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Abstract SARS-CoV-2 (severe acute respiratory

syndrome coronavirus 2) has been causing an outbreak

of a new type of pneumonia globally, and repeated

outbreaks have already appeared. Among the studies

on the spread of the COVID-19, few studies have

investigated the repeated outbreaks in stages, and the

quantitative condition of a controllable spread has not

been revealed. In this paper, a brief compartmental

model is developed. The effective reproduction num-

ber (ERN) of the model is interpreted by the ratio of

net newly infectious individuals to net isolation

infections to assess the controllability of the spread

of COVID-19. It is found that the value of the ERN at

the inflection point of the pandemic is equal to one.

The effectiveness of the quarantine, even the treat-

ment, is parametrized in various stages with Gompertz

functions to increase modeling accuracy. The impacts

of the vaccinations are discussed by adding a vacci-

nated compartment. The results show that the suffi-

cient vaccinations canmake the inflection point appear

early and significantly reduce subsequent increases in

newly confirmed cases. The analysis of the ERNs of

COVID-19 in the United States, Spain, France, and

Peru confirms that the condition of a repeated outbreak

is to relax or lift the interventions related to isolation

and quarantine interventions to a level where the ERN

is greater than one.

Keywords COVID-19 � Controllability � Staged
assessment � Repeated outbreaks � Effective
reproduction number

1 Introduction

As of April 27, 2021, SARS-CoV-2 has caused 3 116

444 deaths globally, and nearly 147.54 million cumu-

lative confirmed cases worldwide have been reported

[1]. With such a severe global pandemic, the preven-

tions of the pandemic are uneven across countries, and

the occurrence of repeated outbreaks in many coun-

tries is becoming the current urgent concern and a

problem that needs to be resolved. Fortunately, several

COVID-19 vaccines have been put into vaccination.

In the study of the spread of the COVID-19, the

assessments and predictions of the pandemic have

provided some useful references for health policy-

making. From the viewpoint of the spread of the

pandemic in population, many compartmental models

were effectively developed from the SIR (Susceptible-

Infectious-Removed) model [2] and the SEIR (Sus-

ceptible-Exposed-Infected-Removed) model [3] to
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describe the spread dynamics of the pandemic con-

sidering different preventive measures or negative

actions [4–12]. A developed SEIR model considering

asymptomatic individuals has been proposed to esti-

mate the spread risk of the COVID-19 and assess the

impact on public health [4]. Liu et al. [5] have modeled

a variant SIR model that evaluates the effects of the

isolation with an exponential decline in transmission

rate in China. Rong et al. [6] have established a model

taking the effect of delay in diagnosis into account and

studied the dependence of model parameters on the

basic reproduction number. Moreover, the impacts of

zoonotic spread and emigration have also been

considered in a conceptual model [7]. Nonetheless,

dynamic models have been rarely established from the

perspective of infection controllability to assess the

controllability of the pandemic.

The ERN denoting the average number of infected

cases caused by an infected individual in the infectious

period [13] and measuring the instantaneous situation

of the spread of the infectious disease has always been

analyzed in the studies. Wilasang et al. [13] investi-

gated the pandemic development of COVID-19 of

several countries and found that the countries employ-

ing active case detection with prompt isolation have a

higher reduction in the ERN. Peng et al. [14]

quantified the critical interventions of COVID-19 to

the changes of the ERNs in China, Italy, Iran, South

Korea, and Japan. However, these studies have not

analyzed the ERN on the controllability of infection,

such as the correspondece between the inflection point

and ERN.

Most countries of the world have been severely

suffering from COVID-19. Therefore, the research on

the prevention and predictions for the second out-

break, even the repeated outbreaks, are still hotpots

[15–20]. Wang et al. [15] investigated the impact of

asymptomatic individuals on the second outbreak. The

study of the pandemic in China outside Hubei [16]

indicated that carefully monitoring the confirmed

case-fatality risk, extremely restrict quarantine mea-

sures and instantaneous reproduction number can

provide a reference for preventing the potential

repeated outbreaks. The second outbreak in Spain

and India was also predicted by relaxing the control

measures to various extents [17, 18]. Ho et al. [19]

developed a mobile app named Social distancing 2.0,

to avoid the repeated outbreaks, and assessed the

impact of the adoption rate of this app on the basic

reproduction number. Nevertheless, the assessments

or predictions of the pandemic have been rarely linked

to staged public health interventions or the staged

change of the newly confirmed cases, and few studies

have explored the relationship between the ERN and

the dominant interventions to control the outbreak.We

found that for repeated outbreaks, it is difficult to

simulate the complete evolution of the pandemic

without staged investigation and functional

parameterization.

So far, a variety of COVID-19 vaccines have been

put into pandemic prevention; 961.23 million vaccine

doses have been administered globally [1]. As the

number of people vaccinated against COVID-19

worldwide increases, people who develop antibodies

due to vaccination will gradually become a large

immune compartment, which will greatly reduce the

number of susceptible individuals and ease the pres-

sure on medical and health care. Thus, the impact of

vaccination cannot be ignored.

In this paper, the novelty andmain contributions are

as follows:

1. A compartmental model specifically considering

the controllability of infections is given to study

the spread dynamics of COVID-19.

2. The effects of quarantine and treatment are

parametrized with Gompertz functions rather than

constants according to the interventive stages or

the change of newly confirmed cases.

3. The quantitative correspondence of the ERN and

the evolution of the newly confirmed cases are

revealed.

4. The impacts of the daily vaccinated cases of

COVID-19 on newly confirmed cases and the

ERN reflecting inflection point are also

investigated.

This paper consists of five sections. In Sect. 2, a

compartmental model is proposed, the effects of

quarantine and treatment are parametrized with Gom-

pertz functions, and the ERN in the model is reason-

ably explained and illustrated. In Sect. 3, the evolution

of the pandemic in Italy is completely fitted and

assessed in stages according to the evolution of the

ERN and fitting results. Section 4 presents the

discussion on the impacts of the vaccinations and the

quantitative condition of a repeated outbreak. The
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findings of the controllability of the pandemic and

limitations of the study are summarized in Sect. 5.

