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Abstract The world is experiencing an ongoing

pandemic of coronavirus disease-2019 (COVID-19),

which is caused by severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2). In attempts to control

the pandemic, a range of nonpharmaceutical interven-

tions (NPIs) has been implemented worldwide. How-

ever, the effect of synchronized NPIs for the control of

COVID-19 at temporal and spatial scales has not been

well studied. Therefore, a meta-population model that

incorporates essential nonlinear processes was con-

structed to uncover the transmission characteristics of

SARS-CoV-2 and then assess the effectiveness of

synchronized NPIs on COVID-19 dynamics in China.

Regional synchronization of NPIs was observed in

China, and it was found that a combination of

synchronized NPIs (the travel restrictions, the social

distancing and the infection isolation) prevented

93.7% of SARS-CoV-2 infections. The use of syn-

chronized NPIs at the time of the Wuhan lockdown

may have prevented as much as 38% of SARS-CoV-2

infections, compared with the unsynchronized sce-

nario. The interconnectivity of the epicenter, the

implementation time of synchronized NPIs, and the

number of regions considered all affected the perfor-

mance of synchronized NPIs. The results highlight the

importance of using synchronized NPIs in high-risk

regions for the control of COVID-19 and shed light on

effective strategies for future pandemic responses.
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1 Introduction

A novel coronavirus, severe acute respiratory syn-

drome coronavirus 2 (SARS-CoV-2), has caused a

global pandemic of coronavirus disease-2019

(COVID-19) [1, 2]. The government of China imple-

mented combinations of nonpharmaceutical interven-

tions (NPIs) to attempt to contain the pandemic [3–5].

These NPIs, which include transportation restrictions,

the social distancing of susceptible people, and the use

of contact tracing to isolate those infected with SARS-

CoV-2, have prevented SARS-CoV-2 from spreading

widely and thus enabled effective control of COVID-

19 in China [3, 6, 7]. In contrast, a distributed, state-

level decision-making process was used in the USA,

which resulted in variable enforcement and a pan-

demic-mitigation response that was highly variable in

space and time [8, 9]. It remains an open question

whether and how responses to the COVID-19 pan-

demic should be coordinated [6].

It is well acknowledged that the strength of NPIs

and the manner in which they are implemented

contribute to their efficacy. At the early stage of the

COVID-19 pandemic, NPIs such as restrictions on

travel from the epicenter of the coronavirus outbreak

played critical roles in delaying the exportation of

cases to other regions [6, 10]. However, it is unlikely

to fully contain the outbreak solely by nonpharma-

ceutical interventions in the epicenter, especially as

community transmission had already begun in other

regions [3]. In today’s highly connected world, the

spatiotemporally dynamic manner in which infected

individuals move between regions can result in the

persistence of infection across regions and accelerate

the pandemic spread [8]. Thus, the use of coordinated

interventions for the control of infection is considered

crucial for minimizing the spread of the COVID-19

pandemic and preventing future recurrences [11].

Previous studies have confirmed that appropriate

coordination can greatly improve the likelihood of

eliminating community transmission [3]. Another

study found that uncoordinated government responses

to COVID-19 resulted in a substantial cost, due to the

movement of people, ideas, and media across borders

[12]. These evidences highlighted the spillover effects

of joint interventions that can bring benefits for all the

involving regions in the presence of coordination.

Understanding the heterogeneity of COVID-19

dynamics in various regions is essential for designing

effective strategies to control the disease [13, 14]. Given

this heterogeneity, concerns have been raised regarding

the optimal way NPIs were implemented, but few

studies [3, 13] have fully investigated the effectiveness

of regional NPIs in high-risk areas and compared the

results of these to the results of the national lockdown

strategy. A previous study found that local lockdowns

outperformed global lockdown on the far side of the

COVID-19 pandemic curve [15]. Given the fact that

infections have been shown to disperse spatially

between connected population centers in an apparently

heterogeneous fashion, it is important that NPI strategies

be optimized in a differentiated but coordinated manner

to create an overall NPI strategy that is hierarchical and

synchronized [3, 16].

