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Abstract We study the planar deformation of a beam
that travels across a given control domain supported by
a moving rough plane, which is a prototype for various
technological processes. A sufficiently small misalign-
ment between the guideways at the ends of the domain
results in a stationary regime of motion, which fea-
tures a zone of sticking contact near the entry to the
control domain, followed by infinitely many segments
of transverse sliding with alternating directions. Self-
similarity of this solution of an essentially nonlinear
boundary value problem is the primary novel result of
the present contribution. Closed-form analytic results
are validated against a finite element simulation of the
transient evolution process, which demonstrates sta-
bility of the obtained solution and provides insights
regarding the characteristic time scales of establishing
of subsequent zones of sliding.

Keywords Axially moving beam · Transport ·
Coulomb friction · Steady motion · Self-similarity ·
Transient dynamics

1 Introduction

Transport processes of thin deformable structures are
intrinsic for various technical solutions: belt drives,

Y. Vetyukov (B)
Institute of Mechanics and Mechatronics, TU Wien, Getreide-
markt 9, 1060 Vienna, Austria

rolling mills, etc. Combined effects of flexibility, iner-
tia and contact may prevent the structure from oper-
ating in a desired way. Practical importance and mod-
elling complexity promote the rapid growth of the body
of literature in the field of axially moving structures;
here, we mention review articles [1–3], a comprehen-
sive monograph [4], own works [5–7] as well as rele-
vant papers [8–11]. Particularly interesting in the light
of the present research are studies featuring the effect
of frictional contact between moving deformable bod-
ies; here, we refer to [12–16]. Most mentioned con-
tributions address transient dynamic processes. Never-
theless, for certain kinds of problems, it may become
important and challenging just to find a steady regime
of motion. Such solutions remain unchanged for an
observer in a spatially fixed frame, although the mate-
rial particles of the structure are moving according to
complicated laws, see, for example, [10,12,14,15].

A new, seemingly simple and at the same time prac-
tically relevant statement of a problem, which allows
for a non-trivial steady solution, is given in the present
contribution. We consider the motion of a beam, which
lies on a moving rough plane, see Fig. 1.

The kinematic boundary conditions in the form of
the misaligned guideways at both sides of the con-
trol domain impose deformation, which is incompat-
ible with the motion of the plane and thus make sliding
inevitable in at least part of the considered domain.
The interest to the topic of frictional interaction of
slender rods with other rods or solid rough surfaces
is also increasing over the recent years owing to both
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Fig. 1 Beam travelling on a moving rough surface across a con-
trol domain between two misaligned guideways

the practical relevance and the variety of particular
effects, observed in the model problems, see, for exam-
ple, already cited works [12,13] as well as [17]. Papers
[18–22] are particularly important in the context of the
present research, as they address themicroslip of a slen-
der beam on a frictional foundation. While the authors
of [19,20] consider a semi-infinite beamunder the force
andmoment loading, the research results demonstrated
in [18,21] aremore practically oriented: cooling of long
rails after hot-rolling leads to thermal bending moment
with subsequent loss of the straight form of equilib-
rium despite the friction between the rail and the foun-
dation. Even the solutions, obtained in the mentioned
references [18–22], look similar to the one we obtain
in the following: partial stick and a sequence of zones
of sliding contact with alternating directions of sliding,
which are analytically studied using considerations of
self-similarity. Nevertheless, the present formulation
is essentially different as it features an axially moving
beam and is described by a different nonlinear bound-
ary value problem. Also the transient evolution of the
deformation of the beam makes perfectly sense now
and is investigated numerically in Sect. 9 of the present
contribution.

The current study is restricted to the slow motion of
the system such that the inertia effects can be ignored.
Nevertheless, the system possesses own dynamics
because of the time evolution of the deformed state
under the action of friction forces. We begin with a
semi-analytic treatment of the stationary regime of
motion, which depends on a single non-dimensional
parameter of the model f and comprises one or sev-
eral segments with alternating directions of sliding.
This small difference between the velocities of con-
tacting deformable bodies is known in the literature
as microslip, see, for example, [23]. At higher val-
ues of f a zone of stick appears, followed by infinite
many segments with alternating directions of sliding.