2 Compartmental model for the spread of COVID-

19

2.1 Dynamic model

Considering the spread pattern of COVID-19 before

the vaccination or with a small number of vaccinators,

firstly, it is assumed that:

1. The region investigated is approximately a closed

system in population.

2. The unvaccinated population is susceptible due to

the high infectivity of COVID-19 [21].

3. The confirmed individuals can receive treatment

and be thoroughly isolated in time.

4. Since rare zoonotic cases have been reported, the

spread way is limited to human-to-human.

5. The healed cases are immune to the SARS-CoV-

2.

As shown in Fig. 1, the population of the investi-

gated region consists of six compartments. S(t) means

the susceptible individuals that are uninfected without

immunity to SARS-CoV-2. I(t) refers to the infectious

individuals with free infectivity, who have not been

isolated. T(t) indicates the treated individuals with

isolation, also known as existing confirmed cases with

controlled infectivity. C(t) refers to the cumulative

confirmed cases. R(t) refers to the recovered or healed

cases, and D(t) the deceased or fatal cases. S(t), R(t),

andD(t) are non-infectious. For an investigated region

with population size N,

N ¼ SðtÞ þ IðtÞ þ TðtÞ þ RðtÞ þ DðtÞ, and

CðtÞ ¼ TðtÞ þ RðtÞ þ DðtÞ.
The complete model describing the spread dynam-

ics of COVID-19 is built as

_S ¼ � aðtÞI � S
N

;

_I ¼ aðtÞI � S
N

� bðtÞI;
_T ¼ bðtÞI � ðcðtÞ þ dðtÞÞT ;
_R ¼ cðtÞT ;
_D ¼ dðtÞT ;
_C ¼ bðtÞI;

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

ð1Þ

where _x is the time derivate of x. Since the unit of

count is day-1, Eq. (1) can also be discretized as

Sðt þ 1Þ ¼ SðtÞ � aðtÞIðtÞSðtÞ
N

;

Iðt þ 1Þ ¼ IðtÞ þ aðtÞIðtÞSðtÞ
N

� bðtÞIðtÞ;

Tðt þ 1Þ ¼ TðtÞ þ bðtÞIðtÞ � ðcðtÞ þ dðtÞÞTðtÞ;
Rðt þ 1Þ ¼ RðtÞ þ cðtÞTðtÞ;
Dðt þ 1Þ ¼ DðtÞ þ dðtÞTðtÞ;
Cðt þ 1Þ ¼ CðtÞ þ bðtÞIðtÞ:

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð2Þ

The descriptions of model parameters are listed in

Table 1.

2.2 Parameter estimations and approximate

solutions

To date, the staged public health interventions gener-

ally are determined by the development of the

pandemic. Therefore, it is necessary to stage the

evolution of the pandemic for accurately assessing the

controllability of the spread of the pandemic.

In certain countries or regions with distinct and

uniform interventions, the interventive stages can be

identified by iconic public health interventions. Not

uniquely, we can divide the evolution of the pandemic

into multiple interventive stages. For example, the first

stage (S1) refers to the outbreak period before the

lockdown. The date interval between the start date of

lockdown and the start date of the first relaxation of the

lockdown is the second stage (S2), also named the

lockdown period. The third stage (S3) is the period of
Fig. 1 Propagation path of COVID-19
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the first relaxation of lockdown or critical interven-

tions. If the pandemic situation is well controlled,

some countries will further relax certain influential

interventions, and the pandemic will enter the fourth

stage (S4), and so on.

Furthermore, for certain countries or regions with

unbalanced or unsystematic interventions, if the

evolutions of the pandemic presented a rather convo-

luted performance, it is hard to segment interventive

stages. In this case, we can roughly stage the pandemic

situation according to the trend of the newly confirmed

cases; for example, in certain countries where the

repeated outbreaks have occurred, we may divide the

pandemic into the periods of the first outbreak,

transition, second outbreak, and so on.

We then rationale the rates mathematically accord-

ing to the staged health public interventions in certain

countries or regions that have taken lockdowns. In S1,

the interventions were relatively weaker, the self-

isolation was very limited, the spread environment

was relatively stable, and the pandemic was basically

free to spread; thus the COVID-19 spread at a higher

constant aðtÞ. After the lockdown began, the pandemic

entered S2. Lockdown remarkably reduced the human-

to-human contact in the fastest way, which suddenly

caused aðtÞ to drop to a lower constant. In S3, aðtÞ is
still estimated as a constant that mainly depends on the

specific measures and intensity of the interventions

after relaxing the lockdown and whether the time point

for relaxing the lockdown is appropriate, and so is aðtÞ
in S4, and so on. Consequently, a switch function is

proposed to describe the change of aðtÞ at different

stages as follows:

aðtÞ ¼

a1; t 2 S1;
a2; t 2 S2;
a3; t 2 S3;
a4; t 2 S4;

. . .

8
>>>><

>>>>:

ð3Þ

where S1 : t\slock; S2 : slock � t\srelax; S3 : srelex � t

\sfrelax; S4 : t� sfrelax, slock; srelax; and sfrelax indicate
the start time of lockdown, first relaxation of the

lockdown and further relaxation of the lockdown,

respectively.

In each stage of the pandemic, we assumed that the

interventions taken have roughly effectuated mono-

tonous effectiveness. For instance, increased quaran-

tine coverage contributes to an increase in bðtÞ. Thus,
bðtÞ should be monotonously bounded. Note that cðtÞ
and d(t) are severely dependent on the level of

treatment of the COVID-19 and medical resources,

they may not be monotonous in each stage. However,

in certain countries where the number of healed cases

is steadily increasing, cðtÞ and d(t) can also be

monotonous.