Most epidemics are only partially observed, and

thus, their dynamics need to be uncovered using ad

hoc methods on incomplete data derived from a wide

variety of sources and over a wide range of scales. In

this context, spatially structured stochastic models are

superior to dynamic models of single regions, as the

former can capture the regional heterogeneity of

disease dynamics, thereby allowing a broader explo-

ration of possible interventions [14, 15]. Previous

studies have confirmed the effectiveness of individual

NPIs, such as travel restrictions [17], social distancing

[7, 18], and isolation of infected individuals [3], in the

containment of COVID-19 in China. However, it

remains unclear how relatively important these NPIs

are for controlling COVID-19 dynamics, and whether

they demonstrate synergistic effects. In addition, few

studies have explored the effectiveness of synchro-

nized NPIs across regions for the control of COVID-

19 in China. Thus, to further border the understanding

on the efficiency of NPIs on COVID-19 dynamics, the

relative importance and effect of synchronized NPIs

for the control of COVID-19 in China were explored

in this study, using an informative meta-population

model that explicitly incorporates essential compo-

nents for the transmission of SARS-CoV-2.

2 Materials and methods

2.1 Epidemiological and demographic data

Daily new confirmed COVID-19 cases were obtained

from the reports published by the Health Committees

of 31 provincial-level administrative units (Fig. 1).
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Data from January 16 to February 12, 2020 were used,

to avoid complications due to the altered case

definition that was implemented after February 12,

2020 (such that only clinically diagnosed cases of

COVID-19 were recorded). Population data from 2018

were obtained from the Ministry of Civil Affairs of the

People’s Republic of China (http://xzqh.mca.gov.cn/

map).

2.2 Human mobility data

Daily human mobility data during the study period

were collected from the Baidu Qianxi platform

(https://qianxi.baidu.com/2020/) and then adjusted

according to the population movement statistics pub-

lished by the Ministry of Transport of the People’s

Republic of China (http://www.mot.gov.cn). Data for

the population movement between 343 cities were

extracted (Fig. S1). For simplicity, mean human

mobility between regions before and after January 23,

2020, which was the date that public transportation to

and from Wuhan was prohibited, was calculated and

used in this study. A directed mobility network was

constructed, with nodes as cities and edges repre-

senting population movement between cities. The

interconnectivity of a city was defined as the scaled

degree centrality score of the city in the network,

which was calculated using the degree function in the

R package sna [19, 20] (Fig. S2).

Internal mobility (IM) data within cities were also

gathered from the Baidu Qianxi Platform. The results

from contact surveys in Wuhan and Shanghai showed

that the reduction in IM can be used as a proxy for the

change in the contact rate [18] and thus used as a

measure of the strength of social distancing in the

present study. Given the regional heterogeneity of IM

across cities, the IM was standardized for each region

i 2 1; 2; . . .; nð Þð Þ, as follows:

SIMi tð Þ ¼
1; January 16� t\January 24
IMi;intervention

IMi;baseline

; January 24� t� February 12

8
<

:

ð1Þ

where SIMi tð Þ is the standardized IM. The average IM

for the region i in the baseline period (January 16–

January 23) and that in the intervention period

(January 24–February 12) were defined as IMi;baseline

and IMi;intervention, respectively. The distribution of

SIM for each province/municipality after the Wuhan

shutdown is shown in Fig. S3.

Fig. 1 Dynamic pattern of coronavirus disease-2019 (COVID-

19) cases in China from January 24 to February 12, 2020.

a Histogram of time series of daily numbers of new COVID-19

cases in Hubei Province, China (blue and red represent regions

outside and inside Wuhan, respectively). b Heatmap of the daily

numbers of COVID-19 cases outside Hubei Province
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2.3 Meta-population compartment model

A meta-population model for Hubei Province (the

Hubei model) was built by integrating regional models

of population movement with region-specific and

shared parameters [14, 21, 22]. For each region, a

SEIqIhIuR model was constructed (Fig. 2), which

compartmentalizes a population into categories of

susceptible (S) individuals, exposed (E) individuals,

infected individuals who are untraceable (IU; silent

transmitters), infected individuals who have been

isolated (quarantined; IQ), infected individuals who

have escaped quarantine (IH), and recovered individ-

uals (R). For region i, the model was formulated as

follows:

