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Abstract Pandemic is anunprecedentedpublic health
situation, especially for human beings with comorbid-
ity. Vaccination and non-pharmaceutical interventions
only remain extensive measures carrying a significant
socioeconomic impact to defeating pandemic.Here,we
formulate a mathematical model with comorbidity to
study the transmission dynamics as well as an optimal
control-based framework to diminish COVID-19. This
encompasses modeling the dynamics of invaded pop-
ulation, parameter estimation of the model, study of
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qualitative dynamics, and optimal control problem for
non-pharmaceutical interventions (NPIs) and vaccina-
tion events such that the cost of the combined mea-
sure is minimized. The investigation reveals that dis-
ease persists with the increase in exposed individuals
having comorbidity in society. The extensive computa-
tional efforts show that mean fluctuations in the force
of infection increase with corresponding entropy. This
is a piece of evidence that the outbreak has reached a
significant portion of the population. However, optimal
control strategies with combined measures provide an
assurance of effectively protecting our population from
COVID-19 by minimizing social and economic costs.

Keywords COVID-19 · Comorbidity · Forward
bifurcation · Shannon entropy · Optimal control

1 Introduction

The World health organization (WHO) declared
COVID-19 as a worldwide health hazard at begin-
ning of 2020. The first scenario was observed in China
(Wuhan) [1]. In this connection, COVID-19 has been
transmitted in whole world. In order to conquer the
pandemic, various countries took a measure of a lock-
down scenario as well as successively unlock process
for political impacts and affecting to socioeconomic
condition [2–5]. Further, the mortality and morbidity
rate has been different across different countries in the
world [6,7].
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COVID-19 is transmitted by people through their
respiratory droplets from direct contact with contami-
nated objects and infected people [8,9]. However, vac-
cination is in the beginning process to defeat COVID-
19. Different studies can be available in stages of
comorbidity (like heart disease, diabetes, lung dis-
ease, etc.) within the infected human being. All human
beings with comorbidity or medical illness are at high
risk to get an infection than normal or healthy people
[10–12]. From the statistical data, this is reported that
the patients with COVID-19 having comorbidity like
kidney disease and type-2 diabetes were transferred to
hospital with intensive or critical care unit [13–15].

As the number of COVID-19 follows an increasing–
decreasing trend, entropy leads us to explain the hetero-
geneity in diffusion or force of infection [16]. Different
methods like structural entropy [17] and evolutionary
entropy [18] are used to study the dynamics of infec-
tious disease, and to forecast the pandemic [19,20].
Here, the basis of Shannon entropy is usually applied
and considered for the spread of pandemic due to sig-
nificant analogy which follows Boltzmann’s classical
thermodynamics [21].

In the COVID-19 pandemic, various countries have
implemented different non-pharmaceutical interven-
tions (NPIs) like wearing masks, social distancing and
proper sanitation, etc., to mitigate disease spread. This
process helps to slow but not to stop the spread. The
literature can be found to study the optimal control
strategies [22–27]. Different mathematical models of
epidemiology have been investigated with their cor-
responding transmission dynamics [28,29]. Lie et al.
[34] studied distributed delay-basedCOVID-19model.
In COVID-19 model, Khyar et al. [35] investigated
the global dynamics of multi-strain. Moreover, various
authors [36,37] have applied optimal control theory for
mitigation of COVID-19. Different authors studied the
vaccination process in COVID-19, and incorporating
NPIs in the vaccination process has not been yet stud-
ied according to our knowledge [38,39]. Upadhyay et
al. [40] have analyzed the effectiveness of social dis-
tancing measures which has been implemented in the
early stages of infection.Moreover, differentmodel for-
mulations have been done in COVID-19 [41–44].

However, in order to defeat COVID-19 like a pan-
demic, suitable vaccination strategies are essential to be
implemented with NPIs. For this purpose, combined
fundamental strategies are inevitably required under
optimal control problem to defeat COVID-19 like, an

infectious disease with a minimum cost of the vacci-
nation process. Our main aim is here to investigate the
mathematical model of COVID-19 based on bifurca-
tion theory and also to address the optimal control strat-
egy to defeat COVID-19 under NPIs and vaccination
[45–47]. Data-driven modeling is an essential tool for
investigating transmissiondynamics in the landscapeof
global health which is employed in our study [48–50].
Further, incorporating comorbidity in the COVID-19
model is one of ongoing research trends [51]. More-
over, it can be noted that the transmission dynamic of
COVID-19 with comorbidity and its optimal control
strategies under the combination of NPIs and vaccina-
tion campaign have not been yet explored to the best
of our knowledge.

