Skip to main content
Log in

Bubbles and W-shaped solitons in Kerr media with fractional diffraction

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We demonstrate that, with the help of a Gaussian potential barrier, dark modes in the form of a local depression (“bubbles”) can be supported by the repulsive Kerr nonlinearity in combination with fractional dimension. Similarly, W-shaped modes are supported by a double potential barrier. Families of the modes are constructed in a numerical form, and also by means of the Thomas–Fermi and variational approximations. All these modes are stable, which is predicted by computation of eigenvalues for small perturbations and confirmed by direct numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zakharov, V.E., Manakov, S.V., Novikov, S.P., Pitaevskii, L.P.: Theory of Solitons: Inverse Scattering Transform. Nauka Publishers, Moscow (1980) (English translation: Consultants Bureau, New York (1984))

  2. Ablowitz, M.J., Segur, H.: Solitons and the Inverse Scattering Transform. SIAM, Philadelphia (1981)

    Book  MATH  Google Scholar 

  3. Dauxois, T., Peyrard, M.: Physics of Solitons. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  4. Yang, J.: Nonlinear Waves in Integrable and Nonintegrable Systems. SIAM, Philadelphia (2010)

    Book  MATH  Google Scholar 

  5. Kivshar, Y.S., Malomed, B.A.: Dynamics of solitons in nearly integrable systems. Rev. Mod. Phys. 61, 763–915 (1989)

    Article  Google Scholar 

  6. Malomed, B.A.: Multidimensional solitons: well-established results and novel findings. Eur. Phys. J. Spec. Top. 225, 2507–2532 (2016)

    Article  Google Scholar 

  7. Kartashov, Y.V., Astrakharchik, G.E., Malomed, B.A., Torner, L.: Frontiers in multidimensional self-trapping of nonlinear fields and matter. Nat. Rev. Phys. 1, 185–197 (2019)

    Article  Google Scholar 

  8. Abdullaev, F., Darmanyan, S., Khabibullaev, P.: Optical Solitons. Springer, Berlin (1993)

    Book  Google Scholar 

  9. Hasegawa, A., Kodama, Y.: Solitons in Optical Communications. Clarendon Press, Oxford (1995)

    MATH  Google Scholar 

  10. Kivshar, Y.S., Luther-Davies, B.: Dark optical solitons: physics and applications. Phys. Rep. 298, 81–197 (1998)

    Article  Google Scholar 

  11. Kivshar, Y.S., Agrawal, G.P.: Optical Solitons: From Fibers to Photonic Crystals. Academic Press, San Diego (2003)

    Google Scholar 

  12. Malomed, B.A., Mihalache, D., Wise, F., Torner, L.: Spatiotemporal optical solitons. J. Opt. B 7, R53–R72 (2005)

    Article  Google Scholar 

  13. Maimistov, A.I.: Solitons in nonlinear optics. Quantum Electron. 40, 756–781 (2010)

    Article  Google Scholar 

  14. Mihalache, D.: Formation and stability of light bullets: recent theoretical studies. J. Optoelectron. Adv. Mater. 12, 12–18 (2010)

    Google Scholar 

  15. Chen, Z., Segev, M., Christodoulides, D.N.: Optical spatial solitons: historical overview and recent advances. Rep. Prog. Phys. 75, 086401 (2012)

    Article  Google Scholar 

  16. Malomed, B.A., Mihalache, D.: Nonlinear waves in optical and matter-wave media: a topical survey of recent theoretical and experimental results. Rom. J. Phys. 64, 106 (2019)

    Google Scholar 

  17. Strecker, K.E., Partridge, G.B., Truscott, A.G., Hulet, R.G.: Bright matter wave solitons in Bose–Einstein condensates. New J. Phys. 5, 73.1-73.8 (2003)

    Article  Google Scholar 

  18. Abdullaev, F.K., Gammal, A.G., Kamchatnov, A.M., Tomio, L.: Dynamics of bright matter wave solitons in a Bose–Einstein condensate. Int. J. Mod. Phys. B 19, 3415–3473 (2005)