dSi
dt

¼ �ki tð ÞSi
dEi

dt
¼ ki tð ÞSi � rEi

dIHi

dt
¼ Ei 1 � ni tð Þð Þxr� cIHi

dIUi

dt
¼ Ei 1 � xð Þr� cIUi

dIQi

dt
¼ Eini tð Þxr� cIQi

dRi

dt
¼ cðIQi þ IUi þ IHiÞ

Ni ¼ Si þ Ei þ IHi þ IQi þ IUi þ Ri

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

ð2Þ

where 1=r and 1=c are the incubation period and

infectious period, respectively; x is the maximum

traceable rate of SARS-CoV-2 infections; and ni tð Þ is

the strength of isolation, which represents the time-

varying proportion of isolated infections, and is

formulated using a sigmoid function with the growth

coefficient ni, the covariate t, and the intercept n0:

ni tð Þ ¼ 1= e� ni�tþlogðn0ð ÞÞ þ 1
� �

ð3Þ

Given the difference between the dynamic patterns

in Wuhan and non-Wuhan cities in Hubei Province,

two distinct parameters, nw and ne, are used to

represent the different growth coefficients of the

strength of infection isolation interventions in Wuhan

and in these other cities.

All of the susceptible individuals in the region i

have the infection risk ki tð Þ, which is formulated as the

following equation:

ki tð Þ ¼ bi tð Þ
jIHi þ IUi þ

P
i6¼j � IUiþjIHi

Ni�IQi

Fi;j þ IUjþjIHj

Nj�IQj

Fj;i

� �

Ni � IQi

ð4Þ

where j is the relative transmission rate of IH

compared to IU; Fi;j is the human movement from

region i to region j; and bi tð Þ is the time-varying

transmission rate, which is formulated from the basic

contact rate during the baseline period ðc0Þ, the

transmission probability per contact (b0), and SIM.

To simplify the model structure, only infectors (IUj

and IHj in Eq. (4)) are specifically considered in the

human movement, and the population size is assumed

to be constant [22, 23].

In each region at the start of the pandemic, the basic

reproduction number R0 is the largest eigenvalue of

the next-generation matrix [24]. Let X = (E, IU, IH)

Fig. 2 Model structure of the meta-population Susceptible–

Exposed–Infected (untraceable)–Infected (quarantined)–In-

fected (escaped quarantine)–Recovered model. The population

in each region was divided into six compartments: susceptible

individuals (S), exposed individuals (E), infected individuals

that cannot be traced (IU; silent transmitters), infected

individuals who are quarantined (isolated; IQ), infected

individuals that escape quarantine (IH), and recovered individ-

uals (R). Regional dynamics were then coupled with population

movements. The key model parameters are listed in Table 1
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and Y = (S, R). Then, matrix F, which defines the rate

of new infections in different compartments, is as

follows:

F ¼
b0cS IU þ jIHð Þ

N
0

0

0

B
@

1

C
A ð5Þ

Another matrix (V), which defines the rate of transfer

of infections from one compartment to another, can be

written as follows:

V ¼
rE
cIU � 1 � xð ÞrE
cIH � xntrE

0

@

1

A ð6Þ

Finally, we have:

F ¼
0 b0c jb0c
0 0 0

0 0 0

0

@

1

A and

V�1 ¼

1

r
0 0

1 � x
c

1

c
0

x 1 � ntð Þ
c

0
1

c

0

B
B
B
B
B
@

1

C
C
C
C
C
A

The next-generation matrix is K ¼ FV�1 ¼
1 � xð Þb0cþ xj 1 � ntð Þb0c

c
b0c

c
jb0c

c
0 0 0

0 0 0

0

B
B
@

1

C
C
A:

Thus, R0 is computed as:

Fig. 3 Estimations of the growth coefficient (left) and strength

(right) of infection isolation at provincial (a) and city levels (b).

Only provinces with greater than 300 accumulated cases and

cities with greater than 200 accumulated cases were selected.

The median value for the growth coefficient and its 95%

confidence intervals are depicted in the left panel. The heatmap

in the right panel represents the projected strength of infection

isolation for each target region
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R0 ¼ 1 � xð Þb0c0 þ xjb0c0

c
ð7Þ

Thus, the force of infection ki tð Þ can be reformulated

as follows:

ki tð Þ ¼ SIMi tð Þ
R0c

1 � xþ xj

jIHi þ IUi þ
P

i 6¼j � IUiþjIHi

Ni�IQi
Fi;j þ IUjþjIHj

Nj�IQj
Fj;i

� �

Ni � IQi

ð8Þ

2.4 Observation process and parameter estimation

In the observation model, the observed number of

daily confirmed COVID-19 cases Ci tð Þ is measured as

a normal distribution to allow for over-dispersion of

the case counts [25]:

Ci tð ÞjYi tð Þ � rnorm Yi tð Þ; .Yi tð Þð Þ ð9Þ

where . is the reporting over-dispersion; and Yi tð Þ
represents the number of people moving from class IQi

to class Ri in region i at time t

Parameters are estimated using the sequential

Monte Carlo method in the R package pomp [26].

