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Abstract The periodic transcription output is ubiq-
uitously observed in an isogenic cell population. To
understandmechanisms of cyclic behavior in transcrip-
tion, we extend the gene activation process in the two-
state model by assuming that the synthesis rate is peri-
odic. We derive the analytical forms of the mean tran-
script level and the noise. The limits of them indi-
cate that the mean level and the noise display periodic
behaviors. Numerical examples strongly suggest that
the transcription system with a periodic synthesis rate
generates more noise than that with a constant rate but
maintains transcription homeostasis in each period. It
is also suggested that if the periodicity is not consid-
ered, the calculated noise may be greater than the real
value.

Keywords Stochastic gene transcription · Periodic
synthesis rate · Cyclic behavior · Transcription noise

1 Introduction

Gene transcription in single cells is known to fluctuate
stochastically in time and involves numerous succes-
sive steps [17,22,30]. The randomly switching of pro-
moter between periods of active and inactive is thought
to be the main source that leads to a large variability in
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mRNA levels. Two other functionally related processes
to mRNA levels are synthesis and degradation. The
synthesis rate is an important parameter in gene tran-
scription, which may vary with time [28,35,46]. When
intracellular environment varies, genes alter synthesis
and/or degradation rates to readjust mRNA concentra-
tions [28]. Such rates can be understood as upstream
cellular drives that respond to changes of cellular envi-
ronment [5].

Cyclic behavior is ubiquitous in transcription. Both
in yeast and mammalian cells, a high proportion of
genes express periodically [1]. Using high-density
oligonucleotide microarrays and a cosine wave-fitting
algorithm, Harmer et al. [11] identified clusters of
circadian-regulated genes among more than 8000
genes. Inmany cells, there are some clock genes,whose
transcriptional regulatory network plays an important
role in generating cell-autonomous circadian rhythms
[6,19]. And the clock gene mechanism shows circa-
dian oscillation of mRNA levels and time-related vari-
ations in the rate of change of clock gene expression
[23]. Some transcriptional activators, such as BMAL1
and CLOCK, can regulate the period transcriptional
repressor [19]. The mechanism of the circadian clock
governs circadian transcript outputs of thousands of
genes by affecting production, degradation of mRNAs
and posttranscriptional regulation [21]. In addition, the
light and temperature have the same effect on regulat-
ing gene expressions. The light and temperature cycles
are the basic alternating environment in the world.
Many organisms on Earth have adapted themselves to
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such alternating environment. Many fungi and yeast
can exhibit periodic cellular activity to environmental
stresses by using a dual sensing mechanism for tem-
perature and light [26]. Recently, Zhuang et al. [45]
uncovered that a circadian rhythm factor, BMAL1, is
able to bind HBV genomes and increases viral pro-
moter activity. In their experiments, synchronized dif-
ferentiated HepaRG cells show a circadian cycling of
Bmal1/Rev-Erbα transcripts.

To understand molecular mechanisms of cyclic
behavior in transcription, we describe the two-state
model in detail by assuming the transcription rate to
be periodic in Sect. 2. We then present the master
equations and the differential equations. The transcrip-
tional output and stochasticity of gene transcription
have often been quantified by the mean, the noise and
the noise strength [20,22,25,27,40]. For a randomvari-
able X , E[X ] denotes themean value, and the noise and
the noise strength are defined by

η2[X ] = Var[X ]
[
E[X ]]2

and φ[X ] = Var[X ]
E[X ] , (1)

respectively, where Var[X ] denotes its variance. To
characterize the stochasticity, we state the main math-
ematical results and present detailed proofs in Sect.
3. Our results show that the mean transcript level and
the noise display periodic behaviors when the time is
large.We perform numerical simulations to explore the
contribution of the periodic mRNA synthesis rate on
transcription in Sect. 4. We compare the mean level
and the noise at different amplitudes of synthesis rates.
The observations suggest that the increase in ampli-
tude leads to large transcription noise, but maintains
transcriptional output homeostasis in each period.With
a synthesis rate like the cosine function, we derive the
average level of transcripts and its average noise during
a time interval. We find that the average noise may be
larger than η2(t), even themaximal value. This demon-
strates that the noise calculated from the experimental
data is enlarged if the periodicity is not considered.

2 The model

2.1 The characterization of gene transcription

In this work, we continue to focus on a stochastic
gene transcription model to investigate the dynamics

of gene transcription and the fluctuation of transcripts.
As usual, we employ the prevailing two-state model
to characterize the transcription process, where mRNA
transcripts are produced in burst in short active peri-
ods separated by long inactive periods. The main dif-
ference in this paper is that we consider the environ-
ment contribution to the transcription, where the envi-
ronment changes periodically. Almost all living things
in this world have developed their own intact circa-
dian clock systems, which regulate their physiologi-
cal mechanisms to answer daily changes in the envi-
ronment. At the molecular level, mRNAs and proteins
always oscillate in cycles of approximately 24-h to cre-
ate the circadian rhythms. In fact, stimulated by cyclical
environment, cells or organisms exhibit behavior with
constant periodicity in many cases.

In this model, we hypothesize that the mRNA pro-
duction rate ν(t) is periodic with respect to t , that is,

ν(t + T ) = ν(t) for t ≥ 0, (2)

where T > 0 is the period of ν(t). To describe our
model more clearly, wemake some assumptions as fol-
lows:

(i) The transcription system randomly rotates within
the two functional states: the active (gene ON)
state and the inactive (gene OFF) state.

(ii) The durations in the ON and OFF states are inde-
pendently and exponentially distributed with rates
γ > 0 and λ > 0, respectively.

(iii) Transcripts are produced with a synthesis rate
ν(t) ≥ 0 only when the gene is active and are
turned over with a degradation rate δ > 0 in each
state.

(iv) The synthesis rateν(t)has a constant periodT > 0
and is bounded and integrable over any interval.

TheOFF state is characterized by the lack of specific
binding of the TF to the enhancer and no enzyme RNA
polymerase elongating to the coding region. The entry
of theON state requires the TFs to bind at the enhancers
to form a stable TF–DNA complex and the enzyme
RNA polymerase to bind at the promoter. When the
last engaged pol II leaves the coding region, the gene
returns to the OFF state. Thus, Assumptions (i) and (ii)
are basal andwidely employed tomodel gene transcrip-
tion. In mammalian cells, many intracellular behaviors
are regulated by a circadian clock that generates intrin-
sic rhythmswith a periodicity of approximately 24 hour
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[11]. Thus, Assumptions (iii) and (iv) should be con-
sidered to investigate gene expression.