The solution in the sliding zone becomes then self-
similar, as each sliding segment is exactly the same
as the previous one, just scaled by a fixed factor. A
closed-form expression for the total length of the zone
of stick in dependence on f is available also for the
case of angular misalignment of the guideways rela-
tive to the overall direction of motion, when the zone
of stick develops somewhere in the middle of the con-
trol domain and is not adjacent to the end points. The
phenomenon of self-similarity is not conventional in
structural mechanics, and we finally answer the ques-
tions regarding the stability of the obtained solution and
the rate of convergence of a transient process to the sta-
tionary state with the help of a numerical simulation of
the time evolution of the deformed state of the beam. A
non-material finite element scheme [5,6,8] allows dis-
cretizing the control domain, while the material parti-
cles of the beam are travelling across the finite element
mesh. A step of the time integration scheme consists
of seeking a quasistatic equilibrium for the present dis-
tribution of friction forces, updating the friction forces
as Lagrange multipliers according to the augmentation
technique, suggested in [24] and then performing a time
step for the transport (advection) equation to “promote”
the solution further in the axial direction. Converged
results of time integration fully justify the analytical
outcome. They also demonstrate that each subsequent
segment of sliding friction takes longer to appear, such
that the limiting quasistationary solution would require
infinite time to be established.

The discussed phenomena are observed within a
geometrically linear formulationwith small deflections
of the beam. It is important that the considered model
is far from being a mere mathematical abstraction. It
directly describes the motion of a hot metal strip within
a rollingmill on a roller table, when the finishing part at
the exit has a small transverse or angular misalignment
relative to the roughing mill at the entry to the consid-
ered domain. The complicated three-dimensional phe-
nomena with partial transverse sliding of a flat belt on a
rotating drum of a belt drive are also described bymod-
els, which are similar to the one used for the present
study. The results may be used not only for validating
advanced finite element procedures for modelling the
frictional transport of slender elongated structures, but
also for gaining insights regarding the frictional contact
state for certain technological processes.

123



Endless elastic beam travelling on a moving rough surface 3311

2 Transport without friction

Consider an elasticBernoulli–Euler (unshearable) beam,
which is freely moving with a given velocity v across
a domain with the length � in the direction of the x
axis. The beam is travelling through guideways at the
both ends of this control domain, which means that the
deflection and the inclination angles are kinematically
prescribed there. By nowwe consider just a small trans-
verse misalignment between the guideways: the small
transverse deflection h at the right end is given, see Fig.
2.

We ignore the geometrically nonlinear effects as
well as the inertia and easily find the steady deformed
configuration, described by the deflection w(x) of the
points of the beam:

w′′′′ = 0, w(0) = 0, w′(0) = 0,

w(�) = h, w′(�) = 0 ⇒ w = 3hx2

�2
− 2hx3

�3
.

(1)

The solution is a quasi-static one, as the particles of
the beam are flowing across the domain along the com-
puted line w(x) and

ẋ = v. (2)

The dotmeans a fullmaterial time derivative, computed
for a given material particle. Further, we find

ẇ = vw′, (3)

such that the transverse component of the velocity of
particles at the steadymotion is determined by the small
inclination angle w′, which is always positive in the
considered solution Eq. (1). From the geometric lin-
earity follows that w′ � 1 and ẇ � v, such that the
contribution of the transverse velocity component to
the absolute value of velocity

√
ẋ2 + ẇ2 is negligible.

3 Statement of the problem and mathematical
model

Now let us turn the attention to the actual problem and
assume that the beam is supported by a rough plane,

which is also moving with the velocity v in the direc-
tion of the x axis. For the present analysis with small
deflections, it makes no difference whether the beam is
pulled across the domain by some external action or it
is the motion of the underlying plane that transports the
beam from a guiding channel on the left into another
one on the right. Important is that the x components of
the velocity of material particles always coincide with
the velocity of the plane in the present geometrically
linear approximation. Relative sliding is thus possible
only in the transverse direction according to Eq. (3).
Alternatively, we can consider the plane being a roller
table such that the rollers allow for friction-free motion
in the axial direction, but the transverse component of
the velocity of the beam causes sliding, which results
into the same mathematical formulation.

We assume the ideal dry (Coulomb) friction law
between the beam and the plane with the maximal fric-
tion force per unit length of the beam being q0. This
value depends on the weight of the beam, the properties
of the contacting materials, etc. In the configuration,
depicted in Fig. 2, we havew′(x) > 0 everywhere such
that the relative sliding velocity ẇ is directed upwards
and the distributed force of sliding friction q(x) will
be pointing in the opposing direction with its absolute
value being equal to q0. The beam is assumed to be very
thin such that the distributed friction moment owing to
the rotation of cross sections with the angular velocity
vw′′ is ignored in the present study.

As long asq0 is small compared to the stiffness of the
beam, it will just slightly influence the solution Eq. (1).
If, however, the friction force is getting higher, the sign
of w′ may change in the part of the domain, which
will immediately change the direction of the relative
sliding velocity according to Eq. (3) and, consequently,
the sign of the friction force q(x). This finally provides
us with the following essentially nonlinear boundary
value problem for the considered stationary regime of
motion, inwhich the deformed configurationw(x)does
not change in time:

aw′′′′ = q, q =
⎧
⎨

⎩

−q0, w′ > 0
0, w′ = 0
q0, w′ < 0

(4)

with a being the bending stiffness and boundary condi-
tions as in Eq. (1). The intriguing question is whether
continuous segments of stick with identically vanish-
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Fig. 2 Axially travelling
beam sliding on a moving
surface owing to the
misalignment of the
guideways; the coordinate x
grows from 0 at the entry to
the control domain to � at
the exit from it

ing w′ in a finite part of the domain are possible at
sufficiently high friction forces q0.