The likelihood function used in this study [25] is

formulated as:

Li tð Þ ¼ pnorm Ci tð Þ þ 0:5; Yi tð Þ; .Yi tð Þð Þ
� pnrom Ci tð Þ � 0:5; Yi tð Þ; .Yi tð Þð Þ ð10Þ

The maximum likelihood estimation of target

parameters and its confidence interval (CI) are

obtained from the Monte Carlo adjusted profile

algorithm [27]. For Ci(t) = 0, we replace Ci(t) - 0.5

by - ?.

Fig. 4 Effects of synchronized nonpharmaceutical interven-

tions (NPIs) on the coronavirus disease-2019 pandemic in China

in different scenarios. Four scenarios were tested with two

strengths of infection isolation (low and high): no social

distancing and no travel restriction measures (red), travel

restriction measures only (gray), social distancing measures

only (cyan), and social distancing and travel restriction

measures (black). Simulations were run based on the national

meta-population model. All of the NPIs were implemented after

the Wuhan lockdown (dashed line). High-strength infection

isolation after the Wuhan lockdown (triangle) was represented

by growth coefficients of 0.25 and 0.53 for Wuhan and other

regions, respectively (Table 1). Low-strength infection isolation

(circle) after the Wuhan lockdown was represented by no

change in the strength of infection isolation, which remained at

0.01 and 0.27 in Wuhan and other regions, respectively (Fig. S6)
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2.5 Model validation

As the study period was short (29 points for each

region), the effective identification of the target

parameters was of great importance. To test the

effectiveness of the inference framework, parameters

were estimated based on synthesized data generated

from the Hubei model (comprising 17 cities, including

Wuhan) and predefined parameters (Table S1). Two

scenarios were tested: one scenario had the same

strength of infection isolation in Wuhan (nw) and in

other cities (ne), i.e., ne ¼ nw, and the second scenario

had different strengths of infection isolation in Wuhan

compared to other cities, i.e., ne 6¼ nw (Table S1). The

detailed procedure used for the model validation is as

follows:

1. Predefinition of the parameters (Table S1). The

initial states for each city were obtained from the

initial state generated by the maximum likelihood

estimation in the Hubei model;

2. Based on the predefined parameters (Table S1)

and the initial states, median values at each time

point were calculated from the synthesized data

generated by 100 simulations based on the Hubei

model.

3. Key parameters were re-estimated using the

inference framework based on the synthesized

data, and the re-estimated parameters were com-

pared to the predefined values.

2.6 Spatial and temporal synchronization

A meta-population model incorporating 343 cities in

China was used for spatial and temporal synchroniza-

tion, and simulations were run for the period from

January 16 to March 31, 2020. To simulate a realistic

scenario, the parameters and initial conditions for the

selected epicenter and its 16 most highly connected

cities were based on values from the Hubei model

(comprising Wuhan and 16 non-Wuhan cities in Hubei

Province). We assumed that there were no infections

in other cities at the beginning of the simulation. The

hypothetical epicenter could be one of the 31 capital

cities in China. Synchronization of NPIs was defined

as selected cities (ni) implementing NPIs simultane-

ously at time ti, while the remaining cities imple-

mented NPIs at a random time between ti and ti ? 7.

The implementation of travel restrictions (population

movement between regions) and social distancing

(measured as SIM) was represented by using the

mobility data after the Wuhan lockdown (Fig. S3). To

represent the strength of infection isolation, the

strength in the city i was first set as constant between

January 23 and ti and then allowed to increase after the

implementation of NPIs: the growth coefficients of

this increase in the epicenter and other cities were set

using the estimated growth coefficients for Wuhan and

non-Wuhan cities, respectively, in the Hubei model.

The effect of synchronized NPIs was defined as the

proportion of infections that were averted compared to

the unsynchronized scenario. Linear regression was

performed using the lm function in R software to

determine the relationship between the effect of

synchronized NPIs and the interconnectivity of a

specific city (as a hypothetical epicenter).

