regions in China
and determine the effects of varying strengths of inter-
vention measures on secondary outbreaks of COVID-
19 [14]. A deterministic compartmental SEAIQHR
model to study the spreading of COVID-19 disease in
India is introduced in [15] where the model parame-
ters are found by fitting the model with reported data
of the epidemic in India and also sensitivity analy-
sis is carried out to identify the influential and crit-
ical parameters in the model. Prediction of bifurca-
tions is conducted by varying critical parameters of
SEIR COVID-19model in [16]. The transcritical bifur-
cation in SEIR and SEQIR COVID-19 models, in
[17] and [18], respectively, is explored by applying
bifurcation theory and varying the basic reproduction
number and the other critical parameters on which it
depends on. The occurrence of backward bifurcation
in COVID-19 model under the imperfect lockdown
effect is examined in [19] where it is depicted that
that stable disease-free equilibrium point can coexist
with a stable endemic equilibrium point. This impli-
cates that making basic reproduction number less than
unity is a necessary but not a sufficient requirement
for efficient and perfect controlling of the spread of
COVID-19.While dealing with the simulations of such
models, fractional calculus becomes an important tool
which may help building more accurate and realistic
models and better understanding of their spread. Frac-
tional calculus has attracted a wide audience in the last
few years due to its ability to provide realistic mod-
els for epidemic models. For example, a fractional-
order model for simulating the HIV with the Caputo
definition is introduced by Günerhan et al. [20] is
helpful. Also, in [21] Nauman et al. proposed a frac-
tional model for simulating the HIV–AIDS transmis-
sion with numerical verification by using a finite differ-
ence method. In other models, COVID-19 model [22],
fractional-order Schnakenberg model [23], fractional-
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order model with time delay [24], model of child-
hood disease [25], model for granular SEIR epidemic
with uncertainty [26], epidemic models of cholera
[27], model of influenza dynamics [28], immune sys-
tem simulation [29], fractional dengue model [30]
Leslie–Gower predator–prey model [31] and many
other related models may be studied in the existing
literature.

The other approaches for improving COVID-19
model are to consider latency period of the infection
and the more realistic nonlinear incidence rate which
accurately determines the transmission mechanism of
the infection. The latent period is the time duration in
which the exposed person attains the infectious state
where he can infect others. These approaches have
been applied to understand deeply about the dynamics
of the spread of the disease [32–34]. Further, devel-
opment of the model is presented by proposing a
new stage called quarantined and its effect on the
transmission dynamics of the virus is studied [35,36].
Also, in [37] a delayed version of the same model is
proposed to incorporate the incubation period of the
virus.

In spite of recent extensive interest of COVID-19
mathematical modeling, the influences of individuals’
daily movements and activities are ignored in most of
the works, with a few exceptions such as the model
in [38,39] which consider diffusive COVID-19 model
with conventional linear incident rate. This motivates
the authors to extend the more realistic COVID-19
model having nonlinear incident rate to the spatiotem-
poral case.

Temporal-only model:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS
dt = μ − βSI

1+α I 2
− μS,

dA
dt = βSI

1+α I 2
− (σ + δ + ε + μ)A,

dI
dt = σ A − (γ + d + μ)I,

dR
dt = γ I + εA − μR.

(1)

Spatiotemporal model:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂S
∂t = d1

∂2S
∂x2

+ μ − βSI
1+α I 2

− μS,

∂A
∂t = d2

∂2A
∂x2

+ βSI
1+α I 2

− (σ + δ + ε + μ)A,

∂ I
∂t = d3

∂2 I
∂x2

+ σ A − (γ + d + μ)I,

∂R
∂t = d4

∂2R
∂x2

+ γ I + εA − μR.

(2)

Here, for any time t , S(t) represents susceptible
humans, A(t) represents the asymptomatic humans,

I (t) represents the infected humans and R(t) repre-
sents the recovered or quarantine humans. The descrip-
tion of the parameters of the model is given as fol-
lows: μ denotes the natural birth or death rate, β the
rate by which susceptible humans move to asymp-
tomatic humans, α the bilinear incidence rate, σ the
rate by which asymptomatic humans move to infected
humans, δ the mortality rate of asymptomatic humans
due to virus, ε the immunity rate of asymptomatic
humans, γ the rate of vaccination, quarantine or treat-
ment and finally d the death rate of infected humans
due to virus. The dynamics of the proposed model
are presented in Fig. 1. It is worth mentioning that
the model presented in this paper is a modifica-
tion to the model presented in [11] by taking into
account the effects of random movements of indi-
viduals from different compartments in their environ-
ments.

