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Abstract Mode-coupling instabilities are known to
trigger self-excited vibrations in sliding contacts. Here,
the conditions for mode-coupling (or “flutter”) insta-
bility in the contact between a spherical oscillator and
a moving viscoelastic substrate are studied. The work
extends the classical 2-Degrees-Of-Freedom conveyor
belt model and accounts for viscoelastic dissipation in
the substrate, adhesive friction at the interface and non-
linear normal contact stiffness as derived from numer-
ical simulations based on a boundary element method
capable of accounting for linear viscoelastic effects.
The linear stability boundaries are analytically esti-
mated in the limits of very low and very high substrate
velocity, while in the intermediate range of velocity the
eigenvalue problem is solved numerically. It is shown
how the system stability depends on externally imposed
parameters, such as the substrate velocity and the nor-
mal load applied, and on contact parameters such as the
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interfacial shear strength τ0 and the viscoelastic friction
coefficient. In particular, for a given substrate veloc-
ity, there exist a critical shear strength τ0,cri t and nor-
mal load Fn,cri t , which trigger mode-coupling instabil-
ity: for shear stresses larger than τ0,cri t or normal load
smaller than Fn,cri t , self-excited vibrations have to be
expected.

Keywords Friction-induced vibrations · Viscoelastic-
ity · Mode-coupling · Flutter · Soft matter

1 Introduction

Friction-induced vibrations (FIVs) are an incredibly
widespread phenomenon,where friction plays an unex-
pected role: in fact, instead of acting as a damping
source, attenuating the system dynamics, dissipative
forces are the original cause that triggers this class
of vibrations. The large interest in the analysis of
FIVs is not only theoretical and aimed to assess the
intricate correlation with friction [1–3], but it is also
largely motivated by the variety and the importance
of fields and applications, where FIVs occur: these
range from automotive and railway systems [4–11] to
the aerospace field [12–14] and include also areas far
from industrial engineering, like bio-mechanics [15–
18]. In all these different systems, FIVs may be related
to unwanted acoustic emissions and to occurrence of
additional stresses in the components affected by this
phenomenon.
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Fig. 1 Friction-induced vibrations are commonly experienced in several applications including inter alia, finger-tip contact, viscoealstic
dampers, tip rubbing in turboengines, face seals, wipe-blade contact

Several mechanisms can originate FIVs. Among
these: (i) the “sprag-slip effect”, pioneeringly inves-
tigated by Spurr in Ref. [19], was related to “jamming”
phenomena at the interface level, (ii) the “Stribeck’s
effect”, which is due to a falling characteristic of the
friction law [20–25] and (iii) the “mode-coupling”
instability (also referred as flutter), which is the result
of the coupling of two stable vibrational modes that
originates one stable and one unstable mode [26]. The
latter is due to friction-related non-symmetric entries in
the stiffness matrix, which makes the system not con-
servative and allows energy to flow from the interface
to the vibrational motion [4]. In the last two decades, a
large research effort has been dedicated to characterize
the origin of FIVs, developing a minimal, yet represen-
tative, model consisting in a 2-DOF (Degrees Of Free-
dom) oscillator, in contactwith amoving frictional sub-
strate [4] [11]. The basicmodel has been originally con-
ceived by Hamabe et al. in 1999 [20] to investigate the
insurgence of FIVs in drumbrakes; later on, the scheme
has been extensively employed for a number of differ-
ent applications and, more generally, for improving our
understanding of FIVs main features [22,23,26–33].
It is important to notice that, although real structures
may be affected by a much higher level of complex-
ity, this 2-DOF dynamic system is a paradigmatic and
illustrative scheme that allows us to explore the main

features of FIVs at a fundamental level. By means of
such a model, in Ref. [29] an intuitive explanation is
provided for the insurgence of FIVs, by showing that
out-of-phase variation of the frictional force and tan-
gential displacement may lead to energy transfer from
interface to the mechanical system. Furthermore, in
Ref. [30], Hoffmann and Gaul investigated the effect of
added linear damping to the insurgence of flutter insta-
bility, while in Ref. [31], an approximate estimation of
the limit cycle oscillations has been proposed. These
studies have provided fundamental contributions to the
FIVs assessment, but, at the same time, most of them
have been affected by a significant issue: the interface
interactions between the oscillator and themoving sub-
strate are treated by means of phenomenological laws,
the simplest one being the classical Coulomb model,
aimed at describing the contact interactions between
the oscillator and the substrate [33]. However, this phe-
nomenological approach leads to a strong simplifica-
tion of the contact mechanics occurring at the interface:
for example, contact stiffness is often assumed linear
[34] and/or the frictional resistance is taken propor-
tional to the contact normal force [22,35–38].

Only very recently, some attempts have been made
to account for amore realistic description of the interfa-
cial phenomena, as in Ref. [11], where the problem of
a spherical punch in contact with a viscoelastic sub-
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strate has been investigated. Nevertheless, Ref. [11]
was specifically focused on enlightening the role that
viscoelastic dissipation plays in triggering the instabil-
ity, but the analysis did not consider any elastic cross-
coupling in the mechanical system between the hori-
zontal and vertical motion and neglected the Coulomb
“adhesive” part of the friction coefficient. As a conse-
quence, the possible mechanisms for instability were
restricted just to the Stribeck’s effect. However, as pre-
viously pointed out, and as schematically depicted in
Fig. 1, in practical applications, cross-coupling may
play a fundamental role. Among these applications,
we recall the case of tip rubbing in turbomachinery,
where self-excited vibrations are triggered by the con-
tact between a rotating blade and the external (fixed)
case, which is coated by a polymer viscoelastic layer.
Self-sustained vibrations and internal resonances may
originate unexpected large stresses, wear and dam-
age [12–14]. Similar issues may arise when a rubber-
made face seal is inserted between rotor and stator in
a mechanical system [39]: because of the roughness
at the microscales, there may occur friction-induced
vibrations [40]. There exist similar conditions, again
at a microscale level, in the windscreen wiper blades,
where FIVs are correlated with tedious acoustic emis-
sions [41], and, even in the bio-mechanical field, when
fingers touch and slide over rough surfaces [15–18].
Finally, when dealing with dampers [42,43], where
rigid punches are put into contact with viscoelastic lay-
ers, FIVs can occur and change the operational param-
eters according to which the system has been designed.
All these systems are characterized by an elastic struc-
ture in contact with a moving soft substrate, marked by
a time-dependent viscoelastic rheology. Consequently,
we focus on the simple yet representative 2-DOF con-
veyor belt model (see Fig. 1). Such a scheme is a classi-
cal lumped model to study FIVs, but here we introduce
two fundamentally new aspects, enabling us to obtain
a better description of the interface interactions and,
thus, of the conditions for instability. First of all, contact
stiffness and viscoelastic dissipation are obtained from
adhesiveless (steady-state) contact mechanics bound-
ary element method numerical simulations [39,44–
49]. Secondly, in accordance with up-to-date contact
mechanics experiments involving soft contacts (poly-
mers and elastomers, [50–53]), the Coulomb-like frac-
tion of the friction forces is assumed to be proportional,
through a characteristic interfacial shear-strength τ0, to

Fig. 2 Sketch of the 2-DOFmechanical oscillator considered in
the analysis

the apparent contact area A, being in viscoelastic con-
tacts a time-varying quantity.