3 Results

3.1 Hubei model

A meta-population model for cities in Hubei Province

was established by incorporating different categories

of infected individuals: IU, IQ, and IH. The model also

specifically incorporates the social distancing in the

transmission rate and strength of infection isolation

(Fig. 2). The inference framework was tested on

synthesized datasets, and it was found that all of the

parameters could be correctly re-estimated, irrespec-

tive of the differences between the strength of

infection isolation in Wuhan and other cities in Hubei

Province (Table S1 and Fig. S4; details in Materials

and Methods). The meta-population model captured

the dynamics of COVID-19 across cities in Hubei

Province (Fig. S5), and the maximum likelihood

estimations for the key parameters are shown in

Table 1. The maximum proportion of infections that

could be traced was estimated as 0.93 (95% CI

0.84–0.96), suggesting that 7% of SARS-CoV-2

infections were due to silent transmitters, who are

difficult to trace. Compared to IU, the relative

transmission rate of IH was at 1.22 (95% CI

0.65–1.65). The growth coefficient for the strength

of infection isolation was larger in non-Wuhan cities

than in Wuhan itself, as shown by the respective

values of 0.53 (95% CI 0.45–0.56) and 0.25 (95% CI

0.22–0.27) (Table 1). It was estimated that the strength
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of infection isolation for non-Wuhan cities in Hubei

Province increased to 0.95 on February 1 and then

remained almost constant (Fig. S6). However, the

strength of infection isolation in Wuhan was main-

tained at a low level (\ 0.1) before February 1, and

then increased to 0.59 on February 12 (Fig. S6).

3.2 Synchronization of interventions

There was a synchronized decrease in the population

movement between regions and in the internal mobil-

ity within cities after the Wuhan lockdown (Fig. S3).

The mean decrease in within-city mobility was 49.6%

(95% CI 27.5–70.0%) in the intervention period

(January 24–February 12) compared to the baseline

period (January 16–January 23). On average, 60.2% of
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the cities showed a noticeable decrease ([ 50%) in the

population movement between regions from January

24 to February 12. To determine whether there was

regional synchronization in the strength of infection

isolation, a region-specific model was constructed by

adding a target region into the Hubei model. Only

provinces with greater than 300 accumulated cases

and cities with greater than 200 accumulated cases

were used for robust estimations (Fig. 1). Obvious

regional synchronization was observed in the strength

of infection isolation outside Hubei Province (Fig. 3).

The growth coefficient for the strength of infection

isolation was the highest in Shanghai among the

selected regions, followed by those in Chongqing,

Guangdong, and Beijing (Fig. 3a, left). All of the

selected regions had a high strength of infection

isolation close to 1 on February 12 (Fig. 3a, right). At

the city level, the estimated growth coefficient for the

strength of infection isolation in six selected cities was

greater than 0.5, with the highest value observed in

Shenzhen (Fig. 3b).

3.3 Effect of synchronized NPIs at the national

scale

To evaluate the effect of synchronized NPIs at the

national scale, a national model was built using the

same model structure and by incorporating the

mobility data of 343 cities (see Materials and Methods

for more details). Two scenarios of the strength of

infection isolation were tested: low-strength infection

isolation, i.e., no change in the strength of infection

isolation after the Wuhan lockdown and high-strength

infection isolation (the growth coefficients of 0.25 for

Wuhan and 0.53 for other regions, Fig. S6). The

implementation of only travel restrictions in the low-

and high-strength infection isolation scenarios had a

limited effect on SARS-CoV-2 infections (Fig. 4).

However, the implementation of only social distanc-

ing measures suppressed 93.2% and 73.4% of SARS-

CoV-2 infections in the low- and high-strength

infection isolation scenarios, respectively. This shows

that social distancing measures alone could contain the

COVID-19 pandemic in China; however, more

bFig. 5 Effect of synchronized nonpharmaceutical interventions

(NPIs) on the control of coronavirus disease-2019 (COVID-19)

in China. a Effect of synchronized NPIs with the hypothetical

epicenter located in Wuhan (medium interconnectivity),

Chengdu (low interconnectivity), and Beijing (high intercon-

nectivity). Interconnectivity was defined as the scaled degree-

centrality score in the weighted network, with nodes as cities

and edges representing population movement between cities.