    Article  MATH  Google Scholar 

  19. Bagnato, V.S., Frantzeskakis, D.J., Kevrekidis, P.G., Malomed, B.A., Mihalache, D.: Bose–Einstein condensation: twenty years after. Rom. Rep. Phys. 67, 5–50 (2015)

    Google Scholar 

  20. Salasnich, L.: Bright solitons in ultracold atoms. Opt. Quant. Electron. 49, 409 (2017)

    Article  Google Scholar 

  21. Harko, T., Mak, M.K., Leung, C.S.: Vortex solutions in atomic Bose–Einstein condensates via the Adomian decomposition method. Rom. Rep. Phys. 72, 116 (2020)

    Google Scholar 

  22. Passos, F.S., Dias, W.S.: From super-Bloch oscillations to sudden self-trapping in Bose–Einstein condensates with inter-atomic interactions. Nonlinear Dyn. 102, 329–337 (2020)

    Article  Google Scholar 

  23. Frantzeskakis, D.J.: Dark solitons in atomic Bose–Einstein condensates: from theory to experiments. J. Phys. A 43, 213001 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Christodoulides, D.N., Carvalho, M.I.: Bright, dark, and gray spatial soliton states in photorefractive media. J. Opt. Soc. Am. B 12, 1628–1633 (1995)

    Article  Google Scholar 

  25. Kartashov, Y.V., Torner, L.: Gray spatial solitons in nonlocal nonlinear media. Opt. Lett. 32, 946–948 (2007)

    Article  Google Scholar 

  26. Chabchoub, A., Kimmoun, O., Branger, H., Kharif, C., Hoffmann, N., Onorato, M., Akhmediev, N.: Gray solitons on the surface of water. Phys. Rev. E 89, 011002(R) (2014)

    Article  Google Scholar 

  27. Gamayun, O., Bezvershenko, Yu.V., Cheianov, V.: Fate of a gray soliton in a quenched Bose–Einstein condensate. Phys. Rev. A 91, 031605(R) (2015)

    Article  Google Scholar 

  28. Efremidis, N.K., Hudock, J., Christodoulides, D.N., Fleischer, J.W., Cohen, O., Segev, M.: Two-dimensional optical lattice solitons. Phys. Rev. Lett. 91, 213906 (2003)

    Article  Google Scholar 

  29. Neshev, D., Ostrovskaya, E., Kivshar, Y., Krolikowski, W.: Spatial solitons in optically induced gratings. Opt. Lett. 28, 710–712 (2003)

    Article  Google Scholar 

  30. Fleischer, J.W., Segev, M., Efremidis, N.K., Christodoulides, D.N.: Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices. Nature 422, 147–150 (2003)

    Article  Google Scholar 

  31. Kartashov, Y.V., Egorov, A.A., Torner, L., Christodoulides, D.N.: Stable soliton complexes in two-dimensional photonic lattices. Opt. Lett. 29, 1918–1920 (2004)

    Article  Google Scholar 

  32. Mihalache, D., Mazilu, D., Lederer, F., Kivshar, Y.S.: Collisions between discrete surface spatiotemporal solitons in nonlinear waveguide arrays. Phys. Rev. A 79, 013811 (2009)

    Article  Google Scholar 

  33. Brazhnyi, V.A., Konotop, V.V.: Theory of nonlinear matter waves in optical lattices. Mod. Phys. Lett. B 18, 627–651 (2004)

    Article  MATH  Google Scholar 

  34. Mihalache, D., Mazilu, D., Lederer, F., Kartashov, Y.V., Crasovan, L.C., Torner, L.: Stable three-dimensional spatiotemporal solitons in a two-dimensional photonic lattice. Phys. Rev. E 70, 055603 (2004)

    Article  Google Scholar 

  35. Morsch, O., Oberthaler, M.: Dynamics of Bose–Einstein condensates in optical lattices. Rev. Mod. Phys. 78, 179–215 (2006)

    Article  Google Scholar 

  36. Kartashov, Y.V., Vysloukh, V.A., Torner, L.: Soliton shape and mobility control in optical lattices. Prog. Opt. 52, 63–148 (2009)