The current COVID-19 pandemic has become a
symbol of horror for the mankind. Most existing mod-
els of this murderous virus do not take into account
the diffusion process of the humans. However, this is
an important factor that influences the disease dynam-
ics and stability of equilibrium states. Therefore, the
spatiotemporal version of COVID-19 model should
be considered for accurate modeling for COVID-
19 dynamics of spread. The present novel reaction–
diffusion COVID-19 model is the first model which
considers the random movements of individuals along
with themore realistic nonlinear incidence rates.More-
over, the numerical technique adopted in this work pro-
vides the adequate structure preserving analysis like
positive solution and stability of steady states for the
proposed model.

The organization of the paper is as follows. In
Sect. 2, we study the equilibrium points and sta-
bility analysis of the two versions of the model,
i.e., the diffusive and non-diffusive cases. In Sect. 2,
we propose a numerical verification using a struc-
ture preserving finite difference method and illustrate
the main steps of solution in Eq. (1). Section 4 is
devoted for studying the consistency of this method
and proving the order of accuracy of (τ + h2). The
stability of the proposed technique is provided in
Sect. 5 proving the method to be stable. The positiv-
ity of the acquired numerical solutions is proved in
Sect. 6. Section 7 gives the numerical results for the
finite difference method, while Sect. 8 concludes the
study.
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Fig. 1 Flowchart of the
proposed COVID-19 model

2 Equilibrium points and stability analysis

In this section, the key results associated with stability
of equilibrium points for both non-diffusive model (1)
and diffusive model (2) are presented.

The equilibrium points of model (1) are the disease-
free equilibrium point S f = (1, 0, 0, 0) and the
endemic equilibrium point Se which is defined as fol-
lows:

Se = (S∗, A∗, I ∗, R∗),
where

S∗ = 1 + α I ∗

R0
, A∗ = (γ + d + μ)I ∗

σ
,

I ∗ = −β + √
β2 − 4αμ2(1 − R0)

2αμ
,

R∗ = γ I ∗ + εA∗

μ
,

and R0 is the reproduction number that is found to be

R0 = βσ

(σ + δ + ε + μ)(γ + d + μ)
.

Note that the equilibrium point Se can exist only if
the following condition is achieved

−4αμ2(1 − R0) > 0,

i.e.,

R0 > 1, or
βσ

(σ + δ + ε + μ)(γ + d + μ)
> 1.

Theuniformconstant steady-state solutions of diffusive
system (2) are the disease-free equilibrium point Sdf =
S f and endemic equilibrium point Sde = Se where S f

and Se are given above.

2.1 Non-diffusive model

The diffusion coefficients vanish in this case, and the
Jacobian matrix computed at S f steady state takes the

following form

J f =

⎛

⎜
⎜
⎝

−μ 0 −β 0
0 −σ − δ − ε − μ β 0
0 σ −γ − d − μ 0
0 ε γ −μ

⎞

⎟
⎟
⎠ .

The eigenvalues of matrix J f are computed from the
associated characteristic equation, and they are given
as

λ1,2 = −μ, λ3,4 = 1

2
(−C1 ±

√

C2
1 − C2),

where

C1 = σ + δ + ε + 2μ + d + γ,

C2 = −βσ + γ δ + γμ + γ σ + γ ε + dδ + dμ + δμ

+ dσ + dε + μ2 + μσ + με.

Hence, the equilibrium point S f is locally asymptoti-
cally stable if the following conditions are satisfied

μ > 0, σ + δ + ε + 2μ + d + γ > 0,

C2 > 0.

Notice that the last conditions for asymptotic stability
of S f are equivalent to saying that R0 < 1.

Theorem 1 The equilibrium point S f of model (1) is
locally asymptotically stable if

μ > 0, σ + δ + ε + 2μ + d + γ > 0, R0 < 1,

where
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R0 = βσ

(σ + δ + ε + μ)(γ + d + μ)
.

Similarly, the Jacobian matrix at endemic equilib-
riumpoint Se is foundas

Je =

⎛

⎜
⎜
⎜
⎜
⎝

−μ − I ∗β
1+α I ∗2 0 2S∗ I ∗2αβ

(1+α I ∗2)2 − S∗β
1+α I ∗2 0

I ∗β
1+α I ∗2 −σ − δ − ε − μ − 2S∗ I ∗2αβ

(1+α I ∗2)2 + S∗β
1+α I ∗2 0

0 σ −γ − d − μ 0
0 ε γ −μ

⎞

⎟
⎟
⎟
⎟
⎠

.