The subsequent part of the paper are as follows:
In Sect. 2, a mathematical model of COVID-19 with
comorbidity is proposed and explored. The qualita-
tive dynamics are studied by employing bifurcation
analysis in Sect. 3. In Sect. 4, optimal control prob-
lem is formulated with non-pharmaceutical interven-
tions (NPIs) and vaccination. In Section 5, the model
curvefitting and also sensitivity analysis are performed.
Moreover, the trend in force of infection is investigated
by Shannon entropy. Moreover, numerical simulations
are present for optimal control strategies. Finally, in
Sect. 6, we present our conclusion from our study.

2 The model

We formulate here SEICR model by introducing
comorbidity in infected individuals for the transmission
dynamics of COVID-19. Themathematical model con-
tains five compartments, susceptible individuals (S),
exposed individuals (E), infected without comorbidity
individuals (I), infected with comorbidity individuals
(C), and recovered individuals (R). It is assumed that
N = S + E + I + C + R. We investigate COVID-19
model with and without comorbidity. Based on biolog-
ical viewpoint, the nonlinear mathematical model of
COVID-19 in a short time window is:

Ṡ = �s − βs(I + C)S

N
− μS,

Ė = βs(I + C)S

N
− (αe + μ)E,

İ = ξαeE − (γi + μ)I, (1)

Ċ = (1 − ξ)αeE − (γc + μ)C,
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Ṙ = γi I + γcC − μR,

The initial values are assumed in model (1)

S(t0) = S0 ≥ 0, E(t0) = E0 ≥ 0, I (t0) = I0 ≥ 0,

C(t0) = C0 ≥ 0, R(t0) = R0 ≥ 0. (2)

Here, it is considered that t ≥ t0, where t0 represents
the primary date of disease spreading of COVID-19
model in (1). The external recruitment �s increases
susceptible individuals through by immigration or birth
to the society. The number of the individuals reduces
after getting an infection with a rate βs I

N , βsC
N through

from susceptible individuals, infected with and with-
out comorbidity. These interaction produces exposed
individual. It is also considered that the recovery rate
for infected with and without comorbidities is γi and
γc, respectively. The model assumes a normal death
rateμ for each subpopulations. Here, the period of dis-
ease incubation is 1

αe
, and exposed individuals become

infected with and without comorbidity with a fraction
ξ and (1 − ξ), respectively. The scenario of the model
is given in Fig. 1. The description of parameters with
values is provided in Table 1.

3 SEICR model analysis

Now, we investigate a few basic qualitative properties
of the SEICRmodel (1) at biologically feasible equilib-
ria with (S0, E0, I0,C0, R0) ∈ R5+. We have assumed
that following lemmas hold.

Lemma 3.1 The solutions of SEICR model (1) with
initial values (2) lie in R5+ for all t > 0.

Proof In order to proof the positivity of (1), we con-
sider that any solution in R5+ remains positive for all
t > 0. In the system (1), we see that dSdt |S=0 = �S ≥ 0,
dE
dt |E=0 = βs

N (I + C) ≥ 0, dI
dt |I=0 = ξαeE ≥ 0,

dC
dt |C=0 = (1−ξ)αeE ≥ 0, dR

dt |R=0 = γi I+γcC ≥ 0.
Here, this is the positivity of solutions in the regionR5+.
R5+ is established as positive invariant set of SEICR
model. ��

Lemma 3.2 The solutions of SEICRmodel (1)with ini-
tial values (2) are uniformly bounded within the region
�.

Proof In order to prove boundedness, we sum up all
equations in the model (1), which provides N = S +
E + I + C + R. Differentiating both sides, we get

dN

dt
= �s − μN ,

which implies lim
t→∞ sup N (t) ≤ �s

μ
. Without loss of

generality, we can express all equations in model (1) as
lim
t→∞ i(t) ≤ �s

μ
; i = S, E, I,C, R. So, a bounded set

can be defined

� =
{
(S, E, I,C, R) ∈ R5+ : 0 ≤ S, E, I,C, R ≤ �s

μ

}
,

which is further a positive invariant set of the SEICR
model (1). Therefore, all solution trajectories initiating
from interior of R5+ always remain within the domain
�. This assures that the growth of all individuals cannot
be unbounded or exponential for the time window. ��

In the following, numerical results show that the solu-
tions of model (1) are always positive and bounded by
changing the various parameter values.

3.1 Basic reproduction number

The basic reproduction number R0 is a dimensionless
number and measures the expected values of decreas-
ing or increasing outbreak. The infection-free equi-
librium ε0 is considered as ε0(S0, E0, I 0,C0, R0) =
(�s

μ
, 0, 0, 0, 0). The components E, I,C in system (1)

are explicitly appended with a disease transmission.
The matrices F̃ , Ṽ represent respective new infection
and transition, given by

F̃ =
⎡
⎣

βs
N (I + C)

0
0

⎤
⎦ , Ṽ =

⎡
⎣ (αe + μ)E

−ξαeE + (γi + μ)I
−(1 − ξ)αeE + (γc + μ)C

⎤
⎦ .