To match the change trends of bðtÞ more closely in

each stage, growth curve functions are good choices of

estimation functions for their advantages of well-

defined asymmetric monotonicity and boundness [23],

and also are well-drawn depictions for predicting the

progression of the COVID-19 [24]. We here estimate

that the rates increase or decrease in the patterns

consistent with Gompertz functions, which is of the

form

gðtÞ ¼ b1e
�b2e

�b3ðtþb4Þ
: ð4Þ

As depicted in Fig. 2a, Gompertz functions show

the advantageous characterization of plasticity in

monotonicity and boundness. b1 defines the upper

boundary, b2, b3 jointly define the amplitude of the

change rate of Gompertz function, b4 is a translation

coefficient. In the estimation, if the estimated rate

presents a relatively apparent increase, then b3 is

estimated to a value that is greater than zero;

otherwise, b3 is less than zero. For an extremely slow

increase or decrease in the estimated rate, b2 will be

adapted to a relatively larger value that makes the rate

of change of the estimated rate exceedingly close to

Table 1 Description and

value range of model

parameters

Parameter Description Value range Unit Reference

N Population size – – [22]

aðtÞ Transmission rate (0, 1) day-1 Estimated

bðtÞ Diagnosis rate (0, 1) day-1 Estimated

cðtÞ Healing rate (0, 1) day-1 Estimated

dðtÞ Fatality rate (0, 1) day-1 Estimated
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zero. For the estimated rate being a constant, b2 will be

adapted to zero. Hence, the properties of Gompertz

functions essentially satisfy the requirements of bðtÞ at
each stage. We then have

bðtÞ ¼

b11e
�b12e

�b13ðtþb14Þ ; t 2 S1;
b21e

�b22e
�b23ðtþb24Þ ; t 2 S2;

b31e
�b32e

�b33ðtþb34Þ ; t 2 S3;

b41e
�b42e

�b43ðtþb44Þ
; t 2 S4;

. . .

8
>>>>><

>>>>>:

ð5Þ

The option of estimation function is not unique.

Other growth curve functions, even other functions,

such as the Logistic model, Sigmoid function, also are

alternatives to estimate bðtÞ. Besides, we can obtain

the approximate solution analytically under SðtÞ � N.

From Eq. (1), we approximately have

_I ¼ ðaðtÞ � bðtÞÞI; ð6Þ

For taking the Gompertz functions as the estimation

functions, one obtains

I ¼ Iið0ÞeeiðvðuðtÞ; tÞ; tÞ: ð7Þ

Here, Iið0Þ represents the initial value of I(t) of on

the ith stage and eiðvðtÞ; tÞ ¼ ait þ ðbi1 þ vðtÞÞ=bi3.
vðuðtÞ; tÞ denotes the one-argument exponential inte-

gral given by

vðuðtÞ; tÞ ¼
ZuðtÞ

�1

et

t
dt; ð8Þ

where uðtÞ ¼ �bi2e
�bi3ðtþbi4Þ. Also, the approximate

solution of newly confirmed cases is

_C ¼ DCðt þ 1Þ ¼ Iið0ÞbiðtÞeeiðvðuðtÞ; tÞ; tÞ: ð9Þ

Here, DxðtÞ ¼ xðtÞ � xðt � 1Þ, that is, DxðtÞ indi-

cates the newly increased or decreased cases of x(t) at

the time t.

2.3 Indictors of controllability of the spread

From the perspective of controllability of the spread of

the pandemic, the basic reproduction number (R0)

measures the potential for an infectious disease to

spread through an immunologically naive population

[6], and a real-time indicator in measuring the spread

risk and the controllability of the spread is the ERN,

i.e., ReðtÞ. In Eq. (1), we define the ERN

ReðtÞ ðRe [ 0Þ straightforwardly as

ReðtÞ ¼
�DSðtÞ
DCðtÞ : ð10Þ

�DSðtÞ refers to the newly reductive cases in S(t),

also the net newly infectious individuals who have not

been isolated. DCðtÞ refers to the newly cumulative

confirmed cases, also the net newly isolated infections

with controllable infectivity.

Remark 1 ReðtÞ[ 1 indicates that if net newly

infectious individuals outnumber the net newly iso-

lated cases, the spread of pandemic is risky. A

substantial medical burden will be imposed to an

unbearable level if this situation has a long continuity.

ReðtÞ ¼ 1 indicates that all net newly infectious

individuals can just happen to be medically isolated

under the current quarantine and diagnosis level. The
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Fig. 2 Estimation functions, a curves of Gompertz functions, b curves of time derivate of Gompertz functions
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controllable spread of the pandemic satisfying

ReðtÞ\1 means that medical resources and the

intensity of quarantine are sufficient to handle the

net newly infectious individuals.

We here give an exemplification to precisely

interpret the role of ReðtÞ in reflecting the spread

dynamics of the COVID-19. Assume that an investi-

gated region has 10,000,000 people, 300 infectious

individuals without isolation, and 50 cumulative

confirmed cases at the initial time of the outbreak.

The simulated results with varying aðtÞ and fixed

bðtÞ ¼ 0:10 are shown in Fig. 3.

When DCðtÞ shows a single wave (Fig. 3a), the

corresponding ReðtÞ (Fig. 3b) declines from a value

greater than one to a value less than one, and the points

of ReðtÞ ¼ 1 are just the inflection point of DCðtÞ,
where DCðtÞ starts to decline. Moreover, ReðtÞ[ 1

corresponds to the increase in DCðtÞ, the lager ReðtÞ,
the faster the growth of DCðtÞ. Conversely, ReðtÞ\1

indicates the decline of DCðtÞ, the smaller ReðtÞ, the
faster the decrease in DCðtÞ. Especially, if ReðtÞ � 1

(purple curve in Fig. 3b), DCðtÞ will be a constant

(purple curve in Fig. 3a), indicating that the number of

cumulative confirmed cases will linearly increase.