The paper is organized as follows. In Sect. 2, the
problem is defined mathematically, by introducing the
equations of motion and the form of the contact forces
that will be used along the paper. In Sect. 3, a linear
stability analysis is performed, and the stability bound-
aries are derived analytically in the limit of lowandhigh
sliding velocity. In Sect. 4, the results of the stability
analysis are discussed and, finally, in the conclusions,
final remarks are drawn.

2 Mathematical definition of the problem

2.1 Dynamic model

The mechanical system under investigation is con-
stituted by a rigid spherical oscillator with radius R,
massm, horizontal and vertical stiffness kx and ky , off-
diagonal spring kxy (inclined by an angle α, see Fig. 2),
horizontal and vertical linear damping coefficients cx
and cy . The oscillator is pressed by a normal force Fn
against a viscoelastic substrate moving at velocity vd in
the horizontal direction; x is the parameter correspond-
ing to the horizontal displacement of the center of mass
of the spherical oscillator, whereas y is the vertical dis-
placement. The latter is equal to 0 when the sphere first
touch the substrate: thus, y corresponds to the sphere
indentation into the moving viscoelastic substrate.
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⎧
⎨

⎩

m
··
x + cx

·
x +

(
kx + kxy cos2 α

)
x + (

kxy sin α cosα
)
y = Fμ

m
··
y+cy

·
y+
(
ky+kxy sin2 α

)
y+ (kxy sin α cosα

)
x=Fn−Fk

(1)

where a dot superposed means differentiation with
respect to time. Regarding the external forces, Fμ is the
frictional force acting along the x-axis and is related to
the hysteresis occurring due to deformation of the vis-
coelastic substrate (seeRef. [44] formore details); Fk is
the normal contact force in the vertical direction and is,
thus, equal to the integral of the contact pressure over
the contact area. Fk is larger than 0 when the sphere
indents the substrate, i.e., for y > 0. Consequently,
both Fμ and Fk depend on the viscoelastic properties
of the substrate and have been numerically obtained by
means of boundary element method simulations.

The interaction between the spherical punch and the
viscoelastic substrate determines the normal restoring
force Fk and the friction force Fμ acting on the sphere.
In general, as shown in detail in Ref. [11], these compo-
nents depend on the kinematic parameters that deter-
mine the relative motion between the sphere and the
substrate, hence for a viscoelastic material with a sin-
gle relaxation time τ we have:

Fμ = Fμ

(
x − vd t

R
,
(ẋ − vd) τ

R
,
y

R

)

,

Fk = Fk

(
x − vd t

R
,
(ẋ − vd) τ

R
,
y

R

)

(2)

Ultimately, this occurs as, in the mechanics between
viscoelastic elements, the contact solution depends, at
each time step, on the current deformation of the sub-
strate and on the velocity at which the material is being
deformed. Furthermore, in the contact mechanics anal-
ysis we have conducted via boundary element method,
we have accounted for the material hysteretic dissi-
pative behavior in the in-plane motion, i.e., along the
x−direction, which plays a major role as determines
the viscoelastic part of the friction coefficient, while
the dissipation occurring in the vertical motion will be
accounted through the linear damping coefficient cy .

Now, when looking at Eq. (2), it is clear that vis-
coelastic materials respond differently when excited at
different frequencies. Then, if the punch is oscillating
in the horizontal direction with frequencyω and ampli-
tude Ax , then the dimensionless frequency of the punch
oscillation, with respect to the moving substrate, is:

Ξ = (ω − vd/Ax ) τ (3)

IfΞ << 1, the rigid punch will get in contact with a
material that had enough time to relax or that was never
deformed; hence, we can drop the dependence on the
punch relative position x−vd t

R . Therefore, Fμ and Fk
are written as a function of the following dimensionless
groups:

Fμ = Fμ (̂vrel , ŷ) , Fk = Fk (̂vrel , ŷ) (4)

where we have introduced the groups v̂rel = vrelτ/R

and ŷ = y/R, being vrel = ·
x − vd the relative veloc-

ity between the punch and the substrate. When writ-
ing the friction force Fμ, two contributions are consid-
ered: (i) the viscoelastic part of the friction coefficient
μvisc (̂vrel , ŷ) originated by the internal dissipation in
the viscoelasticmaterial and (ii) the adhesive part of the
frictional force that, as suggested by robust experimen-
tal outcomes [50–53], is assumed proportional to the
apparent contact area A (̂vrel , ŷ) through a characteris-
tic interfacial shear-strength τ0. Hence, the tangential
force Fμ (̂vrel , ŷ) is equal to:

Fμ (̂vrel , ŷ) = −sgn (̂vrel) [Fnμvisc (̂vrel , ŷ)

+A (̂vrel , ŷ) τ0] (5)

Notice that both μvisc (̂vrel , ŷ) and A (̂vrel , ŷ) are time
varying quantities that depends at every time instant on
the indentation of the spherical punch and on the rela-
tive horizontal velocity between the punch and themov-
ing substrate [44,45,47–49]. This is briefly recalled in
Appendix A, where the main peculiarities of viscoelas-
tic materials and the Boundary ElementMethod imple-
mented to study the viscoelastic contact mechanics are
summarized.