The dominant eigenvalue of matrix FV−1 represents

basic reproduction number, where F = d F̃
dX , V = dṼ

dX
and X = [E, I,C]′

. So, we obtain

R0 = βsαe

(αe + μ)

[
ξ

γi + μ
+ 1 − ξ

γc + μ

]
.
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Fig. 1 Pictorial scenario of
SEICR model. This shows
various interactions:
susceptible (S), exposed
(E), infected without
comorbidity (I), infected
with commodity (C), and
recovered (R). The inward
and outward arrows
represent the increasing and
decreasing of population,
respectively

3.2 Stability analysis of Infection free equilibrium

Theorem 1 The equilibrium ε0 becomesunstable R0 >

1 and locally asymptotically stable for R0 < 1.

Proof We get the matrix J of (1) as

J =

⎡
⎢⎢⎢⎢⎣

−μ 0 −βs −βs 0
0 −(αe + μ) βs βs 0
0 ξαe −(γi + μ) 0 0
0 (1 − ξ)αe 0 −(γc + μ) 0
0 0 γi γc −μ

⎤
⎥⎥⎥⎥⎦ .

(3)

For our convenience, we consider

αe + μ = k1, γi + μ = k2 and γc + μ = k3. (4)

The two eigenvalues ofmatrix Jε0 at ε
0 are−μ,−μ.

The roots of following equation provide the rest of
eigenvalues:

βsαe

[
(1 − ξ)(k2 + λ) + ξ(k3 + λ)

]

−(k1 + λ)(k2 + λ)(k3 + λ) = 0.

which can be expressed as

βsαe

[
1 − ξ

(k1 + λ)(k3 + λ)
+ ξ

(k1 + λ)(k2 + λ)

]
= 1.

Denote

n(λ) = 1 − ξ

(k1 + λ)(k3 + λ)
+ ξ

(k1 + λ)(k2 + λ)
,

= n1(λ) + n2(λ) (say).

Now put λ = x + iy, if 
(λ) ≥ 0, then

|n1(λ)| ≤ (1 − ξ)

|k1 + λ‖k2 + λ| ≤ n1(x) ≤ n1(0),

|n2(λ)| ≤ ξ

|k1 + λ‖k3 + λ| ≤ n2(x) ≤ n2(0).

Consequently, n1(0)+n2(0) = n(0) = R0 < 1, which
gives |n(λ)| ≤ 1. For R0 < 1, we get negative real parts
in equationn(λ) = 1.Thus, all eigenvalues are negative
for R0 < 1. Hence, ε0 becomes local asymptotically
stable for R0 < 1. Again, for R0 > 1,

lim
λ→∞ n(λ) = 0,

then, n(λ) = 1 for λ∗
1 > 0. The matrix Jε0 contains

λ∗
1 > 0. Thus, for R0 > 1, ε0 becomes unstable. ��

Theorem 2 The infection-free equilibrium ε0(S0, 0,
0, 0, 0) is globally asymptotically stable for the system
(1) if R0 < 1 in the bounded region �.
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Proof We can express the model (1) as

dX

dt
= G(X,U ),

dU

dt
= H(X,U ),

where H(X, 0) = 0, X = (S, R) ∈ R
2 shows the

number of susceptible or uninfected individual com-
partments, U = (E, I,C) ∈ R

3 shows infected indi-
vidual compartments. ε0(S0, 0, 0, 0, 0) is infection-
free equilibrium of the model (1). Now, G(X,U ), and
H(X,U ) are given as follows:

G(X,U ) =
[
�s − βs S

N (I + C) − μS
γi I + γcC − μR

]
and

H(X,U ) =
⎡
⎣

βs S
N (I + C) − (αe + μ)E

ξαeE − (γi + μ)I
(1 − ξ)αeE − (γc + μ)C

⎤
⎦ .

Now, it can be noted that H(X, 0) = 0. In order to
showglobal asymptotically stability, the following con-
ditions must hold.

A. For dX
dt = G(X, 0), X∗ is globally asymptotically

stable,
B. H(X,U ) = VU − Ĥ(X,U ); Ĥ(X,U ) ≥ 0 for

(X,U ) ∈ �,where V = DU H(X∗, 0) is aMetzler
matrix (where non-diagonal components are non-
negative) in the region �.

From the condition (A), the compartments of themodel
(1) can be expressed as

d

dt

(
S
R

)
=

(
�s − μS

−μR

)
.

Solving the above system analytically, we get S(t) =
�s
μ

+ e−μt (S(0) − �s
μ

) and R(t) = e−μt (R(0)). Now,

S(t) = �s
μ

and R(t) → 0 as t → ∞. Thus, X∗ is glob-
ally asymptotically stable for dX

dt = G(X, 0). Hence,
the condition (A) holds.