The above statement that the static friction force q
vanishes as soon as there is no relative velocity between
the beam and the underlying surface because ofw′ = 0
requires additional discussion. Ifw′ turns into zero in an
isolated point, then the local value of the friction force
is just not relevant, because no concentrated force is
clearly possible and any finite value would not play a
role. In a continuous segment of sticking contact with
w′ = 0 the beam is straight, such that the fourth-order
derivative w′′′′ must also vanish identically and q = 0
there. Note that this holds only in the stationary case
with time-independent w(x). In the transient analysis,
presented in Sect. 9, the static friction force varies from
−q0 to q0 according to the Coulomb law.

The naive expectation that high friction and low
beam stiffness would result in a solution, in which the
beam remains straight after entering the domain and
then begins sliding upwards closer to the right end as
in Fig. 3 can be easily proven wrong. Indeed, sliding
upwards in the right part of the domain x > x∗ means
that w′ > 0 there and thus, the friction force is pointed
downwards. In the left segment of stick x < x∗, in
which the straight beam and the plane are travelling
together, all derivatives of w will vanish, see Fig. 3.

Now the contradiction is becoming clear. The beam
is clamped at the right end x = � and loaded by a dis-
tributed force q0. As the bending moment M = aw′′
and the transverse force Q = −aw′′′ are continuous,
they will also vanish in the boundary point x∗ between
the segments as if the two parts of the beam were sep-
arated here and the right segment was just a cantilever.
But w′ must also vanish at its left end, which will cer-
tainly not be the case: we cannot solve a linear inhomo-
geneous differential equation of the fourth order with
five homogeneous boundary conditions.

In the remainder of this paper, we will demonstrate
that the zone of sticking contact is nevertheless possible

Fig. 3 Solution with a segment of stick to the left of x∗ and
monotonous sliding upwards to the right of this point

when the friction force is high, and the beam is flexi-
ble and the misalignment h is small. We will further-
more determine the limiting level of a non-dimensional
parameter combination and show that the sliding zone
will consist of infinitely many segments with alternat-
ing directions of relative motion. We will also briefly
discuss the effect of the possible angular misalignment
at the entry to the domain.

4 Evolution of the sliding solution at growing
friction force

We know that the entire beam (except for several iso-
lated points) is sliding when the friction force is small.
Therefore, it makes sense to seek such solutions by
solving the boundary value problem

η′′′′(ξ) + f sign η′ = 0,

η(0) = 0, η′(0) = 0, η(1) = 1, η′(1) = 0.
(5)

We have reformulated the differential equation and
boundary conditions, replacing the physical deflection
w, axial coordinate x and maximal friction force q0
by their non-dimensional counterparts according to the
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Fig. 4 Rotation angle (derivative of the deflection) in the solu-
tion of the problem with just a single segment of sliding for three
values of the force parameter; a zone with η′ < 0 at f = 100
makes this last solution invalid

following substitutions:

η = w

h
, ξ = x

�
, f = q0�4

ah
. (6)

The prime in Eq. (5) means a derivative with respect
to the new non-dimensional coordinate ξ . The advan-
tage (besides shorter formulas) is that everything is now
determined by just a single force parameter f , which
comprises all relevant physical quantities of the actual
problem.

We expect η′ > 0 at small f , and the entire domain
is just a single segment with the beam sliding upwards.
Solving Eq. (5) under this assumption is easy and
results in

η = 1

24

(
(72 − f )ξ2 − 2(24 − f )ξ3 − f ξ4

)
,

η′′(0) = 72 − f

12
.

(7)

We conclude that η′ remains nonnegative as long as
f < f1 = 72, such that f1 is the maximal value of
the force parameter, until which the solution Eq. (7)
with just one segment of sliding remains valid. Because
η′(0) = 0, we find f1 as the value, at which the second-
order derivative η′′ becomes negative at ξ = 0. The
conclusion is justified by plotting η′(ξ) in Fig. 4 for
three values of f . Friction breaks the symmetry, and a
zone with negative η′ near ξ = 0 makes the solution
with f = 100 > f1 invalid.