Let us define, now, the dimensionless viscoelastic
contact force F̃k = Fk/E∗

0 R
2 and the dimensionless

contact area Ã = A/R2, where E∗
0 = E0/

(
1 − ν2

)

is the composite modulus, with E0 the viscoelastic
modulus of the substrate at zero frequency, i.e., E0 =
E (ω = 0), and ν the Poisson’s ratio. As shown with
more details in Appendix A, in fact, a generic linear
viscoelastic material is characterized by the so-called
rubberymodulus, that is E0, by the glassymodulus E∞,
being the viscoelasticmodulus forω tending to infinite,
and by a series of relaxation times τ . The simulations
have been performed using a single relaxation time lin-
ear viscoelasticmaterial with E0 = 106 Pa , E∞ = 107

Pa, τ = 0.01 s, R = 0.01 m and ν = 0.5. Such a
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Fig. 3 Fitting of the numerical data obtained with boundary ele-
ment method simulations (black dots) with the analytical func-
tions (shaded surfaces): a friction coefficient (Eq. (38)), b dimen-
sionless contact area (Eq. (36)), c dimensionless reaction force
(Eq. (8)). In all the panel the fitted analytical equations are shown
as shaded surfaces as a function of log (y/R) and log (vrelτ/R)

choice is consistent with the approach adopted in the
entire paper: the simple one-relaxation time material
allows us to clearly see which are the possible mecha-
nisms of instability in a viscoelastic material and how
these depend on the relative velocity between the oscil-
lator and the moving substrate, including the correct
elastic limits at low and high relative speed. Although
real materials have several relaxation times, we expect
our results to be paradigmatic of the general behavior
expected in these conditions. Furthermore, let us notice
that, once the relaxation spectrum is known for a real
viscoelastic material, the method presented here could
be repeated to determine the stability boundaries for
any given application.

Turning back to our simplified model, Fig. 3 shows:
(a) the reaction force F̃k, (b) the contact area Ã and (c)
the viscoelastic friction coefficient μvisc as a function
of log10 ŷ and log10 v̂rel . The black dots represent the
numerical results obtained from the boundary element

method analysis, while the shaded surfaces refer to the
analytical functions used to fit the numerical results.
Notice that the fitting laws for all the three quantities
have been selected based on physical considerations
and on the knowledge of the contact mechanics prob-
lem. Indeed, the advantage of using analytical fitting
functions is twofold: (i) it guarantees a fast calling
and evaluation of the numerical functions during the
dynamical simulations and (ii) it allows any researcher
to easily replicate or extend this study in the future.

Let us further comment on the physical ratio for
the fitting equations employed for F̃k , Ã and μvisc

(for more numerical detail on the fitting procedure
the reader is referred to Appendix B). As for the vis-
coelastic friction coefficient, μvisc (̂vrel , ŷ) is propor-
tional to the imaginary part of the viscoelastic modulus
Im(E(ω)) and, thus, for a one relaxation time mate-
rial, the dependence of μvisc on the speed v̂rel has a
bell shape and is well described by a Gaussian func-
tion. The dependence on the indentation ŷ can be easily
recalled by using the Hertzian theory. The viscoelastic
friction force Fvisc is proportional to the volume being
deformed and, thus Fvisc ∝ a2y with a being the con-
tact radius; in an Hertzian contact a = (Ry)1/2 with R
the radius of the spherical indenter, hence Fvisc ∝ y2.
By recalling that the normal force is proportional to
y3/2 one obtains μvisc ∝ y1/2. Consequently, we have
implemented the following fitting equation:

μvisc = c1 ŷ
1/2 exp

(

−
(
log10 v̂ − (

c2 log10 ŷ + c3
))2

2c24

)

(6)

which has provided a coefficient of determination r2 =
0.9957 (see Fig. 3a). Notice that the viscoelastic fric-
tion monotonically increases with the indentation y/R
as a larger penetration implies a larger volume that
deforms and dissipates. Furthermore, with respect to
the velocity dependence, the bell-shaped trend in the
semi-logarithmic scale, where friction vanishes at very
low and very high speed values, occurs as in the limit
of very high and very low speeds, the material behaves
elastically, whereas it reaches a maximum in the range
of intermediate velocity.

With regard to the contact area A (̂vrel , ŷ), accord-
ing to Hertz theory, the apparent contact area should
depend linearly on the indentation ŷ, whereas the
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dependence on velocity resemble a flipped Gaussian
function. The fitting equation results:

Ã = b1 ŷ

[

b2 − exp

(

−
(
log10 v̂ − (

b3 log10 ŷ + b4
))2

2b25

)]

(7)

which gave a coefficient of determination r2 = 0.9995
(see Fig. 3b). Indeed, the contact area Ã is constant
at low and high velocity, where the material behaves
elastically and the contact radius is only defined by the
imposed indentation ŷ as predicted by Hertzian theory,
while, as shown in Ref. [44], due to viscoelasticity, it
reaches a minimum in the range of intermediate veloc-
ities.

Finally, the substrate reaction force should be pro-
portional to∝ ŷ3/2,while the dependence on the veloc-
ity can be well captured by an erf (x) function. An
excellent fit was obtained using the fit equation

F̃k = a1 ŷ
3/2 1

2

[
a2 + erf

(
a3 log10 v̂ + (

a4 log10 ŷ + a5
))]

(8)

which provided a coefficient of determination r2 =
0.9999 (see Fig. 3c). For a given penetration, the elastic
reaction force increasesmoving from the rubbery to the
glassy region, i.e., from low to high velocity.

2.2 Dimensionless formulation

After introducing the equilibrium equations in the hor-
izontal and vertical directions and the equations that
determine the contact forces, we develop here a dimen-
sionless formulation, that will be used along the rest of
the paper. Let us introduce the damping ratio ξx and ξy ,
referred to the motion components, respectively, along
the −x axis and the −y axis, and, similarly, the natural
frequencies ωnx , ωny and ωnxy :

ξx = cx
2
√
kxm

; ξy = cy
2
√
kxm

;

ωnx =
√
kx
m

; ωny =
√
ky
m

; ωnxy =
√
kxy
m

.