The characteristic equation of matrix Je can be
expressed in the following form

λ4 + b3λ
3 + b2λ

2 + b1λ + b0 = 0,

where the coefficients of the equation are obtained by

b0 = μ

⎛

⎜
⎝

β
(
I∗

(
α (I∗)2 + 1

)
(γ + d + μ)(δ + μ + ε) + I∗σ(γ + d)

(
α (I∗)2 + 1

)
+ μσ

(
α (I∗)2 (I∗ + S∗) + I∗ − S∗

))

(
α (I∗)2 + 1

)2

⎞

⎟
⎠

+ μ2(γ + d + μ)(δ + μ + σ + ε),

b1 = μ(γ (2δ + 3μ + 2σ + 2ε) + d(2δ + 3μ + 2σ + 2ε) + μ(3δ + 4μ + 3σ + 3ε))

+
β

(
I∗

(
α (I∗)2 + 1

) (
2μ(γ + d + δ + ε) + (γ + d)(δ + ε) + 3μ2

) + σ
(
I∗(γ + d)

(
α (I∗)2 + 1

)
+ 2μ

(
α (I∗)2 (I∗ + S∗) + I∗ − S∗

)))

(
α (I∗)2 + 1

)2 ,

b2 = γ (δ + 3μ + σ + ε) + d(δ + 3μ + σ + ε)

+
β

(
I∗

(
α (I∗)2 + 1

)
(γ + d + δ + 3μ + ε) + σ

(
α (I∗)2 (I∗ + S∗) + I∗ − S∗

))

(
α (I∗)2 + 1

)2 + 3μ(δ + 2μ + σ + ε),

and finally,

b3 = γ + d + δ + βI∗

α (I∗)2 + 1
+ 4μ + σ + ε.

The equilibrium point Se is locally asymptotically
stable if the following Routh–Hurwitz conditions are
satisfied

bi > 0, i = 0, 1, 2, 3, b2b3 − b1 > 0,

b1b2b3 − b21 − b23b0 > 0.

However, simple analytical expressions for stabil-
ity conditions of Routh−Hurwitz criterion cannot be
attained due to the very complicated forms of these
coefficients and conditions. Therefore, it is essential to
employ numerical investigation of Se regions of stabil-
ity in parameters’ space of model (1).

2.2 Diffusive model

The spatiotemporal model (2) has nonzero diffusion
coefficients di , i = 1, 2, 3, 4. Assuming that the uni-

form equilibrium point of the model takes the form
(S̄, Ā, Ī , R̄) and hence by applying small perturbations
Ŝ = S− S̄, Â = A− Ā, Î = I − Ī , R̂ = R− R̄ around
it to linearize the system, we get

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂ Ŝ
∂t = d1

∂2 Ŝ
∂x2

+ c11 Ŝ + c12 Â + c13 Î + c14 R̂,

∂ Â
∂t = d1

∂2 Â
∂x2

+ c21 Ŝ + c22 Â + c23 Î + c24 R̂,

∂ Î
∂t = d1

∂2 Î
∂x2

+ c31 Ŝ + c32 Â + c33 Î + c34 R̂,

∂ R̂
∂t = d1

∂2 R̂
∂x2

+ c41 Ŝ + c42 Â + c43 Î + c44 R̂.

(3)

The coefficients ci j are determined according to
whether equilibriumpoint Sdf or S

d
e is considered.Now,

suppose that the solution of linearized system (3) is
given as

⎛

⎜
⎜
⎜
⎝

Ŝ
Â
Î
R̂

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

S0
A0

I0
R0

⎞

⎟
⎟
⎠ e−iκx+ωt , (4)
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where S0, A0, I0 and R0 have sufficiently small values.
Substituting (4) into system (3), we get

ω

⎛

⎜
⎜
⎝

Ŝ
Â
Î
R̂

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

c11 − κ2d1 c12 c13 c14
c21 c22 − κ2d2 c23 c24
c31 c32 c33 − κ2d3 c34
c41 c42 c43 c44 − κ2d4

⎞

⎟
⎟
⎠

×

⎛

⎜
⎜
⎝

Ŝ
Â
Î
R̂

⎞

⎟
⎟
⎠ , (5)

where the specific forms of elements ci j are identical
to the elements in matrices J f and Je of steady states
S f and Se, respectively.