    Article  Google Scholar 

  37. Kartashov, Y.V., Vysloukh, V.A., Torner, L.: Solitons in complex optical lattices. Eur. Phys. J. Spec. Top. 173, 87–105 (2009)

    Article  Google Scholar 

  38. Zeng, L., Zeng, J.: Gap-type dark localized modes in a Bose–Einstein condensate with optical lattices. Adv. Photon. 1, 046004 (2019)

    Article  Google Scholar 

  39. Zhang, Y., Wu, B.: Composition relation between gap solitons and bloch waves in nonlinear periodic systems. Phys. Rev. Lett. 102, 093905 (2009)

    Article  Google Scholar 

  40. Rose, P., Richter, T., Terhalle, B., Imbrock, J., Kaiser, F., Denz, C.: Discrete and dipole-mode gap solitons in higher-order nonlinear photonic lattices. Appl. Phys. B 89, 521–526 (2007)

    Article  Google Scholar 

  41. Malomed, B.A., Kevrekidis, P.G.: Discrete vortex solitons. Phys. Rev. E 64, 026601 (2001)

    Article  Google Scholar 

  42. Baizakov, B.B., Malomed, B.A., Salerno, M.: Multidimensional solitons in periodic potentials. Europhys. Lett. 63, 642–648 (2003)

    Article  MATH  Google Scholar 

  43. Yang, J., Musslimani, Z.H.: Fundamental and vortex solitons in a two-dimensional optical lattice. Opt. Lett. 28, 2094–2096 (2003)

    Article  Google Scholar 

  44. Baizakov, B.B., Malomed, B.A., Salerno, M.: Multidimensional solitons in a low-dimensional periodic potential. Phys. Rev. A 70, 053613 (2004)

    Article  Google Scholar 

  45. Yang, J.: Stability of vortex solitons in a photorefractive optical lattice. New J. Phys. 6, 47 (2004)

    Article  Google Scholar 

  46. Kartashov, Y.V., Malomed, B.A., Torner, L.: Solitons in nonlinear lattices. Rev. Mod. Phys. 83, 247–306 (2011)

    Article  Google Scholar 

  47. Kartashov, Y.V., Vysloukh, V.A., Torner, L.: Propagation of solitons in thermal media with periodic nonlinearity. Opt. Lett. 33, 1774–1776 (2008)

    Article  Google Scholar 

  48. Kartashov, Y.V., Malomed, B.A., Vysloukh, V.A., Torner, L.: Two-dimensional solitons in nonlinear lattices. Opt. Lett. 34, 770–772 (2009)

    Article  Google Scholar 

  49. Abdullaev, F.K., Kartashov, Y.V., Konotop, V.V., Zezyulin, D.A.: Solitons in \(\cal{PT}\)-symmetric nonlinear lattices. Phys. Rev. A 83, 041805R (2011)

    Article  Google Scholar 

  50. Borovkova, O.V., Kartashov, Y.V., Torner, L., Malomed, B.A.: Bright solitons from defocusing nonlinearities. Phys. Rev. E 84, 035602(R) (2011)

    Article  Google Scholar 

  51. Borovkova, O.V., Kartashov, Y.V., Malomed, B.A., Torner, L.: Algebraic bright and vortex solitons in defocusing media. Opt. Lett. 36, 3088–3090 (2011)

    Article  Google Scholar 

  52. Dror, N., Malomed, B.A.: Solitons and vortices in nonlinear potential wells. J. Opt. 16, 014003 (2016)

    Article  Google Scholar 

  53. Lobanov, V.E., Borovkova, O.V., Kartashov, Y.V., Malomed, B.A., Torner, L.: Stable bright and vortex solitons in photonic crystal fibers with inhomogeneous defocusing nonlinearity. Opt. Lett. 37, 1799–1801 (2012)

    Article  Google Scholar 

  54. Tian, Q., Wu, L., Zhang, Y., Zhang, J.-F.: Vortex solitons in defocusing media with spatially inhomogeneous nonlinearity. Phys. Rev. E 85, 056603 (2012)