As usual, we calculate the mean and the noise of
transcript number. Let M(t) denote the transcript num-
ber of a gene of interest in single cells at time t . In sin-
gle cells, M(t) is a natural number which varies over a
very large region. In a population of isogenic cells, one
expects to count how many transcripts produced per
cell. That value is usually given by the first moment of
M(t), that is,

m(t) = E[M(t)]. (3)

To determine how the numbers of transcripts measured
in individual cells deviate from the mean, we compute
the noise

η2(t) = σ 2(t)

m2(t)
= μ(t) − m2(t)

m2(t)
, where

μ(t) = E[M2(t)]. (4)

Clearly, the noise is completely determined by the first
moment E[M(t)] and the second moment E[M2(t)].
From (3) and (4), both the mean and the noise are real-
time values. It is difficult to derive these values using
experimental data obtained at one time.With the help of
approach named smFISH (single-molecule fluorescent
in situ hybridization), mRNA abundance and transcrip-
tional activity in yeast [42], mRNA copies in bacteria
[9,32] and in mammalian cells [30,33] were measured.
Usually, the transcript levels and the noises derived by
using these data are close to the average transcript level
and the average noise, which are defined by

〈m(t)〉 = 1

t

∫ t

0
m(τ )dτ, 〈η2(t)〉 = 〈μ(t)〉 − 〈m(t)〉2

〈m(t)〉2 ,

(5)

where the second moment is

〈μ(t)〉 = 1

t

∫ t

0
μ(τ)dτ.

The two values in (5) describe the average level of
transcripts during the time interval [0, t] and the corre-
sponding noise.

2.2 The master equations

For any given time t ≥ 0, we let I (t) specify the pro-
moter state, with I (t) = 0when the promoter is in OFF
state, and I (t) = 1 in ON state. Then, the transcrip-
tion state can be fully quantified by the following joint
probabilities

P0(m, t) =Prob{I (t) = 0, M(t) = m},
m =0, 1, 2, . . . , (6)

P1(m, t) =Prob{I (t) = 1, M(t) = m},
m =0, 1, 2, . . . . (7)

By using the Kolmogorov forward equations, we
calculate the time evolutions of these probabilities (6)
and (7), which give the master equations of our model.
Suppose that the promoter resides at ON state with m
copies of transcripts at time t + h for an infinitesimal
time increment h > 0. Then, the basic Assumptions
(i)–(iii) imply that, by discarding the events with tran-
sition probabilities of second or higher order of h, one
of the four state transition events in Table 1 must occur
during the time interval (t, t+h). Adding the four prob-
abilities listed in Table 1 gives

P1(m, t + h) = [1 − ν(t)h](1 − mδh)(1 − γ h)P1(m, t)

+ ν(t)hP1(m − 1, t)

+ (m + 1)δP1(m + 1, t)

+ λhP0(m, t). (8)

By dividing the resulted equality by h and then letting
h → 0, we obtain

P ′
1(m, t) = ν(t)P1(m − 1, t) + λP0(m, t)

+ (m + 1)δP1(m + 1, t)

− [ν(t) + γ + mδ]P1(m, t). (9)

Next, we suppose that the promoter resides at OFF
state with m copies of mRNA molecules at time t + h.
Since the transcription is closed when the promoter is
inactivated, then there is no transcript being produced
during (t, t + h). By a similar discussion, we have

P0(m, t + h) = (1 − mδh)(1 − λh)P0(m, t)

+ (m + 1)δP0(m + 1, t) + γ hP1(m, t).
(10)
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Table 1 State transitions occurring during (t, t + h)

Initial state (t) Terminal state (t + h) Event probability

(a) (ON, m) (ON, m) P1(m, t)(1 − mδh)(1 − γ h)(1 − ν(t)h)

(b) (OFF, m) (ON, m) P0(m, t)λh

(c) (ON, m + 1) (ON, m) P1(m, t)(m + 1)δh

(d) (ON, m − 1) (ON, m) P1(m − 1, t)ν(t)h

(a) There is no production or elimination of transcripts and switch of the promoter states taking place. (b) The promoter is activated by
binding Pol II. (c) One transcript is turned over. (d) One transcript is produced

From Eq. (10), we obtain

P ′
0(m, t) = γ P1(m, t) + (m + 1)δP0(m + 1, t)

− (λ + mδ)P0(m, t). (11)

By adding the joint probabilities P0(m, t), P1(m, t)
in (6) and (7) when m takes all natural numbers, we
derive two probabilities

P0(t) =
∞∑

m=0

P0(m, t) and P1(t) =
∞∑

m=0

P1(m, t).

(12)

The random switches of promoter between the two
states can be considered as an alternating renewal pro-
cess.

2.3 The differential equations

We assume that the transcription starts from the gene
OFF state and only consider the newly transcribed
mRNA, which give the initial condition as

P0(0, 0) = 1, P0(m, 0) = 0 for m > 1 and

P1(m, 0) = 0 for m ≥ 0. (13)

By adding (9) and (11) in m, we obtain a closed
system of P0(t) and P1(t), that is,

{
P ′
0(t) = γ P1(t) − λP0(t),

P ′
1(t) = λP0(t) − γ P1(t),

(14)

and the initial values are P0(0) = 1 and P1(0) = 0.
Solving (14) with the initial condition gives the fol-
lowing lemma.

Lemma 2.1 If the durations that the promoter resides
at OFF and ON states are exponentially distributed
with rates λ and γ , and the initial condition (13) holds,
then

P0(t) = γ

λ + γ
+ λ

λ + γ
e−(λ+γ )t and

P1(t) = λ

λ + γ
− λ

λ + γ
e−(λ+γ )t . (15)

It is easy to find that both P0(t) and P1(t) approach
their constant limits

P∗
0 = γ

λ + γ
and P∗

1 = λ

λ + γ

when time t tends to infinity, and P1(t) is increasing
over the time interval (0,∞). The two values P0(t) and
P1(t) represent the probabilities that the cell resides
OFF and ON states at time t . On the other hand, they
also tell what percentages of cells reside at these two
states at time t in a population of isogenic cells.

By definition, themean number ofmRNAmolecules
is

m(t) = E[M(t)] =
∞∑

m=0

mP(m, t)

=
∞∑

m=0

m[P0(m, t) + P1(m, t)], (16)

where P(m, t) is the probability that there exist exactly
m transcripts in the cell at time t and is defined as

P(m, t) = P0(m, t) + P1(m, t).