Parameters κ and ω represent the wave number and
growth rate of the perturbations around the selected
equilibrium point, respectively. Indeed, the linear sta-
bility of the equilibrium point is determined accord-
ing to the sign of real part of ω. In particular, the
local asymptotic stability of certain uniform equilib-
rium point in spatiotemporal model requires that all
real parts of ω have negative signs. Stability of equi-
librium point is lost if at least one of real parts of ω

crosses the imaginary axis and changes its sign from
negative to positive. In this case, one of the next two
bifurcation scenarios may be observed according to the
critical value of ω. In first scenario, the value of crit-
ical ω is zero (pure real), while the associated equi-
librium point in model (1) is still stable and therefore
model (2) exhibits Turing instability bifurcation. In the
second scenario, the critical ω is pure imaginary and
hence model (2) undergoes wave instability bifurca-
tion, provided that the corresponding equilibrium point
in model (1) remains stable.

2.3 Numerical investigation

Now,we proceed to explore stability regions of equilib-
riumpoints in the space of parameters ofmodels (1) and
(2) and examine the influences of different parameters.
First, the effects of α, β and γ are considered, whereas
the values of other parameters are fixed as μ = 0.1;
δ = 0.001; ε = 0.03; σ = 0.05; d = 0.02. Fig-
ure 2a, b illustrates the red-colored region of stability

for S f and green-colored region of stability of Sdf in
α −β −γ space. Figure 2c, d shows projections of sta-
bility regions S f and Sdf , respectively, in β − γ plane
when α is fixed at α = 0.05. The values of diffusion
coefficients are taken as di = 0.05, i = 1, 2, 3, 4, in
simulations. Two interesting points can be observed
as follows: The first point is that equilibrium points
S f and Sdf maintain their stabilities at small values of
infection rate β. When the value of β increases, the
treatment rate γ should be increased to still keep the
stability of equilibria. The second point of interest is
that the regions of stability for steady state Sdf of spa-
tiotemporalmodel (2) are larger than the corresponding
S f point of temporal model (1). Second, we increase
the value of σ to σ = 0.1 which corresponds to the
assumption that the rate in which asymptomatic indi-
viduals move to infected ones is high. From Fig. 3, it
is obvious that the regions of stability for S f and Sdf
considerably shrink in this case. Third, the value of ε

is increased to ε = 0.07 which results in boosting the
immunity level of asymptomatic individuals. Figure 4
demonstrates that the regions of stability for both the
equilibrium points are enlarged, which indicates that
local stability is preserved for greater values of β and
lower values of γ.

Now,we turn into investigate the stabilities of Se and
Sde in the same way as carried out above. Figures 5, 6
and 7 are similar to Figs. 1, 2 and 3 but depict the stabil-
ity regions of steady states Se and Sde instead of S f and
Sdf . A crucial observation is found when spatiotempo-
ral dynamics are considered. More specifically, the two
uniform equilibrium points of spatiotemporal model
(2) can be simultaneously stable at certain values of
parameters. As an example, from Figs. 2d and 5d it is
clear that at β = 0.7 and γ = 0.02 both Sdf and Sde are
stable in the way that the simultaneous occurrence of
two stable uniform equilibrium points is permitted in
state space. When diffusion influences are neglected,
which is the case in model (1), only one stable equilib-
rium point can exist in state space. The values of initial
sizes of different compartments in model (2) determine
the equilibrium point to which the solution trajectory
will attract. Therefore, the diffusion process can result
in significant dynamic qualitative change on tempo-
ral models when it is taken into account. The effects of
each diffusion coefficient di , i=1,2,3,4, are investigated
separately. Starting with the diffusive term of suscepti-
ble individuals, i.e., the term involves d1. It is observed
that when other coefficients are fixed at zero and d1
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Fig. 2 The region of
stability of S f is shown in
(a, c) for α − β − γ space
and β − γ plane (α = 0.05),
respectively. The region of
stability of Sdf is shown in
(b, d) for α − β − γ space
and β − γ plane
(α = 0.05), respectively.
The values of other
parameters are μ = 0.1;
δ = 0.001; ε = 0.03;
σ = 0.05; d = 0.02; κ = 1;
di = 0.05, i = 1, 2, 3, 4

is increased above zero, d1 has negligible influence on
the dynamics and stability of spatially homogeneous
equilibrium states of the model. On the other side, the
diffusion term of asymptomatic individuals has signif-
icant effect on the stability of spatially homogeneous
equilibrium points of the model when d2 is increased
above zero and the other coefficients are kept at zero.
Similarly, the diffusion term of infected people has
also significant effect on stability of spatially homo-
geneous equilibrium points of the model when d3 is
increased above zero and the other coefficients are kept
at zero.More specifically, the two diffusion coefficients
d2 and d3 enlarge the regions of stability of disease-
free equilibrium point and induce the interesting case
of coexistence stable equilibrium points (disease-free
and endemic). Finally, the diffusion coefficient d4 of
recovered individuals has negligible influence on the
dynamics of the model as like as d1 does. For exam-