Having established that the solution at f > f1 must
consist of at least two segments, we construct such
a solution analytically, see Fig. 5 for the result with

f = 200.We denote by ξ1 the switching point between
the segments, η1(ξ) is the solution in the right one with
sliding upwards, η′

1 ≥ 0, and η2(ξ) is the solution
in the left segment with sliding downwards, η′

2 ≤ 0.
The numbering is chosen such that new segments with
higher numbers are always added at the left. Both solu-
tions read

ηi (ξ) = (−1)i
f ξ4

24
+c1,i +c2,iξ +c3,iξ

2+c4,iξ
3, (8)

ck,i are integration constants for each segment. There
are no concentrated forces or moments acting on the
beam at the switching point, the moment M and the
force Q may not jump there. The entire piecewise
defined function η(ξ) must therefore be C3 continu-
ous. Recalling the general boundary conditions from
Eq. (5) as well as the requirement that ξ1 is actually
a switching point from negative η′ to positive η′, we
arrive at a system of the following 9 nonlinear alge-
braic equations

η1(0) = 0, η′
1(0) = 0, η2(1) = 1, η′

2(1) = 0,

η1(ξ1) = η2(ξ1), η′
1(ξ1) = 0, η′

2(ξ1) = 0,

η′′
1(ξ1) = η′′

2(ξ1), η′′′
1 (ξ1) = η′′′

2 (ξ1)

(9)

for 9 unknowns, namely 8 integration constants ck,i
and the coordinate ξ1. Using Wolfram Mathematica,1

we symbolically obtained all 6 possible solutions, of
which the single physically meaningful one needs to
be chosen: the coordinate of the switching point needs
to remain inside the domain and vanish for f = f1. The
analytical expressions for the integration constants are
lengthy, and here, we just provide an expression for the
coordinate of the switching point:

ξ1 = 1

6

⎛

⎜
⎝3 −

√
√
√
√15 − 6

√

7 − 432

f

⎞

⎟
⎠ . (10)

We observe that ξ1| f =72 = 0. The obtained solution
for f = 200 is shown in detail in Fig. 5.

Clearly, the solution with two segments will lose
validity as soon as η′ changes its sign in the vicinity of

1 http://www.wolfram.com/mathematica.
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Fig. 5 Solution with two segments of sliding for the value of the
force parameter f = 200, deflection η and rotation angle η′

the left end ξ = 0,whichwill happenwhen the segment
with the friction force pointing upwards is sufficiently
large. Again we find the corresponding critical value f2
by demanding η′′

2(0) = 0. This equation has two roots,
the first one being again f1 and the larger one is

f2 = 144

7

(
5 + 4

√
2
)

≈ 219.227, (11)

the switching point is ξ1 ≈ 0.292893.
Continuing the process, we construct a solution with

three segments by solving a systemof equationswith 14
unknowns (2 coordinates ξ1,2 and 12 integration con-
stants), the subsequent critical force value appears to
be f3 ≈ 308.259. The solution with four segments for
f > f3 can also be constructed, but the correspond-
ing analytical expressions soon become very lengthy.
Therefore, we implemented a routine, which solves the
problem for sequentially increasing values of the force
parameter f . The previous solution is always taken
as an initial approximation as the system of equations
with the actual number of segments n is solved numer-
ically. We increase n by one and add a new segment at
the left, as soon as the sign of η′′(0) (that is the sign of
the third integration constant for the leftmost segment
c3,n) changes from one value of f to the next one.

Table 1 Critical values of the friction force parameter, at which
new segments with different sliding direction appear in the solu-
tion of Eq. (5)

n fn n fn

1 72 9 375.435

2 219.227 10 375.573

3 308.259 11 375.627

4 348.736 12 375.647

5 365.198 13 375.655

6 371.638 14 375.658

7 374.12 15 375.659

8 375.071 16 375.659

With the adaptive incrementation of the parameter
f , we collected resulting critical values of the force
parameter, which are shown in Table 1.

The results clearly indicate that the sequence fn con-
verges to a limiting value f∞ ≈ 375.659, and the solu-
tion with infinitely many segments of sliding friction
is then reached. Prior to making conclusions regard-
ing the behaviour of the system beyond this state when
f > f∞, i.e. when the force parameter is high, the
beam is flexible and the end point deflection is small
[see Eq. (6)], we analytically study the limiting solution
at f = f∞.

5 Self-similar limiting solution with infinitely
many segments of sliding friction

Let us make another observation with the data of the
numerical experiment from the previous section. Con-
sider, for example, the solution at f = f5, when the
sixth segment has not yet been appended (i.e. f =
f5 − 0), see Fig. 6.
The coordinates of the switching points ξi are

known, the length of the i-th segment is li = ξi − ξi+1

(we use ξ0 = 1), and the computed ratios of the lengths
of the neighbouring segments li/ li+1 are presented in
Table 2.