The effect of synchronized NPIs was measured as the proportion

of infections that were averted compared to the unsynchronized

situation (see Materials and Methods for more details). Model

simulations were performed with different intervention times

(from January 23 to February 12, with an interval of 2 days) and

different spatial coverages (the number of coordinated cities

ranged from 10 to 50, with an interval of 10) from January 16 to

March 31. Parameters from the Hubei model were used for the

initial states of an epicenter and the 16 cities with which it was

most connected. In other regions, it was assumed there were no

infections on January 16. b Relationship between the effect of

synchronized NPIs and the interconnectivity of a hypothetical

epicenter. The y-axis shows the estimated coefficient of the

linear regression between the effect of synchronized NPIs and

the city interconnectivity of the selected epicenter. c Effect of

synchronized NPIs with different intervention times. The color

boxplot represents various spatial coverages of the synchronized

NPIs. The hypothetical epicenter in each simulation is one of 31

capital cities in China

Table 1 Parameter estimations in the Hubei model

Parameter Median (95% confidence intervals)

Latency period (r; day�1) 6.17 (4.35 – 8.78)

Infectious period (c; day�1) 5.08 (4.09 – 6.03)

Basic reproduction number (R0) 1.71 (1.27 – 2.13)

Maximum traceable rate of SARS-CoV-2 infection (x) 0.93 (0.84 – 0.96)

Relative transmission rate of IH compared with IU (j) 1.22 (0.65 – 1.65)

Intercept for the strength of infection isolation (n0) 0.0003 (0.0001 – 0.0006)

Growth coefficient of the strength of infection isolation in Wuhan (nw) 0.25 (0.22 – 0.27)

Growth coefficient of the strength of infection isolation in non-Wuhan cities in Hubei (ne) 0.53 (0.45 – 0.56)
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unrecorded infections were averted when strict infec-

tion-isolation interventions were implemented simul-

taneously (Fig. S7). The enhanced infection isolation

interventions have reduced 76.0% of the infections

and prevented 93.7% of the infections if combined

with the social distancing and travel restriction

measures (Fig. 4).

3.4 Effect of synchronized NPIs at temporal

and spatial scales

A deeper understanding of how synchronized NPIs

affect COVID-19 dynamics in China was gained by

evaluating the effect of combined interventions with

various implementation time and region coverage, and

of various epicenter interconnectivities, based on the

national model (see Materials and Methods for more

details). The results show that the benefits of NPI

synchronization increased as the number of cities

involved increased. With Wuhan as the epicenter

(Fig. 5a, top panel), a comparison of the unsynchro-

nized situation (see Materials and Methods for details)

with the synchronized one (in Wuhan and in the ten

cities with which it is most connected) shows that

synchronized NPIs decreased SARS-CoV-2 infections

by 23.9% (95% CI 15.6 – 31.2%) when the NPIs began

on January 23, and decreased SARS-CoV-2 infections

by 38.0% (95% CI 32.7 – 42.9%) when the number of

regions applying synchronized NPIs reached 50. With

Chengdu (a city with less interconnectivity than

Wuhan) as the epicenter (Fig. 5a, middle panel), a

comparison of the unsynchronized NPIs with syn-

chronized NPIs (in Chengdu and in the 20 and 50 cities

with which it is most connected) gave comparable

results, with SARS-CoV-2 infection decreases of

38.9% and 42.9%, respectively. However, if the

epicenter was located in a region that is highly

connected to other regions, such as Beijing (Fig. 5a,

lower panel), similar performances were achieved

only from the earlier implementation of synchronized

NPIs in greater numbers of cities. Linear regression

analysis revealed that the interconnectivity of an

epicenter was negatively correlated with the effect of

synchronized NPIs (Fig. 5b), and this phenomenon

was more obvious when synchronized NPIs were

applied in fewer cities. In addition, the proportion of

infections averted by the synchronized NPIs decreased

with the delayed implementation time, irrespective of

whether the epicenter was located in the highly

interconnected region, and the effect could not be

compensated by increasing the number of synchro-

nized regions (Fig. 5c).

4 Discussion

We developed a meta-population model that explicitly

incorporates processes that are essential for the

transmission of SARS-CoV-2, and used this model

to quantify key parameters for the transmission of

SARS-CoV-2 and systematically explore the effect of

synchronized NPIs on COVID-19 dynamics in China.

We also investigated how the performance of syn-

chronized NPIs was affected by the interconnectivity

of an epicenter, the implementation time, and the

number of regions that implemented synchronized

NPIs.