ple, Figs. 8 and 9 show the effects of each diffusion
coefficient when it is assigned a chosen positive value
while the remaining coefficients have zero values. In
particular, the left columns illustrate stability regions
for disease-free equilibrium point in parameters’ space
for temporal-only model and the right columns show
stability regions for the case of a nonzero diffusion
coefficient. These figures demonstrate that the most
influential diffusion coefficients are d2 and d3. For dif-
ferent values of spatial mobility of the population di s in
their environments, i.e., for other values of each diffu-
sion coefficient in numerical simulations, the obtained
results confirm the aforementioned conclusions regard-
ing the changes in qualitative dynamics of the model.
It is worth mentioning that many values of di ∈ (0, 1)
are employed in numerical simulations to determine
the most important diffusive terms and the figures pre-
sented here are selected sample for brevity.
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Fig. 3 Similar to Fig. 2 yet
the value of σ is increased
to σ = 0.1

3 Numerical modeling

In this section, we will verify the numerical simulation
of model (2) . We begin with dividing the domain of
x ∈ [0, L] and t ∈ [0, T ] into M2 × N cubes with step
size h = L

M and τ = T
N where

xi = i

h
, i = 0, 1, . . . , M,

tn = τn, n = 0, 1, 2, . . . , N .

For this use

∂u

∂t
= un+1

i − uni
τ

∂2u

∂x2
= un+1

i−1 − 2un+1
i + un+1

i+1

h2
(6)

and then discretizing Eq. (2) will result in

Sn+1
i − Sni

τ
= d1

Sn+1
i−1 − 2Sn+1

i + Sn+1
i+1

h2

+ μ − βSn+1
i I ni

1 + α(I ni )2
− μSn+1

i

Sn+1
i = Sni + τd1

h2

(
Sn+1
i−1 − 2Sn+1

i + Sn+1
i+1

)

+ μτ − τ
βSn+1

i I ni
1 + α(I ni )2

− τμSn+1
i

Sn+1
i (1 + 2λ1 + τ

β I ni
1 + α(I ni )2

+ τμ) − λ1

(
Sn+1
i−1 + Sn+1

i+1

)
= Sni + μτ. (7)

An+1
i − An

i

τ
= d2

An+1
i−1 − 2An+1

i + An+1
i+1

h2

+ βSni I
n
i

1 + α(I ni )2
− (σ + δ + ε + μ)An+1

i

An+1
i = An

i + τd2
h2

(
An+1
i−1 − 2An+1

i + An+1
i+1

)
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Fig. 4 Similar to Fig. 2 but
the value of ε is increased to
ε = 0.07

+ τ
βSn+1

i I ni
1 + α(I ni )2

− τ(σ + δ + ε + μ)An+1
i

An+1
i (1 + 2λ2 + τ(σ + δ + ε + μ)) − λ2

(
An+1
i−1

+An+1
i+1

)
= An

i + τ
βSni I

n
i

1 + α(I ni )2
. (8)

I n+1
i − I ni

τ
= d3

I n+1
i−1 − 2I n+1

i + I n+1
i+1

h2

+ σ An
i − (γ + d + μ)I n+1

i

I n+1
i = I ni + d3τ

I n+1
i−1 − 2I n+1

i + I n+1
i+1

h2

+ τσ An
i − (γ + d + μ)τ I n+1

i

I n+1
i (1 + 2λ3 + (γ + d + μ)τ) − λ3(I

n+1
i−1 + I n+1

i+1 )

= I ni + τσ An
i . (9)

Rn+1
i − Rn

i

τ
= d4

Rn+1
i−1 − 2Rn+1

i + Rn+1
i+1

h2

+ γ I n+1
i + εAn

i − μRn+1
i

Rn+1
i = Rn

i + d4τ
Rn+1
i−1 − 2Rn+1

i + Rn+1
i+1

h2

+ τγ I n+1
i + τεAn

i − μτ Rn+1
i

Rn+1
i (1 + 2λ4 + μτ) − λ4(I

n+1
i−1 + I n+1

i+1 ) = Rn
i + τεAn

i .

(10)

Then, by solving the above-mentioned system, the
values of the parameters will be found and the solution
is acquired. Next, we shall provide the consistency of
this method.