(9)

By defining the dimensionless time θ and a reference
displacement x0 as

θ = tωnx ; x0 = Fn
kx

; (10)

we introduce the following dimensionless parameters:

ỹ = y

x0
; x̃ = x

x0
; ṽrel = vrel

x0ωnx
;

τ̃ = ωnxτ ; Ã = A

R2 ; τ̃0 = τ0

E∗
0
;

Ω = ωny

ωnx
; η = ωnxy

ωnx
; R̃ = R

x0
;

F̃k = Fk
E∗
0 R

2 ; F̃n = Fn
E∗
0 R

2 . (11)

Using (9,11) and d
dt = ωnx

d
dθ
, the equilibrium equa-

tions can be written in dimensionless form as
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

··
x̃ + 2ξx

·
x̃ + (1 + η2 cos2 α)̃x +

(
η2 sin α cosα

)
ỹ

= −sign(̃vrel )
[
μvisc (̂vrel , ŷ) + τ̃0

F̃n
Ã (̂vrel , ŷ)

]

··
ỹ + 2ξy

·
ỹ +

(
Ω2 + η2 sin2 α

)
ỹ +

(
η2 sin α cosα

)
x̃

= 1 − F̃k (̂vrel ,̂y)
F̃n

(12)

Notice that, in case of lift-off of the spherical punch,
no contact between the punch and the substrate occurs,
hence, in such conditions, F̃k (̂v, ŷ) =0 andμvisc (̂v, ŷ)
= 0; Eqs. (12) will be modified accordingly:
⎧
⎨

⎩

··
x̃ + 2ξx

·
x̃ + (1 + η2 cos2 α)̃x + (

η2 sin α cosα
)
ỹ = 0

··
ỹ + 2ξy

·
ỹ + (

Ω2 + η2 sin2 α
)
ỹ + (

η2 sin α cosα
)
x̃ = 1

(13)

If not differently stated, in the next sections, we will
assume the following model parameters:

ξx = 0.01; ξy = 0.01; Ω = 1; η = 1; α = π/4;
ωnx = 40rad/s; kx = 50N/m. (14)

where the parameters in the second row may be useful
if one wants to go back from dimensionless to dimen-
sional quantities. Here, we are focusing our attention
on the particular case Ω = η = 1: such a choice is
carried out as we aim at investigating how Stribeck
and mode-coupling instabilities co-exist and interact.
Clearly, setting a vanishing (or infinite) value for Ω

or η would give the system two far apart modes, thus
preventing the mode-coupling instability to take place.

3 Linear stability analysis

Let us assume that the substrate is sliding at a given
velocity v̂d and a steady state solution exists so that
·
x̃ = ·

ỹ = 0 and v̂rel = −v̂d . From Eq. (12), the static
equilibrium position (̃xe, ỹe) can be obtained by solv-
ing the following algebraic system of equations:
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1 + η2 cos2 α)̃xe +
(
η2 sin α cosα

)
ỹe

=
[
μvisc (̂vrel , ŷe) + τ̃0

F̃n
Ã (̂vrel , ŷe)

]

(
Ω2 + η2 sin2 α

)
ỹe +

(
η2 sin α cosα

)
x̃e

= 1 − F̃k (̂vrel ,̂ye)
F̃n

(15)

where ŷe = ỹe/R̃. By defining ũ (t) = x̃ (t) − x̃e and
q̃ (t) = ỹ (t) − ỹe, the system of equations (12) is
linearized and written in matrix form as:

[
1 0
0 1

]
⎧
⎨

⎩

··
ũ
··
q̃

⎫
⎬

⎭
+
[
2ξx 0
0 2ξy

]
⎧
⎨

⎩

·
ũ
·
q̃

⎫
⎬

⎭

+
[
1 + η2 cos2 α η2 sin α cosα

η2 sin α cosα Ω2 + η2 sin2 α

]{
ũ
q̃

}

=

⎧
⎪⎪⎨

⎪⎪⎩

τ̃

R̃

(
∂μ

∂v̂rel
+ τ̃0

F̃n
∂ Ã

∂v̂rel

)

(
v̂rel ,̂ye

)
·
ũ + 1

R̃

(
∂μ
∂ ŷ + τ̃0

F̃n
∂ Ã
∂ ŷ

)

(
v̂rel ,̂ye

) q̃

− τ̃

R̃ F̃n

∂ F̃k
∂v̂rel

∣
∣
∣
∣(

v̂rel ,̂ye
)

·
ũ − 1

R̃ F̃n

∂ F̃k
∂ ŷ

∣
∣
∣
∣(

v̂rel ,̂ye
) q̃

⎫
⎪⎪⎬

⎪⎪⎭

(16)

where we have used

∂

∂
·
ũ

= ∂

∂
·
x̃

= ∂

∂ṽrel
; ∂

∂q̃
= ∂

∂ ỹ
. (17)

Equation (16) can be rewritten in the classical form:

M
··
Ũ + C

·
Ũ + KŨ = 0 → (18)

[
1 0
0 1

]
⎧
⎨

⎩

··
ũ
··
q̃

⎫
⎬

⎭
+
[
c11 c12
c21 c22

]
⎧
⎨

⎩

·
ũ
·
q̃

⎫
⎬

⎭

+
[
k11 k12 + k12c
k21 k22

]{
ũ
q̃

}

=
{
0
0

}

(19)

where M, C, K are, respectively, the mass, damping
and stiffness matrix, Ũ T = {̃u, q̃} and

c11 = 2ξx − τ̃

R̃

(
∂μ

∂v̂rel
+ τ̃0

F̃n

∂ Ã

∂v̂rel

)

(̂vrel ,̂ye)
;

c21 = τ̃

R̃ F̃n

∂ F̃k
∂v̂rel

∣
∣
∣
∣
(̂vrel ,̂ye)

;
c22 = 2ξy; c12 = 0;
k11 = 1 + η2 cos2 α; k12 = k21 = η2 sin α cosα;
k12c = − 1

R̃

(
∂μ

∂ ŷ
+ τ̃0

F̃n

∂ Ã

∂ ŷ

)

(̂vrel ,̂ye)
;

k22 = (Ω2 + η2 sin2 α) + 1

R̃ F̃n

∂ F̃k
∂ ŷ

∣
∣
∣
∣
(̂vrel ,̂ye)

. (20)

The stability of the equilibrium state (̃xe, ỹe) can be
determined by solving the eigenvalue problem

det(A − λI) = 0 (21)

being A the state matrix

A =
[

[0] [I][−M−1K
] [−M−1C

]

]

4∗4
(22)

If all eigenvaluesλi havenegative real parts (Re (λi ) < 0,
∀ λi ) the equilibrium solution (̃xe, ỹe) is linearly sta-
ble against small perturbations.