Bydifferentiating (16)with respect to t and substituting
(9) and (11) into the result, we derive
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m′(t) =
∞∑

m=0

m[P ′
0(m, t) + P ′

1(m, t)]

= ν(t)P1(t) − δm(t). (17)

From the initial condition (13), we know m(0) = 0.
To calculate the second moment of transcripts, we

need to define two mean levels

m0(t) =
∞∑

m=0

mP0(m, t) and

m1(t) =
∞∑

m=0

mP1(m, t), (18)

which shows that

m(t) = m0(t) + m1(t).

The second moment of M(t) is

μ(t) = E[M2(t)] =
∞∑

m=0

m2P(m, t)

=
∞∑

m=0

m2[P0(m, t) + P1(m, t)]. (19)

Differentiating (19) and with the assistance of (9) and
(11) again, we obtain its time evolution as

μ′(t) =
∞∑

m=0

m2[P ′
0(m, t) + P ′

1(m, t)]

= 2ν(t)m1(t) + ν(t)P1(t) + δm(t) − 2δμ(t).
(20)

The initial condition for μ(t) is μ(0) = 0.
Solving the two differential Eqs. (17) and (20) with

their initial conditions, we will derive the analytical
expressions of m(t) and μ(t), and then, we can give
the noise and the noise strength by their definitions (4).

3 Results

3.1 The mean transcript level

The external environment, such as light and temper-
ature, and cellular environment, such as metabolism
and resource supplies, always vary periodically, mak-
ing mRNA and protein molecules also fluctuate peri-
odically. In the section, we investigate the behavior of
gene transcription which is regulated by the periodic
changes in environment by assuming that the produc-
tion rate ν(t) is periodic over (0,∞). The following
theorem tells us how many transcripts per cell one
expects to count at time t in a population of isogenic
cells and the average transcript number in one period
when time t tends to infinity.

Theorem 3.1 Assume that the transcription of a gene
obeys the model described in Fig. 1, and themRNA syn-
thesis rate ν(t) is periodic and bounded. Under the ini-

Fig. 1 Stochastic gene transcription with a periodic synthesis
rate. The promoter is activated by binding TFs at the enhancers
forming a stable TF–DNA complex and binding RNA poly-
merase at the TATA box. RNA polymerases move along the tem-

plate at the encoding region and synthesize RNAmolecules with
a periodic production rate ν(t). RNA molecules are turned over
with a constant rate δ
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tial condition (13), the expected value m(t) = E[M(t)]
of its mRNA copy number M(t) is given by

m(t) = e−δt
∫ t

0
ν(τ)P1(τ )eδτdτ. (21)

Let 〈m(t)〉T be the expected value of m(t) over time
interval [t, t + T ], that is,

〈m(t)〉T = 1

T

∫ t+T

t
m(τ )dτ. (22)

Then, when time t tends to infinity, we have

mT = lim
t→∞〈m(t)〉T = λ

λ + γ
· 1
δ

· 1

T

∫ T

0
ν(τ)dτ.

(23)

Proof The analytical expression of m(t) is obtained
by solving the linear differential Eq. (17) with initial
condition m(0) = 0. For any periodic function ν(t), if
it is integrable, we can derive the mean transcript level
at time t by calculating (21).

When calculating the second moment of transcript
number M(t), we need the analytical expressions of
m0(t) andm1(t). From (16), the expression ofm(t) can
also be derived by summing m0(t) and m1(t). Multi-
plying (9) and (11) bym and summing up the products
lead to

m′
0(t) =γm1(t) − (λ + δ)m0(t), (24)

m′
1(t) =λm0(t) − (γ + δ)m1(t) + ν(t)P1(t). (25)

From the initial condition (13), when the transcription
starts at time t = 0, the initial values of m0(t) and
m1(t) are

m0(0) = 0 and m1(0) = 0.

We solve the two differential Eqs. (24) and (25) with
their initial values and derive

m0(t) = γ e−δt

λ + γ

∫ t

0
ν(τ)P1(τ )eδτdτ

− γ e−(δ+λ+γ )t

λ + γ

∫ t

0
ν(τ)P1(τ )e(δ+λ+γ )τdτ,

m1(t) = λe−δt

λ + γ

∫ t

0
ν(τ)P1(τ )eδτdτ

+ γ e−(δ+λ+γ )t

λ + γ

∫ t

0
ν(τ)P1(τ )e(δ+λ+γ )τdτ.

Summingm0(t) andm1(t) together gives the analytical
expression of m(t). The expected value of m(t) over
[t, t+T ] can be obtained by substituting (21) into (22),
that is,

〈m(t)〉T = 1

T

∫ t+T

t

[
e−δs

∫ s

0
ν(τ)P1(τ )eδτdτ

]
ds.

By changing the order of integration, the integral is
rewritten as

〈m(t)〉T = 1

T

∫ t

0

[ ∫ t+T

t
e−δsν(τ )P1(τ )eδτds

]
dτ

+ 1

T

∫ t+T

t

[ ∫ t+T

τ

e−δsν(τ )P1(τ )eδτds
]
dτ

= 1

δT

[∫ t+T

t
ν(τ )P1(τ )dτ

+
∫ t

0
ν(τ )P1(τ )eδ(τ−t)dτ

−
∫ t+T

0
ν(τ )P1(τ )eδ(τ−t−T )dτ

]
.

To derive (23), we let t → ∞ in 〈m(t)〉T . Since ν(t)
is bounded and integrable, and limt→∞ e−(λ+γ )t = 0,
by using L’Hôpital’s rule, we get

lim
t→∞

∫ t+T

t
ν(τ)e−(λ+γ )τdτ = 0.

Note that P1(t) has been given in Lemma 2.1. Then,
the limit of the first integral is

lim
t→∞

∫ t+T

t
ν(τ)P1(τ )dτ

= lim
t→∞

∫ t+T

t
ν(τ)

(
λ

λ + γ
− λ

λ + γ
e−(λ+γ )τ

)
dτ

= λ

λ + γ

∫ T

0
ν(τ)dτ.
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We decompose the third integral into
∫ t+T

T
ν(τ)P1(τ )eδ(τ−t−T )dτ

+
∫ T

0
ν(τ)P1(τ )eδ(τ−t−T )dτ.