Now the matrix V and Ĥ(X,U ) for the model (1)
are

B =
⎛
⎝−(αe + μ) βs βs

ξαe −(γi + μ) 0
(1 − ξ)αe −(γc + μ) 0

⎞
⎠ and

Ĥ(X,U ) =
⎛
⎝βs I (1 − S

N + βsC(1 − S
N ))

0
0

⎞
⎠ .

It can be noted that Ĥ(X,U ) ≥ 0 for the region �.

Therefore, infection-free equilibrium ε0 of the system
(1) is globally asymptotically stable in region � for
R0 < 1. ��

3.3 Existence of infection present or endemic
equilibrium

Now, we consider the force of infection at endemic
equilibrium ε∗ = (S∗, E∗, I ∗,C∗, R∗) (say) as

η∗ = βs(I ∗ + C∗)
N∗ . (5)

By simplifying the (1) at equilibrium state, we
obtain S∗ = �s

η∗+μ
, E∗ = η∗

k1
S∗, I ∗ = αeξη∗

k1k2
S∗,

C∗ = αe(1−ξ)η∗
k1k3

S∗, and R∗ = αeη
∗

μ
[ γc(1−ξ)

k1k3
+ γi ξ

k1k2
]S∗.

Replacing into (5), we get the equation in η∗

P1η
∗ + P0 = 0, (6)

where

P1 = μk2k3 + k2αe(1 − ξ)(μ + γc) + ξαek3(μ + γi ),

(7)

P0 = μk1k2k3(1 − R0). (8)

Since P1 > 0, it can be noted that the model (1) has a
unique endemic equilibrium point for R0 > 1 and no
positive endemic equilibrium for R0 < 1.

Now, we study the local stability of the unique
endemic equilibrium ε∗.

3.4 Bifurcation analysis

Theorem 3 The SEICR model (1) is locally asymp-
totically stable around the endemic equilibrium ε∗ for
R0 > 1. Moreover, the system undergoes transcritical
bifurcation at R0 = 1.

Proof For R0 = 1, assuming βs = β∗
s as bifurcation

parameter, center manifold theorem is used for stability
analysis at ε∗(S∗, E∗, I ∗,C∗, R∗).

Now, the right eigenvector having zero eigenvalue
to the variational matrix of system (1) at βs = β∗

s is
given by u = [u1, u2, u3, u4, u5]′

, where
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u1 = −u2
μ

(αe + μ), u2 > 0, u3 = ξαe

γi + μ
u2,

u4 = (1 − ξ)αe

γc + μ
u2, u5 = u2

μ

[
ξγiαe

γi + mu
+ (1 − ξ)γcαe

γc + μ

]
.

In similar way, the left eigenvector having zero eigen-
value to variational matrix at βs = β∗

s is given by
v = [v1, v2, v3, v4, v5], where

v1 = 0, v2 > 0, v3 = βs

γi + μ
v2, v4 = βs

γc + μ
v2, v5 = 0.

We incorporate a few symbols for SEICR model
system as follows: S = x1; E = x2; I = x3;C =
x4; R = x5; and dxi

dt = fi , where i = 1, 2, . . . , 5.
Now, we calculate fi at ε0 and get

∂2 f2
∂x2∂x3

= −μβs

�s
,

∂2 f2
∂x3∂x3

= −2μβs

�s
,

∂2 f2
∂x4∂x3

= −2μβs

�s
,

∂2 f2
∂x5∂x3

= −μβs

�s
,

∂2 f2
∂x2∂x4

= −μβs

�s
,

∂2 f2
∂x3∂x4

= −2μβs

�s
,

∂2 f2
∂x4∂x4

= −2μβs

�s
,

∂2 f2
∂x5∂x43

= −μβs

�s
.

The rest of derivatives at ε0 becomes zero. Again,
we determine the coefficient a and b based on well-
established Theorem 4.1 in Castillo-Chavez et al. [52]

a =
5∑

i, j,k=1

vkui u j
∂2 fk(0, β∗

s )

∂xi∂x j
, and

b =
5∑

i,k=1

vkui
∂2 fk(0, 0)

∂xiβs
.

Now, we replace all to find the coefficient a and b at
threshold β∗ = β∗

s , we get

a = − v2μβ∗
s

�s
[u2u3 + 2u23 + 4u3u4

+ u3u5 + u2u4 + 2u24 + u4u5] < 0,

and

b = v2μ

�s
(v3 + v4) > 0.

Here, the values of a and b are negative and positive,
respectively. The system (1) undergoes forward bifur-
cation at R0 = 1. The endemic equilibrium ε∗ is locally
asymptotically stable for R0 > 1. ��

4 Optimal control problem

Control measures play a significant role in the mit-
igation of COVID-19 transmission. Now, we focus
on optimal control strategies for employing non-
pharmaceutical interventions along with the vaccina-
tion process in India. As the vaccination process is
applied to categorized individuals like front-linerwork-
ers: doctors, nurses, clinicians, polices, etc., a suit-
able implementation of non-pharmaceutical interven-
tions is thus essential to flatten the disease transmis-
sion. An optimal control approach can help to mini-
mize the combined cost of control [53]. The optimal
control problem is given by introducing time-varying
controls u(t), which represents the implementation of
non-pharmaceutical interventions, and ν(t), which rep-
resents a fraction of the vaccination process.