The analysis of time-series data from a collection of

related regions provides opportunities to determine the

complex and nonlinear dynamics of a realistic system

[21]. To effectively identify the key epidemiological

parameters in a short time series, a meta-population

model that considered regional heterogeneity in the

strength of NPIs was constructed. This model was

validated using the synthesized datasets, which guar-

anteed the feasibility and validity of its modeling and

inference framework, even in situations where there

was regional heterogeneity in the value of a key

parameter. Although several parameters, such as the

infectious period and latency period, can be predeter-

mined based on current knowledge, we estimated

these using our model and inference framework. The

consistencies between the estimated values and the

results from an epidemiological study [28] further

validate that the structure of our model and algorithm

are valid for parameter estimations.

Based on model estimations, the value of R0 was

found to be 1.71, which is lower than the values in

previous studies [10, 29]. In the present study, we did

not consider the effects of NPIs on the transmission

probability per contact. However, other self-preven-

tion measures, such as wearing a mask, may be

implemented together with social distancing mea-

sures. Thus, the value of R0 may vary according to the

decrease in the transmission probability per contact. It

has also been proposed that asymptomatic patients

play a significant role in the ongoing pandemic

[10, 30, 31], and we found that nearly 7% of infections
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were the ‘silent spreaders.’ This proportion was

smaller compared with the proportion of infections

due to asymptomatic individuals estimated in other

studies [32], which indicated that contact tracing and

testing measures in China were an effective infection

isolation policy that isolated both the symptomatic and

asymptomatic infections. In addition, we found that

the transmission rate for symptomatic patients relative

to that of these silent spreaders was 1.22, which

reveals the importance of identifying and isolating

asymptomatic patients to prevent the onward trans-

mission of SARS-CoV-2.

The movement of infected individuals between

regions and the heterogeneity of transmission dynam-

ics can result in disease persistence for a long time [8].

Thus, it is critical to optimize intervention strategies in

a coordinated manner to best mitigate the COVID-19

pandemic. In the present study, we examined the effect

of the synchronization of NPIs in various regions of

China, where these NPIs were travel restrictions,

social distancing measures, and infection isolation.

Our model simulations revealed that the separate

implementation of social distancing and infection

isolation measures decreased SARS-CoV-2 infections

by 93.2% and 76.0%, respectively, and by 93.7%

when combined together with travel restrictions. In

addition, the strength of NPIs and the manner in which

they are implemented contribute to their efficacy.

Given that pathogens can spread rapidly between

regions during a pandemic, the inter-regional coordi-

nation of control measures is critical [8, 11]. We found

that the synchronized implementation of NPIs in

regions with high interconnectivity affords greater

benefits than the use of non-synchronized NPIs, even

in the late stages of a pandemic (Fig. 5). We also

determined that the interconnectivity of an epicenter,

the start time of implementation of NPIs, and the

number of regions that implement synchronized NPIs

affect the ability of synchronized NPIs to control

COVID-19. These quantitative analyses will be useful

to enable precise control of COVID-19 in regions

where the pandemic is ongoing and there is regional

heterogeneity in SARS-CoV-2 transmission.

Several limitations to this study should be acknowl-

edged. First, the compartmental model used in the

present study does not capture the individual-level

heterogeneity, which may be an important factor in

person-to-person contact-driven transmission [12].

Second, recent work has suggested that both pre-

symptomatic and asymptomatic individuals may con-

tribute considerably to SARS-CoV-2 transmission

[31, 32]. In the present study, we included asymp-

tomatic transmission, but we did not explicitly model

pre-symptomatic transmission. Third, we measured

the effectiveness of synchronized NPIs on COVID-19

dynamics based on simplified assumptions, which will

not apply in real-life scenarios. Future research should

be directed toward a better understanding of COVID-

19 dynamics, and optimal strategies should be

explored for controlling the transmission of SARS-

CoV-2 in real-life settings. Finally, we used the

reduction in human intercity mobility recorded on the

Baidu platform as a proxy for the change in the contact

rate in the SEIqIhIuR model [12]. Thus, whether this

model can be directly used in other locations should be

carefully investigated. Alternatively, linear or nonlin-

ear formulations that use Google mobility data to

represent changes in the contact rate may prove

effective [9]. In addition, given the regional hetero-

geneity in contact patterns and environmental condi-

tions [33, 34], the model parameters should be re-

estimated to facilitate a re-evaluation of the effective-

ness of synchronized NPIs for the control of COVID-

19 [35].
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