4 Consistency of the proposed method

Here, we examine the consistency of the proposed
scheme. Consistency is one of the major properties
of the numerical scheme. We prove that our proposed
implicit scheme is second order consistent in space and
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Fig. 5 Similar to Fig. 2 but
the colored stability regions
are associated with Se in (a,
c) and with Sde in (b, d)

first order consistent in time . By using Taylor-series
expansion, it follows that

£S = Sn+1
i − Sni

τ
− d1

Sn+1
i−1 − 2Sn+1

i + Sn+1
i+1

h2

−μ + βSn+1
i I ni

1 + α(I ni )2
+ μSn+1

i

=
(

∂S

∂t
+ τ

2!
∂2S

∂t2
+ τ 2

3!
∂3S

∂t3
+ . . .

)

− d1
h2

(

h2
(

∂2S

∂x2
+ 2

h2

4!
∂4S

∂x4
+ · · ·

))

+
(

β I ni
1 + α(I ni )2

+ μ

)

×
(

Sni + τ
∂S

∂t
+ τ 2

2!
∂2S

∂t2
+ τ 3

3!
∂3S

∂t3
+ · · ·

)

− μ

= ∂S

∂t
− d1

h2

(

h2
∂2S

∂x2

)

+
(

β I ni
1 + α(I ni )2

+ μ

)

Sni − μ

−d1h2

12

(
∂4S

∂x4

)

+ τ

((
β I ni

1 + α(I ni )2
+ μ

)
∂S

∂t
+ · · ·

)

= −d1h2

12

(
∂4S

∂x4

)

+ τ

((
β I ni

1 + α(I ni )2
+ μ

)
∂S

∂t
+ · · ·

)

→ 0 as h2, τ → 0.
Similarly, the relations for A, I and R are obtained,

i.e.,

£A = −d1h2

12

(
∂4A

∂x4

)

+ τ

(

(σ + δ + ε + μ)
∂A

∂t
+ · · ·

)

£I = −d1h2

12

(
∂4 I

∂x4

)

+ τ

(

(γ + d + μ)
∂ I

∂t
+ · · ·

)

£R = −d1h2

12

(
∂4R

∂x4

)

+ τ

(

(μ)
∂R

∂t
+ · · ·

)

.

The last three equations → 0 as h2, τ → 0. Hence,
the proposed implicit scheme is first order accurate in
time and second order in space. Its order of accuracy
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Fig. 6 Similar to Fig. 3 but
the colored stability regions
are associated with Se in (a,
c) and with Sde in (b, d)

is (τ + h2). The stability of the method is tested in the
next section.

5 Stability of the proposed method

In this segment, stability, which is another important
property of any numerical scheme, is tested. First, let
Sni = ηnSe

jθS(ih) , Sn+1
i = ηn+1

S e jθS(ih) , Sn+1
i−1 =

ηn+1
S e jθS(i−1)h , Sn+1

i+1 = ηn+1
S e jθS(i+1)h in Eq. (7) and

nonlinear terms as,

ηn+1
S e jθS(ih)(1 + 2λ1 + τ(υ I + μ))

−λ1

(
ηn+1
S e jθS(i+1)h + ηn+1

S e jθS(i−1)h
)

= ηnSe
jθS(ih)

ηS

(
(1 + 2λ1 + τ(υ I + μ)) − λ1(e

jθSh + e− jθSh)
)

= 1

ηS = 1
(
1 + 4λ1 sin2 θh

2 + τ(υ I + μ)
)

|ηS | =
∣
∣
∣
∣
∣
∣

1
(
1 + 4λ1 sin2

θSh
2 + τ(υ I + μ)

)

∣
∣
∣
∣
∣
∣
≤ 1 (11)

Similarly, by following the same process we can obtain
for Eqs. (8–10)

|ηA| =
∣
∣
∣
∣
∣
∣

1
(
1 + 4λ2 sin2

θAh
2 + τ(σ + δ + ε + μ)

)

∣
∣
∣
∣
∣
∣
≤ 1

(12)

|ηI | =
∣
∣
∣
∣
∣
∣

1
(
1 + 4λ3 sin2

θI h
2 + τ(γ + d + μ)

)

∣
∣
∣
∣
∣
∣
≤ 1

(13)

|ηR | =
∣
∣
∣
∣
∣
∣

1
(
1 + 4λ4 sin2

θRh
2 + τμ

)

∣
∣
∣
∣
∣
∣
≤ 1 (14)
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Fig. 7 Similar to Fig. 4 but
the colored stability regions
are associated with Se in (a,
c) and with Sde in (b, d)

with j = √−1, υ I = β I ni
1+α(I ni )2

.

Inequalities (11)to(14) reveal that our proposed
scheme is satisfying von Neumann stability criteria.
Hence, the proposed scheme is von Neumann stable.