Computing these ratios for higher n, we clearly see
that the lengths of the segments further away from the
left end form a geometric progression with the factor
k ≈ 2.61803, which is by 1 larger than the famous
golden ratio.2 This observation gives us a clue that the

2 see https://en.wikipedia.org/wiki/Golden_ratio.
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Fig. 6 Solution with n = 5 segments at f = f5

Table 2 Ratios of the lengths of the neighbouring segments in
the solution at f = f5 and n = 5 segments

i li/ li+1

1 2.618034

2 2.618027

3 2.618922

4 2.414239

limiting solution at f = f∞ should be sought using
the considerations of self-similarity. Noteworthy, self-
similar solutions in the related problem of the static
deformation of a loaded beamon a frictional foundation
with microslip were demonstrated in [18–22].

We seek the limiting state by demanding that the
solution in the second segment η2 is just a scaled and
shifted solution in the first segment η1. This allows
to continue the sequence by η3, η4, etc. To make the
analysis simpler, we move the origin of the coordinate
ξ to the switching point ξ1 between the segments, see
Fig. 7 for the expected distribution of the rotation angle
η′ in the first two segments with lengths l1 = ξ∗ and
l2 = ξ∗/k.

Fig. 7 First two segments of a self-similar limiting solution at
f = f∞

Being solutions of Eq. (5), the sought functions are
such that

η′
1,2(ξ) = ∓ f ξ3

6
+ 2c3ξ + 3c4ξ

2. (12)

We accounted for the C3 continuity of the compound
function η(ξ) at the shifted switching point ξ = 0 by
using the same integration constants and set c2 = 0
as both η′

1,2(0) = 0. Now we impose the condition of
self-similarity and demand

η′
1(ξ) = −kηη

′
2((ξ − ξ∗)/k). (13)

The solution in the second segment repeats the solution
in the first one with a negative sign, shrank by the factor
k in the horizontal direction and by the factor kη in the
vertical one. Indeed, fromEq. (13)we see that η′

1(ξ∗) =
−kηη

′
2(0) = 0, and η′

2(−ξ∗/k) = −η′
1(0)/kη = 0,

such that the derivatives vanish at the expected loca-
tions. Substituting Eq. (12) in Eq. (13) and balancing
the coefficient at ξ3, we immediately find that

kη = k3. (14)

Further balancing the coefficients at ξ0, ξ1 and ξ2 in
Eq. (13), we obtain the equations

12c3k
2ξ∗ − 18c4kξ

2∗ + f ξ3∗ = 0,

4c3(1 + k2) − 12c4kξ∗ + f ξ2∗ = 0,

6c4(1 + k) − f ξ∗ = 0.

(15)

From the second and the third equations, we easily
express c3 and c4 and substitute them into the first one
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and end up with a quadratic equation for the scaling
factor

k2 − 3k + 1 = 0 ⇒ k = 1

2

(
3 + √

5
)

≈ 2.61803.

(16)

We chose the root of the quadratic equation, which
is greater than 1. The experimental observation in
Table 2 is thus justified. The inclination angles in the
neighbouring segments are thus scaled by the factor
kη = 9 + 4

√
5 ≈ 17.9443 such that sliding is indeed

pronounced only in the several segments further away
from the entry point at the left end.

The length of the first segment is now easy to find,
as the total length equals 1 and

li = ξ∗
ki−1 ,

∞∑

i=1

li = kξ∗
k − 1

= 1 ⇒

⇒ ξ∗ = 1 − 1

k
= 1

2

(√
5 − 1

)
≈ 0.61803.

(17)

In the limiting state, the first switching point ξ1 = 1−ξ∗
divides the entire domain exactly in the proportion of
the golden ratio!

Finally, we analytically determine the limiting force
parameter f∞ by computing the deflection of the right
end of the beam

η(1) =
∫ 1

0
η′(ξ) dξ =

∞∑

i=0

(−kηk)
−iηΣ

1 . (18)

Contribution of each subsequent segment to the total
deflection is different by the factor −kηk = −k4. The
contribution of the right most segment is easy to com-
pute by integrating the expression for η1 from Eq. (12)
with shifted origin and resolved constants:

ηΣ
1 =

∫ ξ∗

0
η′
1(ξ) dξ = f ξ4∗

24
√
5
. (19)

Now we sum the geometric series, find the limiting
value f∞ from the boundary condition at the right end
and justify the results in Table 1:

η(1) = k4

1 + k4
ηΣ
1 = 1 ⇒

⇒ f = f∞ = 168
√
5 ≈ 375.6594.

(20)

6 Solution with the zone of stick

Now the existence of a segment of sticking contact
becomes clear. As soon as the force parameter f grows
beyond f∞, the solution will contain a continuous
domain with η′ = 0, in which the beam sticks to the
moving surface. A high value of f does not necessarily
mean that the friction force must grow itself. A flexible
beam and a small transverse misalignment h between
the two guideways at the entry to the domain and at the
exit from it will have the same effect, see Eq. (6).