Therefore, ReðtÞ accurately depicts the controllability

of the spread of the pandemic.

Remark 2 When susceptible individuals make up the

vast majority of the population, i.e., SðtÞ � N, accord-

ing to model (2), the ERN ReðtÞ can be approximately

estimated as

ReðtÞ ¼
�DSðt þ 1Þ
DCðt þ 1Þ ¼ aðtÞIðtÞSðtÞ

NbðtÞIðtÞ � aðtÞ
bðtÞ : ð11Þ

In this case, it is noted that aðtÞ and bðtÞ almost

determine the value of ReðtÞ, which means that the

public health interventions influencing aðtÞ and bðtÞ
nearly determine the spread dynamics of the pan-

demic. Generally, these interventions mainly are

isolation, quarantine measures including lockdown,

travel ban, contact tracing, implementation of social

distance, the establishment of testing sites and imple-

mentation of universal nucleic acid detection, etc.

Remark 3 Differing from the model of Eq. (1), for

general SIR model, its ERN is defined by the ratio of

net newly infectious individuals to net removed

infections, which characterizes the eradication situa-

tion of the pandemic rather than controllability of the

spread; in other words, the ERN of the SIR model less

than one is merely a sufficient condition for a

controllable spread.

Besides, an indicator characterizing the strength of

the spread of an infectious disease is the infection

period, which means the days it takes for an infection

to infect the next one. The number of individuals

infected by each infector per day follows

nðtÞ ¼ �DSðt þ 1Þ
IðtÞ ; ð12Þ
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Fig. 3 Newly confirmed cases and ERNwith varying aðtÞ and fixed bðtÞ ¼ 0:10, a evolution of the newly confirmed cases, b evolution

of the ERN
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the infection period is the reciprocal of nðtÞ, one
obtains

sgðtÞ ¼
IðtÞ

�DSðt þ 1Þ : ð13Þ

For SðtÞ � N, nðtÞ can be approximated as

nðtÞ ¼ �DSðt þ 1Þ
IðtÞ ¼ aðtÞIðtÞSðtÞ

NIðtÞ � aðtÞ; ð14Þ

thus,

sgðtÞ �
1

aðtÞ : ð15Þ

sgðtÞ almost is inversely proportional to aðtÞ, which
means that the stages with higher aðtÞ correspond to

shorter sgðtÞ, the faster the pandemic spreads.

3 Staged assessments of the evolution of COVID-

19 in Italy

3.1 Data analysis

As one of the early countries to declare a lockdown,

Italy has distinct staged health public interventions of

the pandemic, and has presented a good performance

in healed, newly confirmed cases in the first break.

Hence, we study the complete dynamics of the

COVID-19 in Italy using Eqs. (1) and (2). Since

WHO did not report the healed cases, the pandemic

data used are reported by [25], which has reliable data

sources, as detailed in its data description.

We here divide the pandemic in Italy from February

22, 2020 to March 31, 2021 into ten stages according

to the iconic dates of interventions and the evolution of

newly confirmed cases. For example, three iconic

dates of the early pandemic intervention in Italy are

March 10, 2020, May 4, 2020, and May 18, 2020, on

which Italy issued the lockdown and the relaxation of

lockdown, further relaxation of lockdown [26],

respectively. The date interval and the corresponding

description of each stage are listed in Table 2.

In the data fitting, the least square method is

applied. Optimization functions fmincon and lsqnonlin

in MATLAB are adopted to minimize the objective

functions. To fit the complete dynamics of the

pandemic, the objective function can be given by

f ðm; tÞ ¼
Xte

i¼ts

ðCðtÞ � ĈðtÞÞ2 þ
Xte

i¼ts

ðTðtÞ � T̂ðtÞÞ2

þ
Xte

i¼ts

ðRðtÞ � R̂ðtÞÞ2 þ
Xte

i¼ts

ðDðtÞ � D̂ðtÞÞ2:

ð16Þ

For merely investigating the spread dynamics, the

objective function follows

f ðm; tÞ ¼
Xte

i¼ts

ðCðtÞ � ĈðtÞÞ2; ð17Þ

where m represents the parametric vector to be fitted,

which is composed of the coefficients in Eqs. (3) and

Table 2 Date interval and description of the development stages of COVID-19 in Italy

Stage Date interval Description Outbreak

S1 02/22/2020–03/09/2020 Early period of the first outbreak First outbreak

S2 03/10/2020–05/03/2020 Period of the first lockdown

S3 05/04/2020–05/17/2020 Period of the relaxation of the first lockdown

S4 05/18/2020–06/22/2020 Period of the further relaxation of the first lockdown

S5 06/23/2020–07/21/2020 Transition period from the first outbreak to the second outbreak -

S6 07/22/2020–10/06/2020 Initial period of the second outbreak Second outbreak

S7 10/07/2020–10/28/2020 Sharp growth period of the second outbreak

S8 10/29/2020–12/17/2020 Stabilization period of the second outbreak

S9 12/18/2020–02/15/2021 Transition period from the scond outbreak to the third outbreak -

S10 02/16/2021–03/31/2021 Period of the third outbreak Third outbreak
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(5), ts and te are the start and end time of the

corresponding stage interval, respectively. yðtÞ
denotes the fitted result of pandemic data ŷðtÞ.

Figure 4a, b show the fitted individuals of various

compartments. It is visible that the fitting results

excellently conform to the reported data with high

determination coefficients (R2) and small root means

squared errors (RMSE) of various compartments listed

in Table 3. Correspondingly, the values of fitted

parameters are shown in Table 4.

Note that the estimated values of aðtÞ and bðtÞ have
a serious dependence on Iðt0Þ, that is, these two values
may not be coherent to real data due to Iðt0Þ is

unknown. However, the estimated trends of aðtÞ and
bðtÞ are consistent with the real data when the data fit

well. In particular, it does not significantly impact the

ERN estimated from Eq. (11).