    Article  Google Scholar 

  55. Wu, Y., Xie, Q., Zhong, H., Wen, L., Hai, W.: Algebraic bright and vortex solitons in self-defocusing media with spatially inhomogeneous nonlinearity. Phys. Rev. A 87, 055801 (2013)

    Article  Google Scholar 

  56. Driben, R., Kartashov, Y.V., Malomed, B.A., Meier, T., Torner, L.: Three-dimensional hybrid vortex solitons. New J. Phys. 16, 063035 (2014)

    Article  MathSciNet  Google Scholar 

  57. Driben, R., Kartashov, Y.V., Malomed, B.A., Meier, T., Torner, L.: Soliton gyroscopes in media with spatially growing repulsive nonlinearity. Phys. Rev. Lett. 112, 020404 (2014)

    Article  Google Scholar 

  58. Kartashov, Y.V., Malomed, B.A., Shnir, Y., Torner, L.: Twisted toroidal vortex solitons in inhomogeneous media with repulsive nonlinearity. Phys. Rev. Lett. 113, 264101 (2014)

    Article  Google Scholar 

  59. Kartashov, Y.V., Malomed, B.A., Vysloukh, V.A., Belić, M.R., Torner, L.: Rotating vortex clusters in media with inhomogeneous defocusing nonlinearity. Opt. Lett. 42, 446–449 (2017)

    Article  Google Scholar 

  60. Zeng, L., Zeng, J.: Modulated solitons, soliton and vortex clusters in purely nonlinear defocusing media. Ann. Phys. 421, 168284 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  61. Zeng, L., Zeng, J., Kartashov, Y.V., Malomed, B.A.: Purely Kerr nonlinear model admitting flat-top solitons. Opt. Lett. 44, 1206–1209 (2019)

    Article  Google Scholar 

  62. Zeng, L., Zeng, J.: Gaussian-like and flat-top solitons of atoms with spatially modulated repulsive interactions. J. Opt. Soc. Am. B 36, 2278–2284 (2019)

    Article  Google Scholar 

  63. Barashenkov, I.V., Panova, E.Y.: Stability and evolution of the quiescent and traveling solitonic bubbles. Physica D 69, 114–134 (1993)

    Article  MATH  Google Scholar 

  64. Becker, C., Sengstock, K., Schmelcher, P., Kevrekidis, P.G., Carretero-González, R.: Inelastic collisions of solitary waves in anisotropic Bose–Einstein condensates: sling-shot events and expanding collision bubbles. New J. Phys. 15, 113028 (2013)

    Article  Google Scholar 

  65. Varga, R., Paal, G.: Numerical investigation of the strength of collapse of a harmonically excited bubble. Chaos Solitons Fractals 76, 56–71 (2015)

    Article  MathSciNet  Google Scholar 

  66. Zhao, L.-C., Li, S.-C., Ling, L.: Rational W-shaped solitons on a continuous-wave background in the Sasa–Satsuma equation. Phys. Rev. E 89, 023210 (2014)

    Article  Google Scholar 

  67. Zhao, L.-C., Li, S.-C., Ling, L.: W-shaped solitons generated from a weak modulation in the Sasa–Satsuma equation. Phys. Rev. E 93(3), 032215 (2016)

    Article  MathSciNet  Google Scholar 

  68. Wang, X., Liu, C., Wang, L.: Rogue waves and W-shaped solitons in the multiple self-induced transparency system. Chaos 27, 093106 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  69. Triki, H., Porsezian, K., Choudhuri, A., Dinda, P.T.: W-shaped, bright and kink solitons in the quadratic-cubic nonlinear Schrödinger equation with time and space modulated nonlinearities and potentials. J. Mod. Opt. 63, 1368–1376 (2017)

    Article  Google Scholar 

  70. Bendahmane, I., Triki, H., Biswas, A., Alshomrani, A.S., Zhou, Q., Moshokoa, S.P., Belić, M.: Bright, dark and W-shaped solitons with extended nonlinear Schrödinger equation for odd and even higher-order terms. Superlattice Microstruct. 114, 53–61 (2018)