At f > f∞, the above self-similar solution will
establish in the right part of the beam ξ∞ < ξ < 1.
The left part 0 < ξ < ξ∞ will be a sticking zone with
vanishing deflection, η = 0. This resolves the con-
tradiction, which was intrinsic to the solution shown in
Fig. 3. Indeed, the transverse force Q (both the physical
dimensional variable and its non-dimensional counter-
part) at the ends of each sliding segment differs by the
factor −k:

Q(ξi+1) = −Q(ξi )/k. (21)

The bending moment M decreases even faster. That
means that the self-similar solution at f = f∞ is such
that η, η′, M and Q vanish at the left end ξ = 0, which
makes this left end both kinematically clamped and free
from reaction force and moment. The same will hold
further at a transition point ξ∞, in which the particles
of the beam begin sliding relative to the underlying
surface.

In order to determine the relation between the force
parameter f and the length of the zone of sticking con-
tact, we rewrite the condition Eq. (17). The total length
of the sliding segments is now

∞∑

i=1

li = kξ∗
k − 1

= 1 − ξ∞. (22)

The total deflection of all sliding segments must still
fulfil the boundary condition, and we find the length of
the rightmost sliding segment ξ∗ using Eq. (19) and the
first line in Eq. (20):

ξ∗ =
(
84(7

√
5 − 15)

f

) 1
4

. (23)
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Fig. 8 Length of the zone of stick in dependence on the force
parameter f > f∞

Substituting in Eq. (22), we find the length of the zone
of stick as function of the force parameter, which after
transformation obtains a simple form

ξ∞ = 1 −
(

f∞
f

) 1
4

. (24)

Evidently, ξ∞
∣
∣
f= f∞ = 0 and ξ∞

∣
∣
f →∞ = 1. We plot

this dependence in Fig. 8.

7 Sticking contact for beams with physically
meaningful parameters

Using Eq. (24), we compute the force parameter, at
which the zone of stick is exactly the half of the entire
domain:

ξ∞ = 1/2 at f = 16 f∞ ≈ 6010.55. (25)

Is it much or not? Let us try computing with some
physical parameters of an imaginary structure. Con-
sider a steel beam � = 1m long with a square cross
section s = 10−3 m wide. With Young’s modulus
E = 2.1 · 1011 N/m2, we find the bending stiffness

a = E
s4

12
= 0.0175Nm2. (26)

This wire-like beam will weigh ρgs2 per unit length.
With the free-fall acceleration g = 9.8m/s2 and the
friction coefficient μ = 0.2, we find the maximal
friction force per unit length to be q0 = μρgs2 =
0.015288N/m. Using the computed values in Eq. (6),
we find the relation connecting the dimensionless force
parameter f and the transverse offset h between the
ends of the beam:

h = 0.8736m

f
. (27)

Substituting here f = f∞, we see that the entire
beam will be sliding as long as h > 2.32551 · 10−3 m,
i.e. sticking contact is possible only if the offset is below
2.3 millimeters. And the zone of sticking contact will
be �/2 long at h ≈ 0.145 · 10−3 m, which is slightly
above 0.1 millimeters and seems to be unrealistic in
terms of inevitable imperfections in the geometry of
the beam and angular orientation of the guideways at
the ends!

Repeating the computations for a thick rubber beam
with E = 106 N/m2, ρ = 1500 kg/m3, the size of the
cross section s = 10−2 m and the coefficient of friction
μ = 0.5, we find that the onset of sticking contact
takes place at h ≈ 2.347m, which is far beyond the
geometrically linear range. Part of the beam will be
sticking for all realistic values of h. The half of the
control domain will be sticking at h ≈ 0.1467m.

8 Effect of angular misalignment

Until now we assumed that both guideways are per-
fectly directed along the axis of motion of the under-
lying plane. Now we briefly consider a small angular
misalignment at the entry to the domain, such that the
second boundary condition in the BVP Eq. (5) reads
η′(0) = α > 0. What will change in the above solu-
tion?

Evidently, a sliding zonemust be present near ξ = 0.
The zone of sticking contact does, however, effectively
decouple the boundary domains. So, focussing on the
case of a flexible beam with f essentially above f∞,
we expect that the beam slides in a domain 0 ≤ ξ ≤ ξ∗.
Further, we would observe a zone of sticking contact
ξ∗ < ξ < ξ∞ and, finally, we again have a self-
similar solution with alternating sliding directions in
ξ∞ ≤ ξ ≤ 1. The coordinate of the transition point ξ∗
follows from the following overdeterminate boundary
value problem:

η′′′′ + f = 0, η(0) = 0, η′(0) = α,

η′(ξ∗) = 0, η′′(ξ∗) = 0, η′′′(ξ∗) = 0.
(28)