Ṡ = �s − βs(1 − u(t))(I + C)S

N
+ ν(t)(1 − V )N − μS,

Ė = βs(1 − u(t))(I + C)S

N
− (αe + μ)E, (9)

İ = ξαeE − (γi + μ)I,

Ċ = (1 − ξ)αeE − (γc + μ)C,

Ṙ = γi I + γcC + νV N − μR

with satisfying the initial condition (2). Here, our inten-
tion is to mitigate the number of infected individual
with and without comorbidity in the presence of non-
pharmaceutical interventionswith ongoing vaccination
process. We construct the objective functional as:

J (u, ν) =
∫ t f

0
[εi I + εcC + 1

2
(εuu

2 + ενν
2)]dt,

(10)

subject to SEICR model (9). Here, εi , εc, εu and νu
represent the weights to balance the factors. 12εuu

2 and
1
2ενν

2 measure the relative cost of strategic interven-
tions and vaccination over time [0, t f ]. u2, ν2 are con-
sidered for nonlinearity due to implication of severe
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strategy. According to our purpose, we only study on a
finite time period [0, t f ]. The optimal control is defined
as

J(u∗, ν∗) = min{J(u, ν) : u, ν ∈ }.

Here  is admissible control class defined on [0, t f ],
i.e.,

 = {(u, ν) : u, ν are measurable, 0 ≤ εu, εν ≤ 1 − ε,

∀t ∈ [0, t f ]}, where ε � 1.

The control pair (u∗, ν∗) is bounded between 0 and
1. Here, the controls become zero implying no extra
measures and vaccination are implemented. On the
other hand, the controls become the maximum value;
one implying interventions and vaccination are 100%.
Indeed, perfectly implementation is impossible in real-
ity and thus, we consider εu, εν ≤ 1 − ε.

Proposition 4.1 The solutions of the optimal control
(9) exist and bounded for a finite time period [0, t f ].

Now,Pontryagin’smaximumprinciple [54] is applied
to evaluate the necessary conditions for optimality . In
order to find the optimality in the model (9), we have
constructed the augmentedHamiltonian function as the
cost functional

H(I,C, λ, u, ν) = εi I + εcC + 1

2
(εuu

2 + ενν
2)

+ λ1
dS

dt
+ λ2

dE

dt
+ λ3

dI

dt
+ λ4

dC

dt
+ λ5

dR

dt
.

For optimality, we drive the adjoint equations as fol-
lows:

λ̇1 = (λ1 − λ2)
βs(1 − u)(I + C)

N
(1 − S

N
)

+ λ1(ν(1 − V ) − μ),

λ̇2 = (λ2 − λ1)
βs(1 − u)(I + C)S

N 2 + λ1ν(1 − V )

+ λ2(αe + μ) − λ3ξαe − λ4(1 − ξ)αe − λ5νV,

λ̇3 = −εi + (λ1 − λ2)
βs(1 − u)S

N
(1 − I

N
− C

N
)

+ λ1γ1γ (1 − V ) + λ3(γi + μ) − λ5(γi + νV ),

λ̇4 = −εc + (λ1 − λ2)
βs(1 − u)S

N
(1 − I

N
− C

N
)

+ λ1γ1γ (1 − V ) + λ4(γc + μ) − λ5(γi + νV ),

λ̇5 = λ5(μ − νV ),

where adjoint equations satisfy transversality condi-
tions λi (t f ) = 0, i = 1, 2, . . . , 5. For optimality con-
ditions, the Hamiltonian is to be optimized with respect
to control pair (u∗, ν∗). We have

∂H

∂u
= 0,

∂H

∂ν
= 0.

The corresponding control pair (u∗, ν∗) is given as fol-
lows:

u∗ = min

{
max{0, (λ2 − λ1)

βs(I + C)S

εu N
}, 1 − ε

}
,

ν∗ =
{
(λ1 + λ5)V − λ1

}
N

εν

. (11)

5 Numerical simulation and results validation

Now, we validate the analytical findings. To do this, we
fit the parameter values of the SECIR model.