3.2 Assessment of evolution of the pandemic

in Italy

During the first outbreak, it can be seen from the fitting

results shown in Table 4 that aðtÞ gradually becomes

smaller, indicating that the pandemic interventions

like lockdown, restricting the social distance, etc.,

have effectively reduced the infective contacts. How-

ever, at the beginning of the first outbreak, the ERN

was as high as 4.81, shown in Fig. 5b. The color bar

indicates the value of the ERN, which illustrates that

the pandemic spread at an uncontrollable level and

weak pandemic interventions were taken. As shown in

Fig. 5a, if the first lockdown had not been imple-

mented on March 10, 2020, and the medical system

was affordable, as of March 25, 2020, there would be

nearly 400,000 existing infectors and 40,000 newly

confirmed cases. The approximate solutions of IðtÞ
and DCðtÞ show good accuracies when SðtÞ � N. In

Fig. 5b, S5 shows a steady fluctuation in newly

confirmed cases, aðtÞ rises to 0.11 (Table 4), and the

ERN in S5 is approximately equal to 1; thus, S5 is a

transition period between the first wave and the second

wave.

For the second wave, the pandemic entered the

early stage when it reached S6, which showed a slight

rebound in newly confirmed cases and an increase in

the ERN, aðtÞ continues to rise to 0.26 (Table 4),

04/01 07/01 10/01 01/01
Date

0

5

10
105

04/01 07/01 10/01 01/01
0

2

4
106

(a)

04/01 07/01 10/01 01/01
0

1

2

3
106

04/01 07/01 10/01 01/01
Date

0

5

10

15
104

(b)

Fig. 4 Fitting results of cumulative confirmed, treated, healed,

and fatal cases, a black dotted curves represent the fitted results
of the reported cumulative confirmed cases and treated cases

filled with orange and green stem lines, respectively, b black

dotted curves represent the fitted result of the reported healed

cases and fatal cases filled with blue and purple stem lines,

respectively

Table 3 Determination coefficients and root mean squared

errors of various compartments

Compartment R2 RMSE Reference

CðtÞ 0.9998 14,913.7687 Estimated

TðtÞ 0.9978 12,196.0006 Estimated

RðtÞ 0.9999 8421.3142 Estimated

DðtÞ 0.9999 307.8454 Estimated
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indicating that influential contacts were increasing.

Approximately after October 6, 2020, the newly

confirmed cases increased rapidly with a highest

aðtÞ ¼ 0:39 in S7 (Table 4). The frequent infections

occurred, and the daily increase exceeded 20,000,

while the ERN has not increased much due to better

quarantine measures and an already more mature

medical system. During S9, a weak rebound in newly

confirmed cases appeared with a increased the ERN

compared to that of S8, while aðtÞ decreased which

illustrates that although the pandemic spread at a lower

aðtÞ, the spread controllability of the pandemic was

weaken caused by the drop of the quarantine intensity.

From Table 4 and Fig. 5b, it is evident that S10
corresponds to the third outbreak with decreased

aðtÞ ¼ 0:29 (Table 4), and the ERN generally fluctu-

ates around one, reflecting that the spread of the

pandemic has not been significantly alleviated, but the

overall quarantine intensity has increased so that the

spread was not too violent.

Table 4 Model parameters at various stages

Stage Parameter Reference

aðtÞ bðtÞ cðtÞ dðtÞ

S1 0.30 0:10e�0:59e�1:00ðtþ0:26Þ
0:03e�4:86e�0:50ðtþ0:56Þ

0:02e�0:29e0:000000036ðtþ14:13Þ Estimated

S2 0.17 0:20e�18:31e�0:17t

22:87e�7:70e�0:0016ðtþ0:00085Þ
60:24e�7:21e0:0049ðtþ0:34Þ Estimated

S3 0.10 0:13e�0:00031e�102127:29ðtþ157025:17Þ
0:036e�12711:43e�740:71ðtþ3:73Þ

5:17e�3:86e0:0078ðtþ6:25Þ Estimated

S4 0.075 0:099e396:52e
�0:25ðt�56:95Þ

2:06e�4:24e�0:00079ðtþ0:32Þ
3:78e�7:07e0:00082ðt�12:58Þ Estimated

S5 0.11 0:12e�0:98e�0:18ðtþ46:00Þ
175:71e�4:77e�0:0041ðtþ10:31Þ

10:28e�10:92e�0:00098ðtþ42:40Þ Estimated

S6 0.26 0:23e�53:09e�9:15ðtþ40:53Þ
0:016e�11:23e�0:78ðtþ0:29Þ

0:00050e�0:96e�0:43ðtþ0:69Þ Estimated

S7 0.39 0:29e�38:16e�76:55ðtþ79:52Þ
0:015e�48:98e�0:45ðtþ0:65Þ

0:00053e�0:75e�0:28ðtþ0:68Þ Estimated

S8 0.37 0:37e�77:92e�93:40ðtþ12:99Þ
0:081e�1319:69e�0:025ðtþ10:67Þ

0:00087e�0:79e�0:31ðtþ0:53Þ Estimated

S9 0.30 0:29e�15436:012e�0:017ðtþ2876:21Þ
0:91e�8:21e�0:0026ðtþ18:56Þ

0:00088e�0:0040e�0:73ðtþ335:26Þ Estimated

S10 0.29 0:34e�10426:91e�0:0281ðtþ0:27Þ
0:12e�e�1358:61ðtþ0:0033Þ

0:00070e�0:98e�0:71ðtþ0:50Þ Estimated
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cases without lockdown and the evolution of the ERN with

newly confirmed cases of the COVID-19 in Italy, a infectious

individuals and newly confirmed cases without lockdown,

b evolution of the ERN with newly confirmed cases of the

COVID-19 in Italy
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It can be seen from Fig. 5b that the ERN of

inflection points of the pandemic is almost equal to

one. Among them, the inflection point of the first

outbreak occurred roughly on March 22, 2020, and the

second November 14, 2020, the third March 18, 2021.