When time t tends to infinity,

lim
t→∞

∫ T

0
ν(τ)P1(τ )eδ(τ−t−T ) = 0.

We only need to calculate

lim
t→∞

[∫ t

0
ν(τ)P1(τ )eδ(τ−t)dτ

−
∫ t+T

T
ν(τ)P1(τ )eδ(τ−t−T )dτ

]
,

which equals

lim
t→∞

[∫ t

0
ν(τ )P1(τ )eδ(τ−t)dτ

−
∫ t

0
ν(τ + T )P1(τ + T )eδ(τ−t)dτ

]

= lim
t→∞

∫ t

0
ν(τ ) [P1(τ ) − P1(τ + T )] eδ(τ−t)dτ = 0.

Since 0 < P1(t+T )−P1(t) → 0 as t → ∞ and ν(t) is
bounded, by applyingL’Hôpital’s rule, we derive above
limit. Now, we have obtained (23) and completed the
proof. 	


In fact, from (23) it is easy to find that
∫ T
0 ν(τ)dτ/T

is the averageproduction rate over oneperiod.Although
many genes transcribe periodically, the average tran-
script numbers over one period always maintain home-
ostasis, no matter the synthesis rate is periodic or con-
stant, or rewritten as

The mRNA production rate (or its average)

The degradation rate

× The frequency of elongation. (26)

Since ν(t) is periodic, m(t) has no limit as t → ∞.
But the next theorem tells us that the mean level m(t)
will tend to a periodic function with period T when
t → ∞.

Theorem 3.2 Suppose that ν(t) has positive period T .
Then, there exists a unique periodic function

m∗(t) =
[

1

eδT − 1

∫ T

0
ν(τ)eδτdτ

+
∫ t

0
ν(τ)eδτdτ

]
λ

λ + γ
e−δt (27)

such that

lim
t→∞

[
m(t) − m∗(t)

] = 0. (28)

Proof We first prove that m∗(t) is periodic on [0,∞).
From its expression, it is easy to find that

m∗(t + T ) =
[

1

eδT − 1

∫ T

0
ν(τ)eδτdτ

+
∫ t+T

0
ν(τ)eδτdτ

]
λ

λ + γ
e−δ(t+T )

=
[

1

eδT − 1

∫ T

0
ν(τ)eδτdτ

+
∫ T

0
ν(τ)eδτdτ +

∫ t+T

T
ν(τ)eδτdτ

]

× λ

λ + γ
e−δ(t+T )

=
[

eδT

eδT − 1

∫ T

0
ν(τ)eδτdτ

+
∫ t+T

T
ν(τ)eδτdτ

]
λ

λ + γ
e−δ(t+T )

=
[

eδT

eδT − 1

∫ T

0
ν(τ)eδτdτ

+eδT
∫ t

0
ν(τ)eδτdτ

]
λ

λ + γ
e−δ(t+T )

=
[

1

eδT − 1

∫ T

0
ν(τ)eδτdτ

+
∫ t

0
ν(τ)eδτdτ

]
λ

λ + γ
e−δt

= m∗(t),

and thus, m∗(t) is periodic and continuous on (0,∞).
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Next, we prove the limit (28) holds. Taking limits to
m(t) − m∗(t) as t → ∞, we derive that

lim
t→∞[m(t) − m∗(t)]

= lim
t→∞

[
λ

λ + γ
e−δt

∫ t

0
ν(τ)(1 − e−(λ+γ )τ )eδτ dτ − m∗(t)

]

= lim
t→∞

[
λ

λ + γ
e−δt

∫ t

0
ν(τ)eδτ dτ − m∗(t)

]
.

The limit holds since

0 ≤ lim
t→∞ e−δt

∫ t

0
ν(τ)e−(λ+γ )τ eδτdτ = 0.

Substituting m∗(t) into above limit, we have

lim
t→∞[m(t) − m∗(t)] = lim

t→∞
λ

λ + γ
e−δt

· 1

eδT − 1

∫ T

0
ν(τ)eδτdτ = 0.

We completed the proof. 	

Proposition 3.1 Let 〈m(t)〉 be the expected value of
transcripts over time interval [0, t], that is,

〈m(t)〉 = 1

t

∫ t

0
m(τ )dτ. (29)

Then, we have

lim
t→∞〈m(t)〉 = λ

λ + γ
· 1

δT

∫ T

0
ν(τ)dτ. (30)

Proof By definition, 〈m(t)〉 is the average of the mean
m(t) over time interval [0, t]. Taking limits to 〈m(t)〉,
we have

lim
t→∞〈m(t)〉 = lim

t→∞
1

t

∫ t

0

[
m(τ ) − m∗(τ ) + m∗(τ )

]
dτ

= lim
t→∞

1

t

∫ t

0
m∗(τ )dτ.

The last equality holds since m(t) − m∗(t) → 0 as
t → ∞. For any t ≥ T , there is an integer k ≥ 1 such
that kT ≤ t < (k + 1)T . Then,

lim
k→∞

1

(k + 1)T

∫ kT

0
m∗(τ )dτ

≤ lim
t→∞

1

t

∫ t

0
m∗(τ )dτ ≤ lim

k→∞
1

kT

∫ (k+1)T

0
m∗(τ )dτ.

Since m∗(t) is positive and periodic, we have

lim
k→∞

1

(k + 1)T

∫ kT

0
m∗(τ )dτ

= lim
k→∞

1

kT

∫ (k+1)T

0
m∗(τ )dτ = mT .

This completes the proof. 	

Lemma 3.1 Under the same condition of Theorem3.1,
when time t tends to infinity, m1(t) tends to a periodic
function m∗

1(t), where

m∗
1(t) =

[
1

eδT − 1

∫ T

0
ν(τ)eδτdτ

+
∫ t

0
ν(τ)eδτdτ

]
λ2e−δt

(λ + γ )2

+
[

1

e(λ+γ+δ)T − 1

∫ T

0
ν(τ)e(λ+γ+δ)τdτ

+
∫ t

0
ν(τ)e(λ+γ+δ)τdτ

]
λγ e−(λ+γ+δ)t

(λ + γ )2
.

3.2 The noise of transcripts

In this subsection,wewill give the analytical formula of
the noise function in integrals. Because of its technical
complexity, the biological implication of the dynamical
noise formula will not be discussed in detail. The limit
of the noise as t → ∞ gives the “stationary” noise,
which is also a periodic function.