5.1 Model curve-fitting

We consider April 25, 2020, to January 31, 2021,
for model curve fitting. For this purpose, we take
daily cases of COVID-19 in India [57]. We fit the
model (1) for daily cases of COVID-19 in India.
We enlist the SEICR model parameters in Table 1
by estimating from the data. By fitting the model
to the basis of daily report, four parameters of the
SEICR model have been fitted, which are (a) trans-
mission rate βs , (b) fraction ξ of exposed individu-
als to become infected, (c) recovery rate of infected
with no comorbidity γi , (d) recovery rate of infected
with no comorbidity (γc). The initial values of the
model (1) are assumed as (S0, E0, I0,C0, R0) =
(1037297349, 180340169, 9995, 9997, 1). InMATLAB,
fmincon inbuilt solver is applied to fit daily cases based
on the nonlinear least square. In Table 1, the estimated
parameters are given by the above technique. The daily
new cases of India are fitted and shown in Fig. 2. The
value of R0 = 1.0607 is computed by taking the param-
eter values of the model from Table 1.
To identify the influential parameters to infected with
and without comorbidity individual, we next execute
sensitivity analysis.
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Table 1 The values of the
parameters used in the
SEICR model (1)

Parameter Description Value Reference

�s = μ × N Average recruitment rate 4 × 104 Assumed

βs Transmission rate 0.4945 Estimated
1
μ

Average life expectancy at birth 70.4 years [55]
1
αe

COVID-19 incubation period 5.2 days [56]

ξ Fraction of exposed individuals 0.21 Estimated

γi Recovery rate of infected with no comorbidity 0.1245 Estimated

γc Recovery rate of infected with comorbidity 0.1241 Estimated

Fig. 2 The fitted SEICR model (1) to confirmed daily data in
India. Reported confirmed cases are seen in black dots, and the
red line shows the fitted line

5.2 Sensitivity analysis

We perform uncertainty analysis by Latin hypercube
sampling (LHS) method as well as sensitivity analysis
by Partial rank correlation coefficient (PRCC) method.
The whole technique is available in Marino et al. [58].
The sensitivity of the parameters, namely βs , μ, αe,
ξ , γi , and γc, is based on uniform distribution with
confidence domain 95%. We assign baseline values by
these parameter values. The outputs values and scenar-
ios are reported in Table 2 and seen by bar diagrams
in Fig. 3a, b. From Fig. 3a, it is observed that βs , αe,
and γc are sensitive parameters to the infected individ-
uals without comorbidity. On the other hand, Fig. 3b
shows that βs , ξ , γc, and γi are sensitive parameters
to the infected individual with comorbidity. We further

investigate the sensitivity indices corresponding to R0.
From Fig. 3c, it can be seen that ξ and γc are negatively
correlated, and βs , αe and γi are positively correlated
to R0.
Basic reproduction number (R0) measures the expec-
tation of variation in the epidemic evolution, and we
investigate the influence of parameter variation on R0.

5.3 Effects of parametric variation R0

The impact of parameter variations R0 is further inves-
tigated under αe×βs ∈ [0.01, 1]×[0.2, 0.7], γi ×βs ∈
[0.2, 0.7]×[0.2, 0.7], γc ×βs ∈ (0.2, 0.7]× (0.2, 0.7]
in Fig. 4. It is also seen that only the increasing value
of βs can shift R0 < 1 to R0 > 1 in Fig. 4a. Further,
the simultaneously increasing value increase the value
of R0 in Fig. 4b, c.

5.4 Bifurcation diagram

In order to investigate, the existence of endemic equi-
librium in the SEICR model (1), forward bifurcation
occurs with γc ∈ [0.1, 0.6], given in Fig. 5a, where
unique positive endemic equilibrium exists for R0 > 1.
From an epidemiological perspective, the scenario of
forward bifurcation indicates that the disease persists.
It indicates that susceptible individuals must have the
awareness to the disease spreading, like social dis-
tancing, using a mask, maintaining proper sanitation,
etc.

Moreover, it can be observed numerically that a
forward bifurcation region increases gradually with
increases of the value of exposed individuals gets
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Table 2 Sensitivity of the parameters of SEICR model (1) to I,C and R0, where Ii ,Ci ; i= 100, 150, 200th day

Description βs μ αe ξ γc γi

I100 0.8124 −0.1042 −0.9018 −0.1251 −0.4871 0.1851

I150 0.8751 −0.4167 −0.8501 −0.0916 −0.7192 0.1473

I200 0.7110 −0.3876 −0.7912 −0.0981 −0.6875 0.0916

C100 0.4619 0.2179 0.7901 0.9128 −0.1927 −0.5012

C150 0.6972 0.1986 0.2892 0.8715 −0.5102 −0.6179

C200 0.7125 0.1275 0.1917 0.2571 −0.6171 0.7251

R0 0.8912 0.1779 0.7126 −0.5267 −0.9512 0.4576

(a) (b) (c)

Fig. 3 PRCC to a infected individual without comorbidity (I),
b infected individual with comorbidity and c basic reproduction
number (R0). PRCC values of different parameters with signif-

icance level 0.05. LHS approach and uniform distribution with
size of sample (500) are considered

(b)(a) (c)

Fig. 4 Matrix plots showing the changing nature in basic reproduction number (R0) of SEICR model under parametric variations: a
R0 vs (αe, βs) ∈ [0.01, 1] × [0.2, 0.7], b R0 vs (γi , βs) ∈ [0.2, 0.7] × [0.2, 0.7], c R0 vs (γc, βs) ∈ [0.2, 0.7] × [0.20.7]
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infected, ξ with γc ∈ [0.1, 0.6], given in Fig. 5b.
Indeed, the region of the curve is essential to be smaller
to reduce the infection like the value R0 needs near to
one.
As infection intensity varies, the average of force of
infection is considered for our study.