    Article  Google Scholar 

  71. Triki, H., Bensalem, C., Biswas, A., Zhou, Q., Ekici, M., Moshokoa, S.P., Belić, M.: W-shaped and bright optical solitons in negative indexed materials. Chaos Solitons Fractals 123, 101–107 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  72. Triki, H., Zhou, Q., Liu, W.: W-shaped solitons in inhomogeneous cigar-shaped Bose–Einstein condensates with repulsive interatomic interactions. Laser Phys. 29, 055401 (2019)

    Article  Google Scholar 

  73. Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268, 298–305 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  74. Laskin, N.: Fractional quantum mechanics. Phys. Rev. E 62, 3135–3145 (2000)

    Article  MATH  Google Scholar 

  75. Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66, 056108 (2002)

    Article  MathSciNet  Google Scholar 

  76. Laskin, N.: Fractional Quantum Mechanics. World Scientific, Singapore (2018)

    Book  MATH  Google Scholar 

  77. Zhang, Y.Q., Liu, X., Belić, M.R., Zhong, W.P., Zhang, Y.P., Xiao, M.: Propagation dynamics of a light beam in a fractional Schrödinger equation. Phys. Rev. Lett. 115, 180403 (2015)

    Article  Google Scholar 

  78. Guo, B., Li, Q.: Existence of the global smooth solution to a fractional nonlinear Schrödinger system in atomic Bose–Einstein condensates. J. Appl. Anal. Comput. 5, 793–808 (2015)

    MathSciNet  MATH  Google Scholar 

  79. Stickler, B.A.: Potential condensed-matter realization of space-fractional quantum mechanics: the one-dimensional Lévy crystal. Phys. Rev. E 88, 012120 (2013)

    Article  Google Scholar 

  80. Pinsker, F., Bao, W., Zhang, Y., Ohadi, H., Dreismann, A., Baumberg, J.J.: Fractional quantum mechanics in polariton condensates with velocity-dependent mass. Phys. Rev. B 92, 195310 (2015)

    Article  Google Scholar 

  81. Longhi, S.: Fractional Schrödinger equation in optics. Opt. Lett. 40, 1117–1120 (2015)

    Article  Google Scholar 

  82. Zhong, W.P., Belić, M.R., Malomed, B.A., Zhang, Y., Huang, T.: Spatiotemporal accessible solitons in fractional dimensions. Phys. Rev. E 94, 012216 (2016)

    Article  Google Scholar 

  83. Zhong, W.P., Belić, M.R., Zhang, Y.: Accessible solitons of fractional dimension. Ann. Phys. 368, 110–116 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  84. Zeng, L., Zeng, J.: One-dimensional solitons in fractional Schrödinger equation with a spatially periodical modulated nonlinearity: nonlinear lattice. Opt. Lett. 44, 2661–2664 (2019)

    Article  Google Scholar 

  85. Wang, Q., Deng, Z.Z.: Elliptic solitons in (1+2)-dimensional anisotropic nonlocal nonlinear fractional Schrödinger equation. IEEE Photon. J. 11, 1–8 (2019)

    Google Scholar 

  86. Li, P., Li, J., Han, B., Ma, H., Mihalache, D.: \(\cal{PT}\)-symmetric optical modes and spontaneous symmetry breaking in the space-fractional Schrödinger equation. Rom. Rep. Phys. 71, 106 (2019)

    Google Scholar 

  87. Li, P., Dai, C.: Double loops and Pitchfork symmetry breaking bifurcations of optical solitons in nonlinear fractional Schrödinger equation with competing cubic-quintic nonlinearities. Ann. Phys. Berlin 532, 2000048 (2020)

    Article  Google Scholar 

  88. Li, P., Malomed, B.A., Mihalache, D.: Symmetry breaking of spatial Kerr solitons in fractional dimension. Chaos Solitons Fractals 132, 109602 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  89. Chen, J., Zeng, J.: Spontaneous symmetry breaking in purely nonlinear fractional systems. Chaos 30, 063131 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  90. Zeng, L., Zeng, J.: One-dimensional gap solitons in quintic and cubic-quintic fractional nonlinear Schrödinger equations with a periodically modulated linear potential. Nonlinear Dyn. 98, 985–995 (2019)