Correspondingly, these dates are very close to the

points that DCðtÞ started to decrease.

Figure 6 shows the complete evolution of various

compartments in Italy from February 22, 2020 to

March 31, 2021. The overall situation shows multiple

waves of the pandemic. During repeated outbreaks,

the infectious proportion and the healed proportion

have significantly decreased and increased, respec-

tively, demonstrating that the controllability of the

spread of the pandemic and the treatment level has

been dramatically enhanced compared to the initial

period of the first outbreak. This is why the ERN in the

subsequent outbreaks is smaller than that in the initial

period of the first outbreak. However, there are still a

large number of infectious individuals in the subse-

quent outbreaks, indicating that there is no direct

correspondence between the controllability of the

pandemic and the number of the infectious

individuals.

4 Discussion of vaccination and prevention using

ERN

4.1 Impacts of the daily vaccinated cases

So far, several vaccines have been put into the

prevention of COVID-19. Susceptible individuals will

develop antibodies after vaccination and will not be

infected during the immunization cycle. Additionally,

the growth rate of vaccinators should be equal to the

number of daily vaccinated cases. Therefore, based on

the model of Eq. (1), we propose the modified model

to merely describe the spread of the pandemic after

sufficient vaccinations can be provided as follows

_S ¼ � aðtÞI � S
N

� vðtÞ;

_I ¼ aðtÞI � S
N

� bðtÞI;
_C ¼ bðtÞI;
_V ¼ vðtÞ

8
>>>>>>><

>>>>>>>:

ð18Þ

where compartment V denotes that the individuals

have been vaccinated and vðtÞ is the newly or daily

vaccinated cases. For an investigated region with

population size N, N ¼ SðtÞ þ IðtÞ þ CðtÞ þ VðtÞ.
For the modified model of Eq. (18), the ERN ReðtÞ

becomes

ReðtÞ ¼
aðtÞIðtÞSðtÞ
NbðtÞIðtÞ ¼ aðtÞSðtÞ

NbðtÞ : ð19Þ
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Remark 4 Since susceptible individuals become

immune-resistant people within the validity period

after being vaccinated, the number of susceptible

people is no longer approximately equal to the total

population. Thus, the ERN can no longer be estimated

by Eq. (11).

Assume that a pandemic has spread in a region with

a 20 million population, including 300 infected and 50

confirmed cases. If the pandemic spreads with

aðtÞ ¼ 0:22, bðtÞ ¼ 0:1 according to Eq. (18), and

there is a corresponding vaccine to prevent the

pandemic, we then investigate the impacts of the

daily vaccinated cases shown in Fig. 7.

When vaccines are relatively sufficient, vaccination

dominates the development trend of the pandemic. As

the number of people being vaccinated increases, the

inflection points of the pandemic appeared early, and

the number of daily cases decreased significantly. The

ERN decreases faster, which means that the rate at

which the pandemic subsides increases.

Moreover, people with immunity against SARS-

CoV-2 may dilute the density of susceptible people to

a certain extent, resulting in decreased transmission

rate. Large-scale vaccination can reduce long-term

treatment expenditure and medical resources, accel-

erate the recovery of economic production, education,

and teaching, etc.

4.2 Characteristics of repeated outbreaks

The fact is that most people in the world have not been

vaccinated for COVID-19. At present, the develop-

ment of epidemic control is still mainly based on non-

vaccine methods. Therefore, it is necessary to discuss

the characteristics and prevention of repeated

outbreaks.

A repeated outbreak generally refers to a quantita-

tive rebound in newly confirmed cases for a period

caused by relaxing the interventions or lifting the

interventions. Due to insufficient vaccine production,

incomplete vaccination and other reasons, repeated

outbreaks still exist in various countries worldwide.

As of April 27, 2021, the pandemic of the COVID-19

in many countries has appeared a situation of repeated

outbreaks, such as the United States, Peru, Spain,

France, Iran, Turkey, Germany, Canada, etc.

From the analysis of the ERN, an increase in newly

confirmed cases indicates ReðtÞ[ 1, while a decrease

in newly confirmed cases indicates ReðtÞ\1. There-

fore, strictly speaking, a repeated outbreak with an

increase in newly confirmed cases indicates a repeated

period with ReðtÞ[ 1. Note that two decisive param-

eters governing ReðtÞ are aðtÞ and bðtÞwhen SðtÞ � N;

thus, a repeated outbreak can only be triggered when

the interventions, such as lockdown, restriction of

social distance, contact tracing, quarantine at traffic

gates, that have great impacts on aðtÞ and bðtÞ, are
relaxed or lifted to a certain level with ReðtÞ[ 1, and
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Fig. 7 Impacts of the daily vaccinated cases on newly confirmed cases and ERN, a evolution of the newly confirmed cases varying vðtÞ
from 300,000 to 420,000, b evolution of the ERN varying vðtÞ from 300,000 to 420,000
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the weaker the intervention is relaxed or lifted, the

stronger the rebound will be.

Figure 8 shows the evolutions of newly confirmed

cases with the color bar marking the ERN in the United

States, Spain, France, and Peru from March 20, 2020

toMarch 31, 2021, the reason for not updating the data

to April is to eliminate the impact of the vaccine as

much as possible. As shown in Fig. 8, the ERNs of all

four countries become less than one from the inflection

point, fluctuate near one in the transition period, and

are greater than one again in subsequent outbreaks.

Overall, the ERN of repeated outbreaks is essentially

smaller than that of the early period of the first

outbreak because the COVID-19 response mechanism

has already matured. Therefore, although the situation

of repeated outbreaks varies from country to country,

it is clear that the ERN exactly characterizes of the

controllability of the spread of the pandemic.

ReðtÞ[ 1 definitely indicates the occurrence of a

repeated outbreak, and the controllability of subse-

quent outbreaks is generally better than the first

outbreak due to various pandemic preventions.