Theorem 3.3 Under the same condition of Theorem
3.1, the secondmoment of themRNAcopy number M(t)
is

μ(t) = e−2δt
∫ t

0

[
2ν(τ)m1(τ ) + δm(τ )

+ ν(τ)P1(τ )
]
e2δτdτ. (31)

Let 〈μ(t)〉T be the expected value of μ(t) over the time
interval [t, t + T ], that is,

〈μ(t)〉T = 1

T

∫ t+T

t
μ(τ)dτ.

Then, taking limits to 〈μ(t)〉T with respect to t , we have

μT = lim
t→∞〈μ(t)〉T = 1

δT

∫ T

0
ν(τ)m∗

1(τ )dτ + mT .

(32)
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Proof We have given the time evolution of the second
momentμ(t) as shown in (20). Solving this differential
equation with initial conditionμ(0) = 0, we can derive
the analytical expression (31). Integrating μ(t) over
[t, t + T ] and dividing by T give 〈μ(t)〉T , that is,

〈μ(t)〉T = 1

T

∫ t+T

t
e−2δs

∫ s

0
[2ν(τ)m1(τ ) + ν(τ)P1(τ ) + δm(τ )] e2δτdτds.

For simplicity, we use

f (t) = 2ν(t)m1(t) + ν(t)P1(t) + δm(t)

to denote the integrand of the above integral. By the
expression, we find that f (t) tends to a periodic func-
tion f ∗(t), where

f ∗(t) = 2ν(t)m∗
1(t) + ν(t)P∗

1 + δm∗(t). (33)

In fact

f (t) − f ∗(t) = 2ν(t)m1(t) + ν(t)P1(t) + δm(t)

− 2ν(t)m∗
1(t) − ν(t)P∗

1 (t) − δm∗(t)
= 2ν(t)[m1(t) − m∗

1(t)]
+ ν(t)[P1(t) − P∗

1 ] + δ[m(t) − m∗(t)].

Theorem 3.2 and Lemma 3.1 have shown m(t) −
m∗(t) → 0 and m1(t) − m∗

1(t) → 0 when t → ∞. In
Lemma 2.1, we have proved P1(t)− P∗

1 (t) → 0. Thus,
f (t) goes to the periodic function f ∗(t).
We reverse the order of integration in 〈μ(t)〉T to get

〈μ(t)〉T = 1

T

∫ t

0

∫ t+T

t
e−2δs f (τ )e2δτdsdτ

+ 1

T

∫ t+T

t

∫ t+T

τ

e−2δs f (τ )e2δτdsdτ

= 1

2δT

[∫ t+T

t
f (τ )dτ +

∫ t

0
f (τ )e2δ(τ−t)dτ

−
∫ t+T

0
f (τ )e2δ(τ−t−T )dτ

]
.

Now, we can calculate the limit limt→∞〈μ(t)〉T
when t goes to infinity. In fact, the limit of the last
two integrals in 〈μ(t)〉T is

lim
t→∞

[∫ t

0
f (τ )e2δ(τ−t)dτ −

∫ t+T

0
f (τ )e2δ(τ−t−T )dτ

]

= lim
t→∞

[∫ t

0
f (τ )e2δ(τ−t)dτ

−
∫ t+T

T
f (τ )e2δ(τ−t−T )dτ −

∫ T

0
f (τ )e2δ(τ−t−T )dτ

]

= lim
t→∞

[∫ t

0
f (τ )e2δ(τ−t)dτ

−
∫ t

0
f (τ + T )e2δ(τ−t)dτ − e−2δt

∫ T

0
f (τ )e2δ(τ−T )dτ

]

= lim
t→∞

[
e−2δt

∫ t

0

[
f (τ ) − f (τ + T )

]
e2δτdτ

−e−2δt
∫ T

0
f (τ )e2δ(τ−T )dτ

]
.

Since limt→∞[ f (t) − f (t + T )] = 0, the first limit is

lim
t→∞ e−2δt

∫ t

0

[
f (τ ) − f (τ + T )

]
e2δτdτ = 0.

The integral
∫ T
0 f (τ )e2δ(τ−T )dτ is bounded, and the

second limit is

lim
t→∞ e−2δt

∫ T

0
f (τ )e2δ(τ−T )dτ = 0.

Then,

lim
t→∞〈μ(t)〉T

= lim
t→∞

1

2δT

∫ T

0
f (τ + t)dτ

= 1

δT

∫ T

0
ν(τ)m∗

1(τ )dτ + mT .

We completed the proof. 	

Theorem 3.4 Under the same condition of Theorem
3.3, there exists a unique periodic function μ∗(t) such
that

lim
t→∞[μ(t) − μ∗(t)] = 0, (34)

where μ∗(t) is defined as

μ∗(t) =
[

1

e2δT − 1

∫ T

0
f ∗(τ )e2δτdτ

+
∫ t

0
f ∗(τ )e2δτdτ

]
e−2δt , (35)

with f ∗(t) = 2ν(t)m∗
1(t) + ν(t)P∗

1 + δm∗(t).
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Proof By using a similar discussion as that in the proof
of Theorem 3.2, we can prove thatμ∗(t) is periodic and
continuous on [0,∞). In fact,

μ∗(t + T ) =
[

1

e2δT − 1

∫ T

0
f ∗(τ )e2δτdτ

+
∫ t+T

0
f ∗(τ )e2δτdτ

]
e−2δ(t+T )

=
[

e−2δT

e2δT − 1

∫ T

0
f ∗(τ )e2δτdτ + e−2δT

∫ t+T

0
f ∗(τ )e2δτdτ

]
e−2δt

=
[

1

e2δT − 1

∫ T

0
f ∗(τ )e2δτdτ

+e−2δT
∫ t+T

T
f ∗(τ )e2δτdτ

]
e−2δt

=
[

1

e2δT − 1

∫ T

0
f ∗(τ )e2δτdτ

+
∫ t+T

T
f ∗(s)e2δsds

]
e−2δt

= μ∗(t).

We only need to show the limit (34) holds. It follows
from the expressions of that

μ∗(t) − μ(t) =
[

1

e2δT − 1

∫ T

0
f ∗(τ )e2δτdτ

+
∫ t

0
[ f ∗(τ ) − f (τ )]e2δτdτ

]
e−2δt .

Taking limits to μ∗(t) − μ(t) and noticing that

lim
t→∞

[
1

e2δT − 1

∫ T

0
f ∗(τ )e2δτdτ

]
e−2δt = 0,

we see

lim
t→∞ [μ∗(t) − μ(t)]

= lim
t→∞

[∫ t

0
[ f ∗(τ ) − f (τ )]e2δτdτ

]
e−2δt .