4 Results

4.1 Equivalent damping in the horizontal direction

Let us preliminary focus on the damping matrixC and,
in particular, on the search for possible sources of nega-
tive damping. As well known in literature, in fact, neg-
ative damping is one of the elements that trigger FIVs.
When looking at matrix C, we realize that the com-
ponent c12 is null, while the term c22 is positive and
depends on the external structural source of damping.
As for c21, this correlates the damping in the horizontal
direction to the oscillations in the vertical motion: c21
is always positive as F̃k increases monotonically with
the sliding velocity (see Fig. 3c). Finally, the remaining
term c11 contains two contributions, one originated by
the external damping ξx , the other related to the dissi-
pative processes occurring in the viscoelastic substrate.
Specifically,we can define the systemequivalent damp-
ing ratio ξeq along the x-direction as ξeq = c11/2, and,
then, write ξeq as:

ξeq = ξx + τ̃

2R̃

(
∂μ

∂v̂rel
+ τ̃0

F̃n

∂ Ã

∂v̂rel

)

(̂vd ,̂ye)
(23)

Now, in Fig. 4, for the model parameters previ-
ously fixed, the equivalent damping ratio ξeq is plot-
ted as a function of the dimensionless substrate veloc-
ity v̂d , for different values of the normal force F̃n =
7.5∗[10−2, 10−3, 10−4, 10−5

]
and the tangential stress

τ̃0 = [0, 0.01, 0.05, 0.1].
Let us recall that the friction μvisc vanishes at low

and high values of the sliding substrate velocity, i.e.,
when the substrate acts as elastic, respectively, in the
rubbery and the glassy regimes; in these limits, the con-
tact area Ã assumes the constant values given by the
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Fig. 4 Equivalent damping
ξeq as a function of the
substrate dimensionless
velocity v̂d , for F̃n = 7.5 ∗[
10−5, 10−4, 10−3, 10−2

]

and
τ̃0 = [0, 0.01, 0.05, 0.1]. In
the insets, a zoom in the
range of v̂d = [

10−2, 100
]

is shown
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elastic Hertzian solution. Thus, in the limits of vanish-
ing or infinite sliding velocity, the derivatives ∂μ/∂v̂rel
and ∂ Ã/∂v̂rel go to zero and, thus, the equivalent damp-
ing coefficient is very small and equal to the linear
damping coefficient ξeq = ξx , which is pretty small
when compared to the interfacial damping.On the other
hand, as soon as the speed is slightly increased, the vis-
coelastic frictionmarkedly increases. This is the region
where the transition from “stick to slip” takes place,
which implies a large value for the derivative term
∂μ/∂v̂rel and ultimately a large equivalent damping.
The latter behavior is well-known in tribology, partic-
ularly for the rate and state friction models developed
mostly by the geophysics community [54–56].

For very small values of τ̃0 , the equivalent damping
is uniquely defined by the viscoelastic friction (see, in
all the panels in Fig. 4, the pale blue curves): starting
from a value asymptotically tending to ξx , ξeq increases
with the speed, reaches amaximum and then decreases,
eventually becoming negative for v̂d being approxi-
mately equal to approximately v̂d ≈ 10−2 as visible
in Fig. 4 insets. Finally, for very large values of v̂d , ξeq
tends to ξx .

Regarding the dependence on the interfacial shear
stresses, by increasing τ̃0, the effect of ∂ Ã/∂v̂rel
becomes dominant. We employ τ̃0 ∈ [0.01, 0.1] as this
is a representative range for soft materials. Figure 4
shows that increasing τ̃0 reduces ξeq in the range of
intermediate velocity. For low normal loads, this reduc-
tion may be strong enough to bring ξeq in the negative

half-plane. Although this may resemble counterintu-
itive, in Fig. 3b, it can be seen that the contact area
Ã decreases with velocity, reaches a minimum and,
only after that, increases again. This means that there
is a speed range, where ∂ Ã/∂v̂rel is negative and there
occurs a negative damping effect. Ultimately, the faster
the sphere goes, the smaller the contact area gets, the
smaller the “adhesive” shear resistance is. Conversely,
in the range of high velocity (see Fig. 4), where the con-
tact area provides a positive damping (∂ Ã/∂v̂rel > 0,
see Fig. 3b), the higher τ̃0 the higher ξeq .

4.2 Linear stability for high/low velocity

Before proceeding with the stability map, it is inter-
esting to consider the system under investigation in
the limit of very low or very high driving velocity.
In this limit, all the dissipative interfacial contribu-
tions vanishes as the material behaves elastically, and
∂μ/∂v̂rel and ∂ Ã/∂v̂rel goes to zero; there exist the
externally imposed damping ratios ξx and ξy , but, as
typical in most of the mechanical structures, these can
be assumed very small (in the order of 0.01). It is hence
licit to neglect the contribution of the dampingmatrix in
the stability analysis (C = 0) to determine the system
eigenvalues. With this approximation, it is possible to
obtain, from the state matrix A, two pairs of complex-
conjugate eigenvalues:
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Fig. 5 a Real and b imaginary part of the system eignevalues as
a function of the interfacial shear strength τ̂0 for v̂d = 10−4 and
F̃n = 7.5 ∗ 10−6

λ1,2= ± 1√
2

√

− (k11+k22) −
√

4k12 (k12+k12c) + (k11−k22)2

(24)

λ3,4 = ± 1√
2

√

− (k11+k22)+
√

4k12 (k12 + k12c) + (k11−k22)2

(25)

where λ1,2 are purely imaginary, while λ3,4 can be
real or complex depending on the terms in the stiffness
matrix. Incidentally, notice that we have neglected the
contribution of the dampingmatrix, but the effect of the
viscoelastic substrate still remains through the stiffness
matrix K. While the terms k11 and k12 depend only on
the structural stiffness, the terms k12c and k22 depend on
the substrate properties and its deformation: although
the layer, in this conservative limit of small and large
speeds, behaves elastically, contact area and substrate
restoring force still depend on the indentation.

Figure 5 shows the system eigenvalues as a function
of the interfacial shear strength τ̃0 for v̂d = 10−4 and
F̃n = 7.5 ∗ 10−6. At low interfacial shear strength,
two purely imaginary eigenvalues exist, and then, at
about τ̃0cri t ≈ 3.5 ∗ 10−2 the two modes merge and a
pair of eigenvalues develop: one of these has a positive
real part, showing the classical picture of a flutter type
instability. In Fig. 6, the eigenvalues λi are plotted as a
function of the normal force F̃n for a given τ̃0 = 0.01
and v̂d = 1.58 ∗ 10−4. One recognizes that for F̃n �
7.5∗10−7 there exist two purely imaginary eigenvalues
(recall we set C = 0), while for a smaller normal force
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Fig. 6 a Real and b imaginary parts of the system eignevalues
as a function of the dimensionless normal force F̃n for τ̂0 = 0.01
and v̂d = 1.58 ∗ 10−4
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Fig. 7 Critical interfacial shear strength τ̃0,cri t above which the
system is linearly unstable as a function of the driving velocity
v̂d and for different normal forces log10 F̃n = [−8,−7, ...,−4]
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Fig. 8 F̃n,cri t below which one has flutter instability as a func-
tion of the substrate velocity v̂d and for τ̃0 = [0.01, 0.05, 0.1]

the two modes merge and a pair of eigenvalues, one
with positive real part, appear. We conclude that both
low normal forces and high interfacial shear stresses
will promote flutter instability.