6 Positivity of the proposed method

We employ M-matrix and mathematical induction
method to prove the positivity of the solutions of dis-
cretized system. The proposed implicit scheme guar-
antees that the real matrices involved are M-matrices.
So, they are invertible and their inverses are positive.
Let us write our discretized systems (7)–(10) into the
following vector form

BSn+1 = Sn + μτ (15)

CAn+1 = An + τ
βSn I n

1 + α(I n)2
(16)

DIn+1 = I n + τσ An (17)

ERn+1 = Rn + τεAn (18)

where B,C, D and E are real matrices. If F represents
any of B,C, D or E , then

F =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f n3 f1 0 · · · · · · · · · · · · 0

f2 f n3 f4
. . .

...

0 f2 f n3 f4
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . . f2 f n3 f4 0
...

. . . f2 f n3 f4
0 · · · · · · · · · · · · 0 f1 f n3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (19)

The non-diagonal entries of B,C, D and E are 0 or
b1 = −λ1, b2 = −λ1, b4 = −λ1, c1 = −λ2, c2 =
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Fig. 8 Stability regions for
disease-free equilibrium
point in parameters’ space
for a d1 = 0, b d1 = 0.07, c
d2 = 0 and d d2 = 0.07.
The values of other di s
equal zero and the values of
other parameters are the
same as those in Fig. 2

−λ2, c4 = −λ2, d1 = −λ3, d2 = −λ3, d4 = −λ3,
e1 = −λ4, e2 = −λ4, e4 = −λ4, respectively. The
diagonal entries of B,C, D and E are bn3 = (1+2λ1+
τ

β I ni
1+α(I ni )2

+τμ), cn3 = 1+2λ2+τ(σ +δ+ε+μ), dn3 =
1+2λ3+(γ +d+μ)τ, en3 = 1+2λ4+μτ , respectively.

Theorem 2 If initial conditions of a system are posi-
tive, then any solution of Eqs. (7)–(10) is positive.

Proof Wewill usemathematical induction to prove this
claim. It is true for n = 0 that S0, A0, I 0 and R0 > 0
due to initial condition of the system. Assume it is true
for n > 0, i.e., Sn > 0, An > 0, I n > 0 and Rn > 0.
Since B,C, D, E areM-matrices, this implies that they
are invertible and their inverses are positive. Now,

Sn+1 = B−1(Sn + μτ ≥ 0), (20)

where B−1 > 0 and Sn + μτ > 0. Similarly, we can
check for the rest of equations

An+1 = C−1(An + τ
βSn I n

1 + α(I n)2
) ≥ 0, (21)

I n+1 = D−1(I n + τσ An) ≥ 0, (22)

Rn+1 = E−1(Rn + τεAn) ≥ 0. (23)

So by the induction, the theorem is true for all n. 	


7 Numerical and graphical simulations

In this section, a numerical application of system
(2) is given . For numerical solutions of the pro-
posed reaction–diffusion COVID-19 infectious disease
model, the initial conditions have non-negative values
due to the fact that the number of individuals in each
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Fig. 9 Similar to Fig. 8 but
for diffusion coefficients d3
in (a, b) and d4 in (c, d)

Table 1 Values of parameters

μ δ β γ α σ ε d

0.1 0.001 For DFE 0.5464, For EE 0.9464 0.07 0.01 0.05 0.03 0.02

compartment cannot be negative. The initial conditions
are set in the way that the fraction of infected individ-
uals attains its maximum value at specific region of
space x and it then gradually decreases when moving
away from this region. Also, the no-flux boundary con-
ditions (homogeneous Neumann boundary conditions)
are employed in numerical simulations. The reason for
this choice is that when certain contagious disease out-
breaks in a specific region, the condition is imposed that
nobody can enter or leave the area. So, the cases of com-

plete lockdown are better described by no-flux bound-
ary conditions. These conditions proved their efficacy
among the most effective measures against COVID-19
outbreak. Then, the model can be utilized to track the
changes in infections and their spatial distribution in the
course of time. Consider system (2) with the following
initial conditions and no flux boundary conditions,

S(x, 0) =
{
0.5x 0 ≤ x ≤ 1/2,
0.5(1 − x) 1/2 ≤ x ≤ 1,
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A(x, 0) =
{
0.3x 0 ≤ x ≤ 1/2,
0.3(1 − x) 1/2 ≤ x ≤ 1,

I (x, 0) =
{
0.1x 0 ≤ x ≤ 1/2,
0.1(1 − x) 1/2 ≤ x ≤ 1,

R(x, 0) =
{
0.1x 0 ≤ x ≤ 1/2,
0.1(1 − x) 1/2 ≤ x ≤ 1.