In the proof of Theorem 3.3, we have shown that

lim
t→∞[ f ∗(t) − f (t)] = 0.

By applying L’Hôpital’s rule, we derive the limit
limt→∞[μ∗(t) − μ(t)] = 0. 	


Proposition 3.2 Let 〈μ(t)〉 be the average value of the
second moment μ(t) on the time interval (0, t], that is,

〈μ(t)〉 = 1

t

∫ t

0
μ(τ)dτ. (36)

Then, when time t tends to infinity, we have

lim
t→∞〈μ(t)〉 = 1

δT

∫ T

0
ν(τ)m∗

1(τ )ddτ + mT . (37)

Proof To get (37), we take limits to 〈μ(t)〉with respect
to t , that is,

lim
t→∞〈μ(t)〉 = lim

t→∞
1

t

∫ t

0
μ(τ)dτ

= lim
t→∞

1

t

∫ t

0

[
μ(τ) − μ∗(τ ) + μ∗(τ )

]
dτ

= lim
t→∞

1

t

∫ t

0
μ∗(τ )dτ.

Since μ(t) − μ∗(t) → 0 when t → ∞, we get

lim
t→∞

1

t

∫ t

0

[
μ(τ) − μ∗(τ )

]
dτ = 0.

For any t ≥ T , there exists an integer k ≥ 1 such that
kT ≤ t ≤ (k + 1)T . Then,

1

(k + 1)T

∫ kT

0
μ∗(τ )dτ

≤ 1

t

∫ t

0
μ∗(τ )dτ

≤ 1

kT

∫ (k+1)T

0
μ∗(τ )dτ.

Notice thatμ∗(t) is positive and periodic. Taking limits
in the above inequalities produces

μT = lim
k→∞

1

(k + 1)T

∫ kT

0
μ∗(τ )dτ

≤ lim
t→∞

1

t

∫ t

0
μ∗(τ )dτ

≤ lim
k→∞

1

kT

∫ (k+1)T

0
μ∗(τ )dτ = μT .

This completes the proof. 	

Now, since the average transcript level m(t) and its

second moment μ(t) have been given, we can give the
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analytical expressions of noises. There are twodifferent
noises, which are defined as

η2(t) =μ(t) − m2(t)

m2(t)
, (38)

〈η2(t)〉 =〈μ(t)〉 − 〈m(t)〉2
〈m(t)〉2 . (39)

The first noise (38) represents the fluctuation of tran-
scripts at time t , which is a real-time value. FromTheo-
rems 3.2 and 3.4, we find η2(t) also approaches a peri-
odic function when time t tends to infinity. The second
one (39) represents the fluctuation of transcripts for all
time on [0, t]. From the two Propositions 3.1 and 3.2,
we find 〈η2(t)〉 approaches a constant.

4 An example and simulations

4.1 The meal transcription level and the noise

Expressions of many mammalian genes have circadian
clocks [39]. Using oligonucleotide arrays representing
12, 488 genes, Storch et al [34] identified 575 genes in
liver and 462 genes in heart with circadian expression
patterns. From the viewpoint that reaction rates will
change with temperature or light, we present a general
method to build a periodic gene transcription model.
Genes are scored as circadian-regulated, if they have
a greater correlation with a cosine test [11]. Johans-
son et al. [15] proposed to use the partial least square
regression to identify genes with periodic fluctuations
in expression levels coupled with the cell cycle in the
budding yeast, where they used sine and cosine curves
for fitting the observed expression profile for each gene.
Kim et al. [18] used the Fourier series to approximate
periodic biological phenomena. Increasing evidences
suggest that periodic genes can be expressed as linear
combinations of sine and cosine functions [2,7,8]. For
this purpose, we consider a set of cosinusoid temper-
ature variations with the period T = 24 hour [21,38],
which determines the transcription rate as

ν(t) = ν0 + A cos

(
2π

T
· t

)
, (40)

where ν0 is the inherent transcription rate at some tem-
perature, and the amplitude A is determined by the tem-
perature difference between day and night. In the fol-

lowing simulations, we choose the inherent transcrip-
tion rate ν0 = 1.89 min−1 as suggested in [33]. To
make sure that ν(t) is positive, the amplitude A must
be smaller than ν0. Other data are determined by using
smFISH to extract the kinetics of Oct4 [33], suggest-
ing that gene activation rate and inactivation rate and
the degradation rate for mature mRNA are

λ = 0.5556 hr−1, γ = 1.0714 hr−1, δ = 0.14 hr−1.

(41)

When the synthesis rate ν(t) ≡ ν0 is a constant, the
average transcript number approaches a steady state
[13,29,31,40], as shown by the black curve in Fig. 2.
Even in the case where the degradation process is not
instantaneous but takes some time, the time delay can-
not lead to the occurrence of any oscillations [24]. But
when ν(t) is periodic, the simulation in Fig. 2 shows
that the transcript level tends to a periodic function and
oscillates around the black curve. Figure 2 also shows
that the amplitude of the mean level increases with the
amplitude of transcription rate. If the synthesis rate ν(t)
is periodic and its amplitude is A = 90, the mean tran-
script level is shown as the blue curve, which is almost
periodic after one period, but its average value over the
interval [0, t] approaches a constant, as shown by the
red curve. And the limit of the average value on [0, t]
is the same as the limit of m(t) with ν(t) ≡ ν0.

For the transcription systemwith a periodic rate ν(t)
as defined in (40), the mean transcript level is

m∗(t) =
[
ν0

δ
+ AδT 2

δ2T 2 + 4π2 cos

(
2π

T
t

)

+ 2π AT

δ2T 2 + 4π2 sin

(
2π

T
t

)]
· λ

λ + γ
, (42)

whose average value over one period [0, T ] is
mT = ν0λ

δ(λ + γ )
.

When ν(t) ≡ ν0, the noise of transcripts is derived
and discussed in several transcription models [4,24,
31,40]. In these models, the noise approaches the limit
value. The behavior of η2(t) is shown by the black
curve, which is almost a constant after two periods. In
fact, for this case, the noise η2(t) has an exact limit,
that is,

lim
t→∞ η2(t) = 1

mT
+ δγ

λ(δ + λ + γ )
.