5.5 Effects on force of infection by varying parameter

Now, the variation in force of infection η∗ is studied by

taking < η∗ >= 1
N

N∑
i=1

η∗(i), where N represents the

length of series {η∗(i)}. Figure 6a–c shows the fluc-
tuations of mean force of infection < η∗ > under
βs ∈ [0.2, 0.7], γi ∈ [0.2, 0.7] and γc ∈ [0.2, 0.7],
respectively. Figure 6a shows respective increasing
trend, and Fig. 6b, c shows decreasing trend in< η∗ >.
Moreover, it can be seen that mean force of infection
increases with the increase of βs ∈ [0.2, 0.7], aver-
age force of infection decreases with the increase of
γi ∈ [0.2, 0.7] and γc ∈ [0.2, 0.7] in the model (1).

We further study the distribution of the force of
infection by box plot in Fig. 6d–f. The box plot usu-
ally provides more information on dispersion or vari-
ability of the force of infection. It shows an impression
about the disease transmission of COVID-19. This con-
tains five measures, namely lower adjacent (LA), first
quartile (Q1), median (M), third quartile (Q3), upper
adjacent (UA), and outlier (OL). Red (+) sign indicates
outlier events leading to least predictable.

Further, we study the combined effect under para-
metric plane (γi , βs) ∈ [0.2, 0.7] × [0.2, 0.7] and
(γc, βs) ∈ [0.2, 0.7]× [0.2, 0.7] on< η∗ >; the corre-
sponding matrix plots are given in Fig. 7a, b. In Fig. 7a,
b, it can be noted that the mean force of infection
depends on γi and γc for any value of βs , mentioning
by various color regions of increasing value of< η∗ >.

As force of infection has disorder trend, Shannon
entropy [21] can be applied to measure the disorder
due to non-uniform distribution of disease spread.

5.6 Entropy within force of infection

Shannon entropy (H) is

H = −
N∑
i=1

p(η∗
i ) log(p(η

∗
i ),

where N represents the event’s length η∗
i and p(η∗

i ) is
the probability of the event η∗

i , i.e., occurrence-based
frequency on non-recurrent-based event η∗

i . The dis-
order of Eh(η

∗
i ) on βs ∈ [0.2, 0.7], γi ∈ [0.2, 0.7]

and γc ∈ [0.2, 0.7] are seen in Fig. 8a–c. Figure 8a
shows the increasing trend of Eh(η

∗
i ) with increase of

βs . Eh(η
∗
i ) decrease with γi and γc in Fig. 8b, c. From

Figs. 6a–c and 8a–c, it can be mentioned that the trend
of Eh(ζ

∗
i ) is positively correlated with the variation in

force of infection η∗. Further, we also study the com-
bined dependency of Eh(η

∗
i ) on (γi , βs), (γc, βs) ∈

[0.2, 0.7] × [0.2, 0.7]. In the similar way, comparing
Figs. 7a, b and 8d, e, we see the alike pattern of enhanc-
ing entropy of η∗ and Eh(η

∗). This assures the dynam-
ically disorder in force of infection in (1) for the same
parametric plane.

5.7 Optimal strategies over time

Now, we study the effect of combined measures under
non-pharmaceutical interventions(NPIs) and vaccina-
tion under optimal control strategy. We consider R0 =
1.5 to observe the control scenarios in Fig. 9. Figure 9a
shows that susceptible individual becomes vaccinated
under NPIs near bout 100 days. As whole population
goes through NPIs with vaccination event, the frac-
tion of exposed individual decreases gradually with
increase of vaccinated susceptible in Fig. 9b. In similar
way, it can be observed that infected individual with
and without comorbidity acquire less infection due to
the same reason during vaccination process in Fig. 9c,
d. Figure 9e shows that the number of recovery individ-
uals increases with the decreasing number of the sus-
ceptible individuals along with the infected individuals
under combined measures. How non-pharmaceutical
interventions as well as vaccination event can be imple-
mented, seen in Fig. 9f, g. Further, it can be seen that
although NPIs can be imposed lightly after few days,
indeed needs to be continued till almost all individual
becomes vaccinated. Figure 9h assures that a combined
control strategy decreases the cost of intervention as
well as vaccination event.
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(a) (b)