Figure 10 shows that the numerical solution con-
verges to the uniform disease-free steady state at the
selected values of parameters, whereas the other val-
ues of parameters for Fig. 11 render that the solution
approaches the uniform endemic steady state. As it can
be seen from these figures, the results of numerical sim-

ulations are in agreement with stability analysis results
which are presented in Sect. 2.

All the sketches in Fig. 10 reflect that at disease-free
state point, the susceptible populace S(x, t) becomes
equal to the whole population, which is one in this case.
As at this point infected populace becomes zero, so are
the values of A(x, t) and R(x, t). These values are in
line with the disease phenomenon. Graphically pattern
(a) unlocks the important fact that the susceptible pop-
ulation attains the disease-free steady state within the
due course of time. Also, the graph (a) shows that the
rate of convergence is appropriate. Similarly, the tem-
plate (b) depicts that asymptomatic individuals become
zero within a due course of time and within a required

Fig. 10 Simulations of a S(x, t), b A(x, t), c I (x, t) and d R(x, t) using positivity preserving implicit method for h = 0.1, R j = 0.3,
j = 1, 2, 3, 4 and di = 0.01, i = 1, 2, 3, 4
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Fig. 11 Simulations of a S(x, t), b A(x, t), c I (x, t) and d R(x, t) using positivity preserving implicit method for h = 0.1, R j = 0.3,
j = 1, 2, 3, 4 and di = 0.01, i = 1, 2, 3, 4

space. Also, the graph (b) shows that initially at t = 0,
the asymptomatic populace has some nonzero value.
But, with the passage of time, the value of the state
variables A(x, t) becomes zero. In addition, the other
state variables I (x, t), infected individuals at certain
time t , and fixed space x and R(x, t), the removed or
recovered individuals at some time t and certain place
x converge toward infection-free stable state, which
is in accordance with the natural phenomenon of dis-
ease. All the facts reflected by the graphs represented in
Fig. 11 illustrate that the projected numerical scheme
converges toward the exact steady state as computed

analytically. Moreover, the projected scheme retains
the positivity property as pre-assumed for the scheme.

All the numerical patterns in Fig 11 exhibit that
numerical solutions converge toward the correct homo-
geneous endemic stable state of the system. The
endemic stable state is calculated in Sect. 2. The numer-
ical template (a) shows the trajectory of convergence
for the susceptible portion. The numerical value and the
analytical value coincide at the point of convergence,
which implicates the worth of the proposed implicit
method. Also, the numerical solution for S(x, t) shows
that it remains positive over the whole domain of the
model and further the solution presented by the implicit
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scheme does not show any abrupt behavior or non-
physical oscillation. Pacing on the same track, the
graph (b) also targets the endemic equilibrium within
the feasible time duration and in certain region of
space domain. Moreover, the graphical pattern shows
no anomalous behavior and provides with the pos-
itive solutions throughout the domain of space and
time. Since the diffusion is considered in the model
along with the space, the infected individuals are rep-
resented by I (x, t). The graph (c) reflects the behavior
of the numerical solutions in the domain of time and
space along with the suitably chosen values of param-
eters. These values of parameters help to understand
the dynamics of the COVID-19 reaction–diffusion sys-
tem. It is evident from the graph that the state variable
I (x, t) reaches toward the true value of the endemic
steady state. By adopting the different values of space
and time coordinates. Likewise, the recovered individu-
als R(x, t) also provide the correct numerical solutions
against the selected set of parametric values. The para-
metric values are selected in such a way that they obey
some specific criteria. Hence, the proposed implicit
scheme is a strong numerical tool that provides reli-
able set of solutions for this type of models.

8 Conclusion

A novel reaction–diffusion COVID-19 model is con-
sidered in this work. The system is first investigated in
view of its equilibrium points and their stability anal-
ysis. Stability regions and influences of key param-
eters are explored and discussed. The importance of
results obtained arises because the movement activities
of people are found to cause significant dynamic qual-
itative changes relative to those of classical temporal-
only model. In particular, the simultaneous occurrence
of two stable uniform equilibrium points is permitted
in state space of spatiotemporal model in contrast to
ODEs-based model in which only one stable equilib-
rium point can exist in its state space. Furthermore, we
develop a structure preserving finite difference method
for simulating the new COVID-19 model. A consis-
tency and stability analysis for the proposed system
are provided along with positivity of the its solutions.
The results prove that the proposed new system bet-
ter simulates the spread of the virus and can stimulate
study of some actions to control it in near future work.
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