123



4488 Q. Sun et al.

0 50 100 150 200 250 300 350

Time t in hour

0

50

100

150

200

250

300

350

400
Th

e 
m

ea
n 

tr
an

sc
rip

t l
ev

el

m(t) with A=0
m(t) with A=30
m(t) with A=60
m(t) with A=90
m(t)  with A=90

Fig. 2 The mean transcript levels with different synthesis rates
during fourteen days. When the synthesis rate ν(t) ≡ ν0 is a
constant, the transcript level increases sharply and reaches an
equilibrium state after one period. When ν(t) is periodic with
24 hour, the average transcript level tends to a periodic function,
which is also periodic with 24 hour. And the amplitude of the

mean level is proportional to the amplitude of ν(t). For the case
A = 90, the mean transcript level m(t), as shown by the blue
curve, is almost periodic after one period, but its average value on
time interval [0, t], as shown by the red curve, tends to a steady
value

When ν(t) is periodic, we have proved that both the
first and secondmoments of transcripts tend to periodic
functions in Theorem 3.2 and Theorem 3.4, respec-
tively, and thus, the noise also tends to a periodic func-
tion. In Fig. 3, the simulation shows thatη2(t) exhibits a
periodic behavior and oscillates around the black curve
after two periods and also shows the amplitude of η2(t)
increases with the amplitude of ν(t). When the ampli-
tude A = 90 and the time t > 2T , the noise η2(t)
varies over a narrow range [0.12, 0.24], shown by the
blue curve. But we find that the average noise 〈η2(t)〉
of transcripts over [0, t] tends to a constant value, that
is,

η2T = μT − m2
T

m2
T

≈ 0.2744,

which is greater than the maximal value of η2(t). By a
simple calculation, we get

η2T =
[

1

mT
+ δγ

λ(δ + λ + γ )

]
+ �,

where

� = A2λT 2

2δ(λ + γ )2m2
T[

λδ

δ2T 2 + 4π2 + γ (δ + λ + γ )

(δ + λ + γ )2T 2 + 4π2

]

denotes the extra noise involved by the periodic behav-
ior of the mRNA synthesis rate. From the expression
of�, we find that� ≥ 0, which indicates that the tran-
scription system with a periodic synthesis rate always
produces more noise than that with a constant rate.

According to the discussion above, the noise of tran-
scripts may be magnified. Suppose that samples of
experimental data come from different times. Then, the
calculated values of the mean transcript level and the
noise are close to mT and η2T , respectively. If the syn-
thesis rate ν(t) is periodic but the periodicity is not con-
sidered in analyzing the transcription behavior, then η2T
may be greater than η2(t).
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Fig. 3 The noise of mRNA molecules. When ν(t) is a constant,
the noise η2(t) approaches its limit value (the black curve) after
two periods. When ν(t) is periodic, the noise η2(t) performs
a periodic behavior after two periods. Same as the mean level
m(t), the amplitude of the noise increases with the amplitude of

ν(t). When the time t goes to infinity, the average noise for tran-
scriptional output over [0, t] approaches a steady value, which is
greater than the limit of η2(t) with ν(t) ≡ ν0, as shown by the
red curve

4.2 The amplitude and the delay time

With the development of real-time monitoring tech-
nique in single cells, a large amount of data has been
produced.Numeroushigh-quality statistical approaches
and algorithms are presented to estimate rhythmic
parameters in large datasets. For instance, the JTK_
CYCLE is one of algorithms, which can accurately
measure the period, phase and amplitude of cycling
transcripts in large datasets [12]. Using these statisti-
cal approaches and algorithms, Zhang et al. [43] and
Takahashi [37] detected a circadian gene expression
atlas and a transcriptional architecture circadian clock
in mammals, respectively.

With the help of the JTK_CYCLE algorithm, the
oscillation period T and the absolute amplitude Am∗ of
transcript abundance can be estimated from the exper-
imental data. Then, using (40) and (43), we can obtain
the amplitude and the approximate expression of ν(t),
which are essential for downstream analyses.

From (42), the amplitude of m∗(t) is

Am∗ = AT√
δ2T 2 + 4π2

· λ

λ + γ
. (43)

Since the mean degradation rate coefficient δ is related
to the average half-life by τ1/2 = ln 2/δ, the absolute
amplitude of molecules deviating from the mean level
mT is

Am∗ = AT
√

(ln 2T/τ1/2)2 + 4π2
· λ

λ + γ
, (44)

and the relative amplitude is

am∗ = Am∗

mT
= AT

ν0

√
T 2 + (2πτ1/2/ ln 2)2

. (45)

From (44) and (45), we find that the half-life has oppo-
site effects on them. The long half-life enhances the
absolute amplitude of transcript abundance, but reduces
the relative amplitude, which is consistent with the
result of previous study [21].
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In experiments, it is found that the abundance of
molecules has a later phase than the production rate if
themolecule is rhythmically produced [21]. Let τ be the
delay time between the mean transcription level m∗(t)
and the transcription rate ν(t). For the transcription
model that we present above, we can derive the delay
time from (17), (40) and (42), that is,

τ = T

2π
arctan

(
2π

T
· 1
δ

)
,

which only depends on the period T and the degrada-
tion rate δ. It is clear that τ has an upper bound T/4. For
the example we give above, the delay time τ is about
4.12 hour, as shown in Fig. 4.

5 Conclusion and discussion

Gene transcription in single cells is a complex and
stochastic process, making the transcript copy number
fluctuate in cell population.Highly variablemRNAdis-
tributions are the result of randomly switching between
periods of active and inactive gene expression, and the
birth and death process for the accumulation of mRNA
molecules [14,16,36,40–42,44]. In addition, further
sources of fluctuation, the noisy signals from heteroge-
neous environments are commonly invoked to explain
the observed single-cell variability in mRNA numbers.
To respond to the changes of the environment, cells
generate diverse signal transduction mechanisms and

transmit signals to the cell interior, resulting in changes
in the expression of genes and the activity of enzymes
by regulating the transcription activity [46], the degra-
dation [10] or the switching between periods of active
and inactive states [31].

Almost all light-sensitive organisms from bacteria
to humans have a biological timekeeping mechanism
to make our physiological mechanisms adapt daily
changes in the environment, making cyclic behaviors
be ubiquitous in transcription, which have important
consequences for human health [3]. Therefore, it is
important to understandmolecularmechanisms of such
behaviors. To delineate the contribution of periodic
environmental signals to cell-to-cell variations in tran-
scription, we studied the gene transcription behavior
using the two-state model by assuming that the mRNA
synthesis rate is periodic.