Fig. 5 aR0 vs η∗ plot indicating forward bifurcation of SEICR
model with γc ∈ [0.1, 0.6]. b Effects of variation in ξ on forward
bifurcation with γc ∈ [0.1, 0.6]: the figure shows that the bound-

ary of forward bifurcation region increases gradually with the
increasing ξ . Keeping other parameters value fixed as in Table
1. Here, DFE represents disease (infection)-free equilibrium

(a) (b) (c)

(d) (e) (f)

Fig. 6 a–c represent η∗ vsβs plot (withβs ∈ [0.2, 0.7]), η∗ vs γi
plot (with γi ∈ [0.2, 0.7]) andη∗ vs γc plot (with γc ∈ [0.2, 0.7]).
d–f : represent box plot where five measures are lower adjacent

(LA), first quartile (Q1), median (M), third quartile (Q3), upper
adjacent (UA) and outlier (OL). Red (+) sign indicates outlier
events leading to least predictable
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(a) (b)

Fig. 7 a, b represent η∗ over (γi , βs) matrix plot, where
(γi , βs) ∈ [0.2, 0.7] × [0.2, 0.7] and η∗ over (γc, βs) matrix
plot, where (γc, βs) ∈ [0.2, 0.7] × [0.2, 0.7]. The color bar rep-

resents values of η∗. The other parameter’s values remained the
same as given in Table 1

(a) (b)

(d) (e)

(c)

Fig. 8 Variation of Eh(η
∗) by varying a βs ∈ [0.2, 0.7], b γi ∈ [0.2, 0.7], c γc ∈ [0.2, 0.7] d (γi , βs) ∈ [0.2, 0.7] × [0.2, 0.7] and e

(γc, βs) ∈ [0.2, 0.7] × [0.2, 0.7]. The color bar represents values of Eh(η
∗). The rest of parameters are fixed as shown in Table 1

123



Mathematical model of COVID-19 with comorbidity... 1225

Table 3 Different measures
of box plot corresponding to
βs , γi and γc

Box Plot L A Q1 M Q3 U A OL

βs 0.5×10−3 1.9×10−3 2.7×10−3 5.3×10−3 7.3×10−3 –

γi 3.1×10−3 3.3×10−3 3.7×10−3 4.4×10−3 5.8×10−3 5.9×10−3

γc 2.5×10−3 3.2×10−3 5.1×10−3 7.9×10−3 13.5×10−3 –

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9 Dynamics of optimality system (9) resulting from com-
bination of NPIs and vaccination process. The individual counts-
based trajectories of susceptible (S), exposed (E), infected with-
out (I) and with (C) comorbidity and recovered (R) are in (a)–(e).

The control trajectories of combined strategies are in (f) and (g)
by the variation of v and u, respectively. The trajectory of cost
functional is in (h). Here, amount of vaccine and weights are
V = 0.00000013, εi = 0.1, εc = 0.1, εu = 0.1, and εν = 0.01

6 Conclusion

In this article, we have formulated and studied the dis-
ease dynamics of COVID-19 through a mathematical
model considering infected subpopulations as with and
without commodities due to the complexity of infec-
tion transmission. The parameter of the model has
been fitted to new daily COVID-19 cases of India. The
qualitative dynamics have been investigated, and the
basic reproduction number (R0) has been derived by
using the next-generation matrix method. The model
is asymptotically stable at infection-free equilibrium
for R0 < 1. Based on the center manifold theorem,
the model experiences forward bifurcation due to an
increase of fraction in the exposed individuals having
commodity. This assures that infection presents in soci-
ety for greater than unity for R0, basic reproduction
number. From an epidemiological perspective, comor-
bidity individuals get gradually infection due to lack of
precautions and surveillance and like social distancing,
proper sanitation wearing masks, etc. In this situations,

susceptible individuals become infected and turned to
exposed individuals. Indeed, exposed individuals can
prevent COVID-19 infection due to strong immunity
in this connection.

On the study of transmission dynamics, the aver-
age fluctuation in the force of infection has an evi-
dence of increasing or decreasing trend with transmis-
sion rate (βs), the recovery rate of infected without and
with comorbidity (γi ), (γc), respectively. Further, an
increasing trend to themean force of infection has been
indicated through the composite effect. Higher Shan-
non entropy production, i.e., more disorder in mean
force of infection, indicated more strengthening the
force of infection according to dynamical perspective.
This might cause a dangerous situation in the popula-
tion. Finally, optimal control strategies have shown that
a combination of non-pharmaceutical interventions and
vaccination events can be effective measures to dimin-
ish COVID-19 by minimizing the social and economic
cost.
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Our study reveals that the production of higher
entropy means more disorder in disease transmission
which can be helpful evidence to understand the state
of the force of infection to computational biologists.
Moreover, proposed strategy in controlling COVID-19
through proper implementations of NPIs and vaccina-
tion events can be fruitful to our society. Moreover, a
study of pulsed vaccination strategies remains as our
future research scope.

Data availability The data that support the findings of this study
are available within the article.
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