123



3004 A. Papangelo et al.

Looking at Fig. 5 and 6, it could be interesting to
determine the critical interfacial shear strength τ̃0,cri t
and the critical normal force F̃n,cri t at which the flut-
ter instability originates: we will, be able to define the
“critical point”, where the two modes merges. From
Eq. (25), one obtains

k12c = − (k11 − k22)2

4k12
− k12, (26)

which can be cast in terms of critical shear strength
τ0,cri t and critical normal load Fn,cri t : for shear stresses
larger than τ0,cri t and normal load smaller than Fn ,
self-excited vibrations will be triggered. These critical
values are, respectively:

τ̃0,cri t =

⎡

⎢
⎢
⎢
⎣
k̃x

⎛

⎜
⎜
⎜
⎝

(

1 + η2 cos 2α − Ω2 − 1
k̃x

∂ F̃k
∂ ŷ

∣
∣
∣
(̂v′

rel ,̂y
′)

)2

2η2 sin 2α
+ η2 sin 2α

2

⎞

⎟
⎟
⎟
⎠

−F̃n
∂μ

∂ ŷ

∣
∣
∣
∣
(̂v′

rel ,̂y
′)

]
∂ Ã

∂ ŷ

∣
∣
∣
∣

−1

(̂v′
rel ,̂y

′)
(27)

F̃n,cri t =

⎡

⎢
⎢
⎢
⎣
k̃x

⎛

⎜
⎜
⎜
⎝

(

1 + η2 cos 2α − Ω2 − 1
k̃x

∂ F̃k
∂ ŷ

∣
∣
∣
(̂v′

rel ,̂y
′)

)2

2η2 sin 2α
+ η2 sin 2α

2

⎞

⎟
⎟
⎟
⎠

−τ̃0
∂ Ã

∂ ŷ

∣
∣
∣
∣
(̂v′

rel ,̂y
′)

]
∂μ

∂ ŷ

∣
∣
∣
∣

−1

(̂v′
rel ,̂y

′)
(28)

where we introduce the dimensionless tangential stiff-
ness k̃x = kx/

(
E∗
0 R
)
. Figure 7 shows the critical

shear strength τ̃0,cri t , above which the system is lin-
early unstable, as a function of the speed v̂d for several
values of the applied normal force F̃n,cri t . This criti-
cal shear stress τ̃0,cri t increases both with the substrate
velocity and with the applied normal force. Notice that
for a soft material a realistic value of τ̃0,cri t is in the
range [0.01, 0.1]: hence, low normal forces can eas-
ily lead to flutter. Figure 8 shows the critical normal
force F̃n,cri t below which there exists flutter instability
as a function of the substrate velocity v̂d and for dif-
ferent values of τ̃0 = [0.01, 0.05, 0.1]. Ultimately, it
is shown that F̃n,cri t decreases with v̂d and increases
with τ̃0: thus, for a given τ̃0 a smaller velocity promotes
instability.

4.3 Stability map for the full system

The dynamical system considered is linearly stable to
small perturbations if max [Re (λi )] < 0, being λi the
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10-8 10-6 10-4 10-2 100 102
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100
(b)

(a)

Fig. 9 Linear stability map for the full (damped) system as
a function of the driving velocity v̂d and of the interfacial
shear strength τ̃0. The stable (unstable) region corresponds to
max [Re (λi )] < 0 (max [Re (λi )] > 0) , being λi the eigenvalue
computed from Eq. (21). Dashed black line indicates the stabil-
ity boundary obtained from the conservative system (Eq. (27)),
while the red solid line is the stability boundary obtained with
the full system but setting η = 0. Panel (a) for F̃n = 10−6 while
panel (b) for F̃n = 10−3

i−th eigenvalue obtained from Eq. (21). Here, the sta-
bility maps of the full system are shown for a given set
of governing parameters: this has been carried out by
accounting for the damping matrix C. Indeed, Fig. 9
shows the stability maps as a function of the driving
velocity v̂d and of the interfacial shear stress τ̃0 , for
different values of the normal force F̃n .

Now, for small values of the normal force and,
specifically, for F̃n = 10−6, panel (a) shows that the
stability boundary of the full system (obtained fromEq.
(21), black dashed line in 9) is in good agreement with
the estimate obtained neglecting the damping matrix C
over all the velocity range, except in the range between
v̂d � 10−6 ∼ 10−4. The agreement seems to worsen
for larger normal forces, as clear in panel (b), where
the stability analysis is carried out for F̃n = 10−3. We
easily understand this observing that dissipation in the
viscoelastic substrate is proportional to the volume of
material deformed during the normal sliding, thus, at
low normal forces, the only damping remaining in the
system is related to ξx and ξy whose values are indeed
quite small. For a higher normal force, (panel (b)) Eq.
(27) gives an accurate result both at high and low driv-
ing velocity while it overestimates the stability range
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Fig. 10 Linear stability map for the full (damped) system as a
function of the driving velocity v̂d and of the normal force F̃n .
The stable (unstable) region corresponds to max [Re (λi )] < 0
(max [Re (λi )] > 0) , being λi the eigenvalues computed from
Eq. (21). The dashed black line indicates the stability boundary
obtained from the conservative system (Eq. (28)), while the red
solid line is the stability boundary obtained with the full system
but setting η = 0. Panel (a) for τ̃0 = 10−2 while panel (b) for
τ̃0 = 10−1

at intermediate velocity. This is immediately explained
whenone remembers the rheologyof viscoelasticmate-
rials: they behave elastically (no dissipation occurs)
at low and high frequency of excitation (glassy and
rubbery region) while they dissipate energy for inter-
mediate frequency (transition regime). It may result
unexpected that the full system shows an instability
region that is larger than the conservative counter-part.
Nevertheless, Fig. 4 shows that the system equivalent
damping (x-direction) is strongly affected by the con-
tact area evolution with the driving velocity. In partic-
ular, negative damping is achieved for relatively small
normal forces (see Fig. 4 bottom panels), which clearly
foster instability. Furthermore, at very low interfacial
shear strength (̃τ0 � 10−3 ∼ 10−4), the terms related
to the contact area variation in the damping matrix C
vanish and the only remaining contribution is related
to the variation in the viscoelastic friction coefficient
μvisc. Clearly, two different mechanisms of instability
are supervening here: one related to the mode coupling
instability, the other to the so-called Stribeck effect. To
isolate the effect of the negative damping induced by
the variation in the viscoelastic friction coefficient and
of the contact area with the relative velocity, we show