    Article  Google Scholar 

  91. Li, P., Malomed, B.A., Mihalache, D.: Vortex solitons in fractional nonlinear Schrödinger equation with the cubic-quintic nonlinearity. Chaos Solitons Fractals 137, 109783 (2020)

    Article  MathSciNet  Google Scholar 

  92. Wang, Q., Liang, G.: Vortex and cluster solitons in nonlocal nonlinear fractional Schrödinger equation. J. Opt. 22, 055501 (2020)

    Article  Google Scholar 

  93. Qiu, Y., Malomed, B.A., Mihalache, D., Zhu, X., Peng, X., He, Y.: Stabilization of single- and multi-peak solitons in the fractional nonlinear Schrödinger equation with a trapping potential. Chaos Solitons Fractals 140, 110222 (2020)

    Article  MathSciNet  Google Scholar 

  94. Zeng, L., Zeng, J.: Preventing critical collapse of higher-order solitons by tailoring unconventional optical diffraction and nonlinearities. Commun. Phys. 3, 26 (2020)

    Article  Google Scholar 

  95. Li, P., Malomed, B.A., Mihalache, D.: Metastable soliton necklaces supported by fractional diffraction and competing nonlinearities. Opt. Express 28, 34472–33488 (2020)

    Article  Google Scholar 

  96. Zeng, L., Zeng, J.: Fractional quantum couplers. Chaos Solitons Fractals 140, 110271 (2020)

    Article  MathSciNet  Google Scholar 

  97. Zeng, L., Shi, J., Lu, X., Cai, Y., Zhu, Q., Chen, H., Long, H., Li, J.: Stable and oscillating solitons of \(\cal{PT}\)-symmetric couplers with gain and loss in fractional dimension. Nonlinear Dyn. 103, 1831–1840 (2021)

    Article  Google Scholar 

  98. Molina, M.I.: The fractional discrete nonlinear Schrödinger equation. Phys. Lett. A 384, 126180 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  99. Zeng, L., Mihalache, D., Malomed, B.A., Lu, X., Cai, Y., Zhu, Q., Li, J.: Families of fundamental and multipole solitons in a cubic-quintic nonlinear lattice in fractional dimension. Chaos Solitons Fractals 144, 110589 (2021)

    Article  MathSciNet  Google Scholar 

  100. Qiu, Y., Malomed, B.A., Mihalache, D., Zhu, X., Zhang, L., He, Y.: Soliton dynamics in a fractional complex Ginzburg–Landau model. Chaos Solitons Fractals 131, 109471 (2020)

    Article  MathSciNet  Google Scholar 

  101. Kasprzak, H.: Differentiation of a noninteger order and its optical implementation. Appl. Opt. 21, 3287–3291 (1982)

    Article  Google Scholar 

  102. Davis, J.A., Smith, D.A., McNamara, D.E., Cottrell, D.M., Campos, J.: Fractional derivatives-analysis and experimental implementation. Appl. Opt. 40, 5943–5948 (2020)

    Article  Google Scholar 

  103. Pitaevskii, L.P., Stringari, S.: Bose–Einstein Condensation. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

Download references

Funding

National Major Instruments and Equipment Development Project of National Natural Science Foundation of China (No. 61827815); National Natural Science Foundation of China (No. 62075138); Science and Technology Project of Shenzhen (JCYJ20190808121817100, JCYJ20190808164007485, JSGG20191231144201722); Israel Science Foundation (No. 1286/17).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Boris A. Malomed or Jingzhen Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, L., Malomed, B.A., Mihalache, D. et al. Bubbles and W-shaped solitons in Kerr media with fractional diffraction. Nonlinear Dyn 104, 4253–4264 (2021). https://doi.org/10.1007/s11071-021-06459-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06459-3

Keywords

Navigation