A transition to the zone of stick requires that the beam
is horizontal and that both the force and the moment
vanish at ξ = ξ∗, which is expressed by the last three
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conditions. A simple analysis shows that the problem
is solvable only when

ξ∗ =
(
6α

f

)1/3

. (29)

The corresponding deflection at the transition point
reads

η(ξ∗) =
(
3α4

32 f

)1/3

= α

4
ξ∗. (30)

Interestingly, this deflection may even exceed the
transversal misalignment, η(ξ∗) > 1 (or even one may
consider the case of angular misalignment only by set-
ting h = 0 and using another scaling in Eq. (6)). Then,
it is the role of the sliding domain at the right to bring
the deflection back to the prescribed level. Anyway,
the scheme of computation of the right boundary of the
sticking zone ξ∞ remains almost the same. One sim-
ply needs to adjust the condition Eq. (20), as the total
deflection in the series of sliding zones with alternating
directions must now be equal to 1−η(ξ∗). If by chance
we obtain that 1 − η(ξ∗) = 0, then it would mean that
the zone of sticking contact reaches until the right end
of the domain and ξ∞ = 1.

The entire solution makes of course sense only if
ξ∞ > ξ∗. Otherwise, there is no zone of sticking con-
tact and we again return to the situation with a finite
number of sliding zones, discussed in Sect. 4.

9 Transient behaviour: finite element analysis

The fascinating analytic solution for the stationary
regime of motion is certainly possible only because
of the strong idealization expressed in the use of the
Bernoulli–Euler beam model, Coulomb friction law,
geometrically linear formulation as well as neglecting
frictionalmoment interaction between the beamand the
moving rough surface. Not intending to release these
assumptions in the framework of the present study, we
wish to answer the questions of stability of the obtained
regime of motion and to experimentally investigate,
how long it takes for the many segments with alter-
nating directions of sliding to develop. For this sake,
a finite element simulation was designed, which fea-
tures a geometrically linear counterpart of the non-
material Eulerian–Lagrangian beammodel, introduced

in [5]. Choosing the non-dimensional deflection η and
its derivative η′ as nodal degrees of freedom, we use
cubic approximation within an element and obtain the
necessary C1 interelement continuity. The static solu-
tion Eq. (1) (or, after non-dimensionalization, Eq. (7)
with f = 0) is taken as the initial configuration, whose
evolution in time t owing to the axial motion we intend
to compute. Along with the time evolution of the dis-
placement field η(ξ), we also consider the distribution
of the transverse friction force λ(ξ) as part of solution,
λ = − f in the segments currently sliding upwards and
λ = f in the segments sliding downwards. In the zones
of sticking contact λ plays the role of a Lagrange mul-
tiplier for the imposed kinematic constraint and takes
on values − f < λ < f .

In the first stage of each time step, we seek a new
equilibrium configuration η+(ξ) by minimizing the
energy functional

U strain[η+] +U contact[η+] → min,

U strain =
∫ 1

0

1

2
η′′2+ dξ,

U contact =
∫ 1

0

(

−λη+ + 1

2
P(λ)(η+ − ηold)2

)

dξ.

(31)

The first term here represents the strain energy of bend-
ing deformation of the beam, and the second integral
imposes the effect of friction forces. Here,

P(λ) =
{
P0, − f < λ < f
0, λ = f or λ = − f

(32)

is the artificial stiffness, which takes on the large value
P0 in the zones with current sticking behaviour and
penalizes the relative transverse motion from the given
configuration ηold(ξ). The contribution of each finite
element to the total strain energy U strain is integrated
analytically and is a quadratic formof the nodal degrees
of freedom. The second integral U contact in the mini-
mization problem above is evaluated using a quadrature
rule with two Gaussian integration points such that the
field values λ(ξ) are also stored and updated there. Ini-
tially, the beam is resting on themoving surfacewithout
sliding: λ|t=0 = 0.

During the second stage of a time step, we update
the friction force distribution according to the technique
of augmented Lagrange multipliers [24], which helps
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avoiding the effect of numerical drift even at moderate
values of penalty stiffness P0. The new values in each
point are computed according to the simple algorithm:

λtrial = λold − P0(η+ − ηold),

λ+ =
⎧
⎨

⎩

− f, λtrial < − f
λtrial, − f < λtrial < f
f, λtrial > f.

(33)

Note that this update rule fully covers the conditions of
switching from the sliding state to stick and back.

The third stage concludes a time step by accounting
for the transport condition. For the advection equation

∂η

∂t
+ vη′ = 0 (34)

we perform a single explicit Eulerian time step and
store the results in the integration points in the form of
the reference deflection values for the subsequent time
step:

ηold+ = η+ − vτη′+. (35)

Here, τ is the time step size and the derivative η′+ is
directly available from the finite element discretization.
Note that the values ηold are relevant only in the zones
of stick with P 
= 0 according to Eq. (32).