Our results showed that the periodicity of synthe-
sis rate has a pronounced global role in affecting tran-
scriptional output. It drove the mRNA molecules to be
produced in a cyclical manner. Furthermore, the noise
is proved to be periodic. In our simulation example,
we consider circadian-regulated genes and assume that
the synthesis rate is a cosine function. The simulation
example verifies the periodicity of transcriptional out-
put and its noise. As expected, the mean transcription
level oscillates around the average value of transcript
number over one period. Unexpectedly, the average
noise may be larger than the mean noise. The simu-
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Fig. 4 The delay time between the transcription level m∗(t) and the transcription rate ν(t). The abundance of transcripts has a later
phase than the production rate, and the delay time can be obtained by comparing their peak times
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lation shows that the average noise is greater than the
maximal value of the mean noise. Thus, the periodic-
ity should be considered in investigating the stochastic
behavior of transcription of circadian-regulated genes.
If not, the fluctuation of the mRNA level calculated by
experimental data may be amplified compared with its
real value.
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models of gene expression with delayed degradation. Bull.
Math. Biol. 73, 2231–2247 (2011)

25. Munsky, B., Neuert, G., van Oudenaarden, A.: Using gene
expression noise to understand gene regulation. Science 336,
183–187 (2012)

26. Okamoto, S., Furuya, K., Nozaki, S., Aoki, K., Niki, H.:
Synchronous activation of cell division by light or temper-
ature stimuli in the dimorphic yeast Schizosaccharomyces
japonicus. Eukaryot. Cell 12, 1235–1243 (2013)

27. Paulsson, J.: Summing up the noise in gene networks.Nature
427, 415–418 (2004)

28. Pérez-Ortín, J.E., Alepuz, P.M., Moreno, J.: Genomics and
gene transcription kinetics in yeast. Trends Genet. 23, 250–
257 (2007)

29. Pérez-Ortín, J.E., Medina, D.A., Chávez, S., Moreno, J.:
What do you mean by transcription rate? The conceptual
difference between nascent transcription rate and mRNA
synthesis rate is essential for the proper understanding of
transcriptomic analyses. BioEssays 35, 1056–1062 (2013)

30. Raj, A., Peskin, C.S., Tranchina, D., Vargas, D.Y., Tyagi,
S.: Stochastic mRNA synthesis in mammalian cells. PLoS
Biol. 4, 1707–1719 (2006)

31. Ren, J., Jiao, F., Sun, Q., Tang, M., Yu, J.: The dynamics of
gene transcription in randomenvironments.DiscreteContin.
Dyn. Syst. Ser. B 23, 3167–3194 (2018)

32. Skinner, S.O., Sepúlveda, L.A., Xu, H., Golding, I.: Mea-
suring mRNA copy number in individual Escherichia coli
cells using single-molecule fluorescent in situ hybridization.
Nat. Protoc. 6, 1100–1113 (2013)

33. Skinner, S.O., Xu, H., Nagarkar-Jaiswal, S., Freire, P.R.,
Zwaka, T.P., Golding, I.: Single-cell analysis of transcription
kinetics across the cell cycle. Life 5, e12175 (2016)

34. Storch, K.F., Lipan, O., Leykin, I., Viswanathan, N., Davis,
F.C., Wong, W.H., Weitz, C.J.: Extensive and divergent cir-
cadian gene expression in liver and heart. Nature 417, 78–83
(2002)

35. Sun, Q., Jiao, F., Lin, G., Yu, J., Tang, M.: The nonlinear
dynamics and fluctuations of mRNA levels in cell cycle
coupled transcription. PLoS Comput. Biol. 15(4), e1007017
(2019)

36. Sun, Q., Tang, M., Yu, J.: Modulation of gene transcription
noise by competing transcription factors. J. Math. Biol. 64,
469–494 (2012)

37. Takahashi, J.S.: Transcriptional architecture of the mam-
malian circadian clock. Nat. Rev. Genet. 18, 164–179 (2017)

38. Takeuchi, T., Hinohara, T., Kurosawa, G., Uchid, K.: A
temperature-compensated model for circadian rhythms that
can be entrained by temperature cycles. J. Theor. Biol. 246,
195–204 (2007)

39. Vollmers, C., Gill, S., DiTacchio, L., Pulivarthy, S.R., Le,
H.D., Panda, S.: Time of feeding and the intrinsic circadian
clock drive rhythms in hepatic gene expression. PNAS 106,
21453–21458 (2009)

40. Yu, J., Sun, Q., Tang, M.: The nonlinear dynamics and fluc-
tuations of mRNA levels in cross-talking pathway activated
transcription. J. Theor. Biol. 363, 223–234 (2014)

41. Yu, J., Xiao, J., Ren, X., Lao, K., Xie, X.S.: Probing gene
expression in live cells, one protein molecule at a time. Sci-
ence 311, 1600–1603 (2006)

42. Zenklusen, D., Larson, D.R., Singer, R.H.: Single-RNA
counting reveals alternative modes of gene expression in
yeast. Nat. Struct. Mol. Biol. 15, 1263–1271 (2008)

43. Zhang, R., Lahens, N.F., Ballance, H.I., Hughes, M.E.,
Hogenesch, J.B.: A circadian gene expression atlas in mam-
mals: implications for biology and medicine. PNAS 111,
16219–16224 (2014)

44. Zhu, C., Han, G., Jiao, F.: Dynamical regulation of mRNA
distribution by cross-talking signaling pathways. Complex-
ity 2020, 6402703 (2020)

45. Zhuang, X., Forde, D., Tsukuda, S., et al.: Circadian con-
trol of hepatitis B virus replication. Nat. Commun. 12, 1658
(2021)

46. Zopf, C.J., Quinn, K., Zeidman, J., Maheshri, N.: Cell-cycle
dependence of transcription dominates noise in gene expres-
sion. PLoS Comput. Biol. 9(7), e1003161 (2013)

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

123


	The dynamics of gene transcription with a periodic synthesis rate
	Abstract
	1 Introduction
	2 The model
	2.1 The characterization of gene transcription
	2.2 The master equations
	2.3 The differential equations

	3 Results
	3.1 The mean transcript level
	3.2 The noise of transcripts

	4 An example and simulations
	4.1 The meal transcription level and the noise
	4.2 The amplitude and the delay time

	5 Conclusion and discussion
	References