in Fig. 9 the stability boundary (red solid line) that one
would obtain by setting η = 0. Indeed, for η = 0 the
two modes are decoupled, which prevents the develop-
ment of flutter instability. In the region of intermediate
velocity, the prevailingmechanism for instability is due
to a Stribeck effect. In this respect, the accuracy of Eq.
(27) can be reconsidered: the analysis in the limit of
low or high velocities, where viscoelastic dissipation
vanishes, correctly predicts the stability boundary due
to flutter in the region where the latter is the dominant
mechanism for instability.

Figure 10 shows the stability maps as a function of
the driving velocity v̂d and of the applied normal force
F̃n for two interfacial shear stresses τ̃0 = [0.01, 0.1],
respectively, in panel (a) and panel (b). As shown in
Fig. 9, the stability boundary obtained by employing
Eq. (28) for the conservative system (dashed black line)
matches the full system stability boundary only at low
and high sliding velocity. On the other end in the tran-
sition region the viscoelastic properties of the substrate
strongly affect the system stability introducing the pos-
itive/negative damping contributions originated by the
contact area variation and the friction coefficient evo-
lution with the relative velocity. By comparing panel
(a) and panel (b), one notices that the unstable region
enlarges for materials with a higher interfacial shear
strength: this is clearly determined by the terms related
to the contact area variation in the damping matrix.
This is demonstrate by the stability boundary we have
obtained by setting η = 0: this again shows how, in the
region of intermediate velocities, the prevailing mech-
anism for instability is due to a Stribeck’s effect.

5 Post-instability behavior

To better understand the importance of accounting for
the effect of a time varying contact area in determining
the dynamical response of a mechanical system in rela-
tive motion with a viscoelastic substrate, here we focus
on the post-instability response of the dynamical sys-
tem bymeans of time integration results. An illustrative
case is considered for F̃n = 7.5 ∗ 10−4, ṽd = 5 ∗ 10−3

and a varying characteristic interfacial shear strength
10−4 < τ̃0 < 5 ∗ 10−2. Since the Coulomb part of the
frictional resistance is proportional to the interfacial
shear strength, a vanishing τ̃0 “suppresses” the effect
of the varying contact area, while this gets stronger
for high values of τ̃0. Figure 11 shows the root-mean-
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Fig. 11 Dimensionless vibration amplitude (root-mean-square)
X̃rms for F̃n = 7.5 ∗ 10−4, ṽd = 5 ∗ 10−3, and 10−4 < τ̃0 <
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Fig. 12 Dimensionless a horizontal displacement, b relative
velocity and c contact area as a function of the dimensionless
time θ for the simulationswith τ̃0 = 10−4 and τ̃0 = 0.05, respec-
tively, dashed blue and solid black lines

square vibration amplitude X̃rms as a function of τ̃0.
Increasing τ̃0 completely changes the stability of the
system. Indeed, for τ̃0 � 2 ∗ 10−3, the system is stable
against small perturbations and the vibration amplitude
is about 0. For larger τ̃0 the system becomes unstable
and the vibration amplitude X̃rms strongly increases
with τ̃0. Clearly, accounting for the time varying con-
tact area strongly influences the system dynamics.

Figure 12 shows the dimensionless (a) horizontal
displacement, (b) relative velocity, and (c) contact area
as a function of the dimensionless time θ for the sim-
ulations in Fig. 11 with τ̃0 = 10−4 and τ̃0 = 0.05

(respectively, dashed blue and solid black lines). For
τ̃0 = 10−4 the system is linearly stable and {̃x, Ã, τ̃0}
are constant. For τ̃0 = 5 ∗ 10−2 a high amplitude
limit cycle develops, characterized by “stick-slip” like
motion. Notice that, during the “slip” phase (̃vrel < 0),
a rapid reduction in the contact area takes place, and this
comes along with a sudden reduction in the Coulomb
part of the frictional resistance, further strengthening
the instability effect.

6 Conclusions

In this work, the linear stability analysis of a spher-
ical oscillator moving on a viscoelastic substrate has
been studied, by determining the contact interactions
between the substrate and the punch through simula-
tions based on a boundary element formulation. The
frictional dissipation has been modeled adding up the
viscoelastic contribution due to bulk hysteresis in the
viscoelastic material to a Coulomb “adhesive” contri-
bution that, consistently with recent measurements, has
been assumed to be proportional to the apparent contact
area via a characteristic interfacial shear strength.

Such a simple yet representative model has allowed
us to investigate how two different instability mecha-
nisms, that is, the Stribeck’s one related to the falling
characteristic of the friction law with the sliding veloc-
ity and the mode-coupling one, co-exist and compete
in the context of viscoelastic contact. We have per-
formed a linear stability analysis, which in the limit of
low and high velocity, has provided analytical results
in closed form, thus enabling us to estimate the criti-
cal point for flutter instability in terms of critical shear
strength (normal force) above (below)which instability
occurs. Comparisons with the full stability maps have
shown that the critical points determined analytically
are accurate in the limit of high/low velocity or when
the applied normal force is small. Conversely, in the
range of intermediate velocity, the analytical estimates
are not accurate as we have shown that the dominant
mechanism for instability is due to a Stribeck effect,
i.e., it is dominated by the viscoelastic damping (posi-
tive or negative) introduced by the variation in friction
coefficient and contact area with the relative velocity
is.