4.3 Preventions of large-scale repeated outbreaks

Before sufficient vaccines are provided, from the

discussion of the ERN, it is vital to maintain or

enhance the interventions influencing aðtÞ and bðtÞ to
prevent a large-scale repeated outbreaks. A re-

lockdown is unlikely for the countries with a slight

rebound in newly confirmed cases, contrary to the

original intention of deregulation to restore the

economy. However, interventions like contact tracing,

quarantine of cross-regional traffic ports and imported

products, etc., are necessary to be implemented.

Contact tracing quickly identifies sources of newly

infections and isolates the suspected infections, con-

tributing to the decrease in aðtÞ and meanwhile, the

increase in bðtÞ. Quarantine of cross-regional traffic

ports and imported products prevents the trans-

regional spread of undiagnosed cases and imported

infections from overseas, which prevents a large-scale

outbreak; a localized outbreak is still possible. For

heavily affected areas, an extension of the coverage of

nucleic acid testing is even necessary and more

thorough action of screening potential infections,

especially for diagnosing asymptomatic infections.

Indeed, the thorough prevention is to complete the

vaccination of most susceptible people as soon as

possible. Vaccination can quickly reduce the susceptible

population, form an effective immune group, dilute the

transmission process, and save treatment costs, etc.

5 Conclusion

This paper assessed the controllability of the large-

scale spread of COVID-19 in different stages based on
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an epidemic model. In data fitting, Gompertz functions

were introduced to estimate the effectiveness of

quarantine interventions and treatment; the results

completely simulate the development of the pan-

demics. The development of the pandemic was

quantified as the evolution of the ERN, and the

simulated results illustrated that the ERN being greater

than one caused by the relaxation or lift of isolation or

quarantine interventions would lead a repeated pan-

demic. Furthermore, we modified the model consid-

ering the impacts of the vaccinations, the results

showed that the increase in the daily vaccinated cases

of COVID-19 can apparently suppress the uptrend in

newly confirmed cases and quickly prevent the

pandemic to a controllable level. We also advised

maintaining or strengthening the interventions like

contact tracing, quarantine of cross-regional traffic

ports and imported products, etc., to prevent a large-

scale repeated outbreak before most people are

vaccinated. In this study, some factors such as

economics and case import have not been taken into

consideration, and the coherence between parameters

and real data needs to be improved.

Acknowledgements This work is supported by the National

Natural Science Foundation of China (61873186).

Data availability The cumulative cases, deaths, and

vaccination data of the COVID-19 analysed during the current

study are available from [WHO COVID-19 dashboard], [https://

covid19.who.int]. The data on healed cases of the COVID-19

analysed during the current study are available from [Sina News

COVID-19 dashboard], [https://news.sina.cn/zt_d/yiqing0121].

Declarations

Conflict of interest The authors declare that they have no

conflict of interest.

References

1. WHO COVID-19 dashboard, global pandemic data of

COVID-19. https://covid19.who.int (2021). Accessed 27

April 2021

2. Kermack, W.O., McKendrick, A.G.: A contribution to the

mathematical theory of epidemics. Proc. R. Soc. Lond. A:

Math. Phys. Eng. Sci. 115, 700–721 (1927)

3. Dietz, K.: Epidemiologic interference of virus populations.

J. Math. Biol. 8, 291–300 (1979)

4. Tang, B., Wang, X., Li, Q., Bragazzi, N.L., Tang, S., Xiao,

Y., Wu, J.: Estimation of the spread risk of the 2019-nCoV

and its implication for public health interventions. J. Clin.

Med. 9, 462 (2020)

5. Liu, Z., Magal, P., Seydi, O., Webb, G.: Predicting the

cumulative number of cases for the COVID-19 epidemic in

China from early data. arXiv preprint. https://arxiv.org/abs/

2002.12298 (2020). Accessed 27 April 2021

6. Rong, X., Yang, L., Chu, H., Fan, M.: Effect of delay in

diagnosis on spread of COVID-19. Math. Biosci. Eng. 17,
2725–2740 (2020)

7. Lin, Q., Zhao, S., Gao, D., Lou, Y., Yang, S., Musae, S.S.,

Wang, M.H., Cai, Y., Wang, W., Yang, L., He, D.: A con-

ceptual model for the coronavirus disease 2019 (COVID-

19) outbreak in Wuhan, China with individual reaction and

governmental action. Int. J. Infect. Dis. 93, 211–216 (2020)
8. Hellewell, J., Abbott, S., Gimma, A., Bosse, N.L., Jarvis,

C.I., Russell, T.W., Munday, J.D., Kucharski, A.J.,

Edmunds, W.J., Funk, S., Eggo, R.M.: Feasibility of con-

trolling COVID-19 outbreaks by isolation of cases and

contacts. Lancet Glob. Health. 8, e488–e496 (2020)

9. Anastassopoulou, C., Russo, L., Tsakris, A., Siettos, C.:

Data-based analysis, modelling and forecasting of the

COVID-19 outbreak. PLoS ONE 15, e0230405 (2020)

10. Hou, C., Chen, J., Zhou, Y., Hua, L., Yuan, J., He, S., Guo,

Y., Zhang, S., Jia, Q., Zhao, C., Zhang, J., Xu, G., Jia, E.:

The effectiveness of the quarantine of Wuhan city against

the Corona Virus Disease 2019 (COVID-19): well-mixed

SEIR model analysis. J. Med. Virol. 92, 841–848 (2020)

11. Nadim, S.S., Ghosh, I., Chattopadhyay, J.: Short-term pre-

dictions and prevention strategies for COVID-2019: A

model based study. arXiv preprint. https://arxiv.org/abs/

2003.08150 (2020). Accessed 27 April 2021

12. Zhao, S., Chen, H.: Modeling the epidemic dynamics and

control of COVID-19 outbreak in China. Quant. Biol. 8,
11–19 (2020)

13. Wilasang, C., Sararat, C., Jitsuk, N.C., Yolai, N., Tham-

mawijaya, P., Auewarakul, P., Modchang, C.: Reduction in

ERN of COVID-19 is higher in countries employing active

case detection with prompt isolation. J. Travel Med. taaa095

(2020)

14. Peng, Z., Song, W., Ding, Z., Guan, Q., Yang, X., Xu, Q.,

Wang, X., Xia, Y.: Linking key intervention timings to rapid

declining ERN to quantify lessons against COVID-19.