For the computations belowwe consider v = 1, such
that t = 1 is the time period, within which a particle of
the beam travels across the control domain of the unit
length.We used the penalty stiffness value P0 = 2 ·104
as a compromise between the stability of time integra-
tion and the rate of convergence. Accurate presentation
of the time evolution of the zones of sliding required a
fine discretization; we used 600 finite elements. This in
its own turn leads to the necessity of using a small time
step such that the numerical integration of the advec-
tion equation does not suffer from inaccuracies, and we
chose τ = 2.5 ·10−3 as practically converged solutions
can be accomplished in reasonable time. The simula-
tionwas easily implementedwithin theWolframMath-
ematica environment.

In the first example, we consider the process with
the force parameter value f = 360. According to the
results in Table 1, we see that in the stationary regime
the control domain shall be divided into 5 sliding seg-
ments with ξ1 …ξ4 being the corresponding switching

points between the them. The computed time evolu-
tion of the sliding segments in the transient solution is
demonstrated in Fig. 9.

The horizontal axis represents here the time, and the
vertical one—the control domain.One sees that the first
large sliding segment is initiated almost immediately.
Slightly after the beam travels the half of the domain the
second sliding segment appears, and for the the third
one it takes approximately 1.5 full travels of the beam
to be born. It takes significantly longer for the fourth
small sliding segment to appear soon after t ≈ 17.
There is no doubt that the fifth very narrow segment
would follow much later on (and, possibly, it would
require finer discretization to actually observe it). All
sliding segments grow to the limits, predicted by the
analytic solution.

The second example featured f = 500, which is
beyond the limiting value f∞ and corresponds to the
length ξ∞ ≈ 0.069 of the zone of stick in the sta-
tionary regime according to Eq. (24). The simulation
results are demonstrated in Fig. 10 and again stand in
full correspondence with the analytic solution.

Four sliding segments are visible up to the time point
t = 30, and each subsequent one needs much longer to
appear.

10 Conclusions

Various technological processes feature transport of
objects with the help of axially moving beam-like
strips. A slight misalignment between the transport
direction and the guideways at the both sides of the
domain gives rise to the phenomena studied in the
present paper. For an observer, sitting on the beam and
moving with it along the path with a zone of sticking
contact and then the many segments with alternating
direction of sliding, this motion will feel like highly
oscillatory with decreasing frequency and increasing
amplitude.

In the present paper, we introduced a seemingly
simple essentially nonlinear boundary value problem,
which governs the stationary transport of a beam on a
moving rough surface. The obtained self-similar solu-
tion of the second kind, see [25], represents the most
interesting feature of the analysis. This class of solu-
tions, in which the self-similarity does not take part
in the dimensional analysis but rather appears as a
property of the solution of differential equations with
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Fig. 9 Time evolution of the segments of sliding friction (gray areas) for f = 360, full view on the left and enlarged initial stage on
the right. Dashed lines represent the analytic values for the switching points in the stationary regime

Fig. 10 Time evolution of the segments of sliding friction (gray areas) for f = 500, full view on the left and enlarged initial stage on
the right. Dashed line represents the analytic boundary of the zone of stick in the stationary regime

non-dimensional coefficients, is seldom in problems
of structural mechanics. Previously known self-similar
solutions of this kind [18–22] were obtained in the
static problem of a beam with microslip on a frictional
foundation because of end-point mechanical loading
or under the action of a temperature induced bending
moment.

The analytical results are supported by the numeri-
cal analysis of the transient evolution of the deformed
shape of the beam in time. Results obtained with a
specially designed non-material finite element model
demonstrate the stability of the considered stationary
regime of motion and show that each subsequent seg-
ment of sliding takes significantly more time to appear
than the previous ones.

To the opinionof the author, awhole newdirection of
research is expected to be initiated by the present contri-
bution. One may, for example, consider effects, which

are not covered by the presently used classical beam
model. The currently ignored frictional moment inter-
action between the beam and the plane may become
particularly important near the switching point ξ∞
between the zones of stick and sliding. Implications
of the natural curvature of the beam, its shear deforma-
bility and/or axial pre-tension need to be investigated.
One may also consider the present problem in the con-
text of continuum mechanics with plane deformation
of a two-dimensional strip with finite width.

An important practical outcome of the presented
research will be the possibility to validate advanced
non-material finite element procedures for modelling
the frictional transport of slender rods by rotating pul-
leys. Thus, with themoving rough plane occupying just
a part of the length of the control domain, we obtain
a prototype model problem for a flat belt drive. Being
validated, the finite element scheme shall further be
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applied towards the practically relevant geometrically
nonlinear study of the lateral run-off of the belt in a
three-dimensional setting.
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