Our results show how, the evolution of the appar-
ent contact area at the interface may play a funda-
mental role in the developing of unstable vibrations
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and show once more how common simplifications of
adopting a constant friction coefficient or a linear con-
tact stiffness, can largely oversimplify the problem
of detecting the parametric regions where mechani-
cal systems experience self-sustained vibrations. This
calls for further development of physics-based theoreti-
cal/numerical approaches capable of correctly account-
ing for the interactions that take place at the interface
between contacting bodies.
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Appendix - A

6.1 Viscoelastic contact mechanics

A linear viscoelastic material responds to the following
integral equation [57]:

ε (t) =
∫ t

−∞
dτJ (t − τ) σ̇ (τ ) (29)

which relates the time-dependent strain ε (t) to the
time derivative of the stress σ (t) by means of the
creep function J (t). The latter satisfies causality,
i.e., J (t < 0) = 0 and can be written as J (t) =
H (t)

[
1/E0 − ∫ +∞

0 dτC (τ ) exp

(−t/τ)] with H (t) being the Heaviside step func-
tion, while E0 is the rubber elastic modulus of the
material at zero-frequency, C (τ ) is a strictly pos-
itive function defined as the creep spectrum [57,
58] and τ is the relaxation time, continuously dis-
tributed on the real axis. Obviously, in order to
employ practically the creep function in a numeri-
cal formulation, we have to discretize the aforemen-
tioned relation and, so, rewrite J (t) as J (t) =
H (t)

[
1/E0 −∑n

k=1 Ck exp (−t/τk)
]
.

Now, it is possible to Fourier-transform the equa-
tions presented above by writing ε (ω) = σ (ω) /E (ω)

with E (ω) being the viscoelastic modulus. The latter,
defined as E (ω) = [iωJ (ω)]−1, can be written as:

1

E(ω)
= 1

E0
−
∫ ∞

0
dτ

iωτC (τ )

1 + iωτ

= 1

E∞
+
∫ ∞

0
dτ

C (τ )

1 + iωτ
(30)

which, in the discretized form, becomes 1/E (ω) =
1/E∞ +∑n

k=1 Ck/(1 + iωτk) .
As shown in Fig. 13, at low frequencies, the vis-

coelastic material is in the elastic ‘rubbery’ region,
where E(ω) becomes real and tends to E0, whilst for
very large frequencies, E (ω) is again real, but this time
tends to E∞ and the material is in the so-called glassy
region. Finally, in the intermediate frequency range,
we have the proper viscoelastic region: the loss tangent
ImE (ω) /ReE (ω) is, then, very large [see Fig. 13b].
Energydissipation in the sliding contactwill be, indeed,
originated in this region of the viscoelastic spectrum .

Now, let us briefly describe the Boundary Element
formulation necessary to tackle the viscoelastic contact
mechanics problem and determine the solution in terms
of stresses, strains and, ultimately, friction. Basically,
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(a)

(b)

Fig. 13 Real E1 = Re [E (ω)] and the imaginary E2 =
Im [E (ω)] parts of the viscoelastic modulus E (ω) of a typical
rubber-like material, (a); loss tangent E2 (ω) /E1 (ω), (b)

by recalling the translational invariance and the elastic–
viscoelastic correspondence principle [57], we can for-
mulate the general linear-viscoelastic contact problem
between a three-dimensional rigid indenter and a vis-
coelastic slab in terms of an integral Equation relating
the normal surface displacement u of the viscoelastic
solid and the normal interfacial stress σ :

u (η, t) =
∫ t

−∞
dτ

∫

d2η′J (t − τ)G (η − η′)

σ̇
(
η′, τ

)
, (31)

where η is the in-plane position vector referred to a
frame moving with the rigid indenter and t is the time,
while the integral kernel is given by J (t) and by
the elastic Green’s function G (η). Now, if we assume
that the sliding occurs at constant velocity, thus imply-
ing that the rigid punch always slides over completely
relaxed material regions, Eq. (31) can be re-written in
the following form:

u (η) =
∫

d2ηG
(
η − η′, v

)
σ
(
x′) (32)

where v is the speed by which the viscoelastic solid is
deformed. In the contact configuration adopted in this
paper (see Fig. 2), , the velocity v is then equal to v
=vrel i with i being the unit vector along the x− direc-
tion. By employing the expression for the viscoelastic

Green’s function G (η, v) explicitly given in Ref. [44],
the viscoelastic problem requires to solve Eq. [44] in
the contact area. The latter can be be found by follow-
ing the iterative numerical scheme aimed at determin-
ing the contact solution [49]: we discretize the con-
tact domain in N square cells and assume that, in each
square element, the normal stress σ is constantly equal
to σk = σ (ηk) where ηk is the position vector of the
center of the square cell Dk . Thus, the normal displace-
ment ui = u (ηi ) at the center of the i-th square cell
can be related to σk with the following linear system:

ui = Lik (v) σk (33)

where each element of the response matrix Lik (v)
is equal to Lik (v) = G

(
ηi−ηk, v

)
and parametri-

cally depends on the velocity v. Eq. (33) can be eas-
ily solved and, then, to determine the contact area, the
iterative procedure described in details in Ref. [49]
can be adopted. Once the contact stresses and dis-
placements are known, by recalling that v = vi , it
is possible to compute the friction force as Ff ric =∫

Ω
d2ησ(η)∂u/∂η.

Appendix - B

In this paper, as detailed in Sect. 2, we have fitted the
contact solution in terms of friction force, normal force
and contact area. Here, we report the fitting coefficients
obtained from the fitting procedure (we used MAT-
LAB). For the viscoelastic reaction force, the fitting
function

F̃k = a1 ŷ
3/2 1

2

[
a2 + erf

(
a3 log10 v̂

+ (a4 log10 ŷ + a5
))]

(34)

with coefficients

a1 = 11.890; a2 = 1.199; a3 = 0.873;
a4 = −0.449; a5 = 0.412; (35)

gave a coefficient of determination r2 = 0.9999 (see
Fig. 3a).

For the contact area, the fitting function

Ã=b1 ŷ

[

b2− exp

(

−
(
log10 v̂ − (

b3 log10 ŷ + b4
))2

2b25

)]

(36)

with coefficients

b1 = 1.440; b2 = 2.118; b3 = 0.493;
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Fig. 14 Comparison between the a normal contact force, b con-
tact area, c friction coefficient, as obtained from boundary ele-
mentmethod simulations and from the fitting equations proposed
above

b4 = −1.328; b5 = 0.826; (37)

gave a coefficient of determination r2 = 0.9995 (see
Fig. 3b).

For the viscoelastic friction coefficient, the fitting
function

μvisc = c1 ŷ
1/2 exp

(

−
(
log10 v̂ − (

c2 log10 ŷ + c3
))2

2c24

)

(38)

with coefficients

c1 = 0.450; c2 = 0.489;
c3 = −1.682; c4 = 0.766; (39)

gave a coefficient of determination r2 = 0.9957 (see
Fig. 3c).

Figure 14 compares the numerical results with the
predictions obtained using the fitting equations pro-
posed above. In each panel, the coefficient of determi-
nation r2 is reported.
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