Front. Med (2020). https://doi.org/10.1007/s11684-020-

0788-3

15. Wang, X., Wang, S., Lan, Y., Tao, X., Xiao, J.: The impact

of asymptomatic individuals on the strength of public health

interventions to prevent the second outbreak of COVID-19.

Nonlinear Dyn. 101, 2003–2012 (2020)

16. Leung, K., Wu, J., Liu, D., Leung, G.: First-wave COVID-

19 spread and severity in China outside Hubei after control

measures, and second-wave scenario planning: a modelling

impact assessment. Lancet 395, 1382–1393 (2020)

17. Huang, J., Qi, G.: Effects of control measures on the

dynamics of COVID-19 and double-peak behavior in Spain.

Nonlinear Dyn. 101, 1889–1899 (2020)

18. Yu, X., Qi, G., Hu, J.: Analysis of second outbreak of

COVID-19 after relaxation of control measures in India.

Nonlinear Dyn. (2020). https://doi.org/10.1007/s11071-

020-05989-6

19. Ho, Y., Chen, Y., Hung, S., Huang, C., Po, P., Chan, C.,

Yang, D., Tu, Y., Liu, T., Fang, C.: Social distancing 2.0

with privacy-preserving contact tracing to avoid a second

123

Modeling and staged assessments of the controllability 1423

https://covid19.who.int
https://covid19.who.int
https://news.sina.cn/zt_d/yiqing0121
https://covid19.who.int
https://arxiv.org/abs/2002.12298
https://arxiv.org/abs/2002.12298
https://arxiv.org/abs/2003.08150
https://arxiv.org/abs/2003.08150
https://doi.org/10.1007/s11684-020-0788-3
https://doi.org/10.1007/s11684-020-0788-3
https://doi.org/10.1007/s11071-020-05989-6
https://doi.org/10.1007/s11071-020-05989-6


wave of COVID-19. arXiv preprint. https://arxiv.org/abs/

2006.16611 (2020). Accessed 27 April 2021

20. Vaid, S., McAdie, A., Kremer, R., Khanduja, V., Bhandari,

M.: Risk of a second wave of COVID-19 infections: using

artificial intelligence to investigate stringency of physical

distancing policies in North America. Int. Orthop. (SICOT)

44, 1581–1589 (2020)

21. Butowt, R., Bilinska, K.: SARS-CoV-2: olfaction, brain

infection, and the urgent need for clinical samples allowing

earlier virus detection. ACS Chem. Neurosci. 11,
1200–1203 (2020)

22. World population dashboard, world population data. https://

www.unfpa.org/data/world-population-dashboard (2021).

Accessed 27 April 2021

23. Manca, D., Caldiroli, D., Storti, E.: A simplified math

approach to predict ICU beds and mortality rate for hospital

emergency planning under COVID-19 pandemic. Comput.

Chem. Eng. 140, 106945 (2020)

24. Sahoo, B.K., Sapra, B.K.: A data driven epidemic model to

analyse the lockdown effect and predict the course of

COVID-19 progress in India. Chaos Soliton. Fract. 139,
110034 (2020)

25. Sina News, real-time pandemic data report of COVID-19 of

Italy. https://news.sina.cn/project/fy2020/yq_province.

shtml?&country=SCIT0039&version=A (2021). Accessed

27 April 2021

26. Ministry of Health of the Republic of Italy, new coronavirus

rules, circulars, and ordinances. http://www.salute.gov.it/

portale/nuovocoronavirus/

archivioNormativaNuovoCoronavirus.jsp?lingua=

italiano&iPageNo=1 (2021). Accessed 27 April 2021

Publisher’s Note Springer Nature remains neutral with

regard to jurisdictional claims in published maps and

institutional affiliations.

123

1424 J. Hu et al.

https://arxiv.org/abs/2006.16611
https://arxiv.org/abs/2006.16611
https://www.unfpa.org/data/world-population-dashboard
https://www.unfpa.org/data/world-population-dashboard
https://news.sina.cn/project/fy2020/yq_province.shtml?&country=SCIT0039&version=A
https://news.sina.cn/project/fy2020/yq_province.shtml?&country=SCIT0039&version=A
http://www.salute.gov.it/portale/nuovocoronavirus/archivioNormativaNuovoCoronavirus.jsp?lingua=italiano&iPageNo=1
http://www.salute.gov.it/portale/nuovocoronavirus/archivioNormativaNuovoCoronavirus.jsp?lingua=italiano&iPageNo=1
http://www.salute.gov.it/portale/nuovocoronavirus/archivioNormativaNuovoCoronavirus.jsp?lingua=italiano&iPageNo=1
http://www.salute.gov.it/portale/nuovocoronavirus/archivioNormativaNuovoCoronavirus.jsp?lingua=italiano&iPageNo=1

	Modeling and staged assessments of the controllability of spread for repeated outbreaks of COVID-19
	Abstract
	Introduction
	Compartmental model for the spread of COVID-19
	Dynamic model
	Parameter estimations and approximate solutions
	Indictors of controllability of the spread

	Staged assessments of the evolution of COVID-19 in Italy
	Data analysis
	Assessment of evolution of the pandemic in Italy

	Discussion of vaccination and prevention using ERN
	Impacts of the daily vaccinated cases
	Characteristics of repeated outbreaks
	Preventions of large-scale repeated outbreaks

	Conclusion
	Data availability
	References




