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Abstract We examine applicability of normal forms
of non-holonomic robotic systems to the problem of
motion planning. A case study is analyzed of a planar,
free-floating space robot consisting of a mobile base
equipped with an on-board manipulator. It is assumed
that during the robot’s motion its conserved angular
momentum is zero. The motion planning problem is
first solved at velocity level, and then torques at the
joints are found as a solution of an inverse dynam-
ics problem. A novelty of this paper lies in using the
chained normal form of the robot’s dynamics and cor-
responding feedback transformations for motion plan-
ning at the velocity level. Two basic cases are stud-
ied, depending on the position of mounting point of
the on-board manipulator. Comprehensive computa-
tional results are presented, and compared with the
results provided by the Endogenous Configuration
Space Approach. Advantages and limitations of apply-
ing normal forms for robot motion planning are dis-
cussed.
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1 Introduction

The idea of establishing equivalences between diverse
geometric objects, specifically differential systems,
inspired by a series of seminal papers by Cartan [5],
has been known in mathematics for quite a long time.
An inherent aspect of these equivalences has been the
concept of normal forms, to mention only those named
after Engel et al. [5], or Pfaff and Darboux [3]. Equiv-
alence between tensor fields exploited within the Lie
Transform Method results in transparent proofs of the
Morse Theorem or the Poincaré Lemma, extendable to
the infinite dimensions [1]. A correspondence between
Pfaffian differential systems and control systems (vec-
tor field distributions) manifests itself in the introduc-
tion of feedback equivalence of control systems, and
corresponding normal forms [6]. Perhaps themost clas-
sical result on normal forms of linear control systems
under feedback is that of Brunovsky and his celebrated
canonical forms [2]. Recently, a counterpart of the
Brunovsky result for mechanical control systems and
mechanical feedback equivalence has been discovered
[11]. It should be recognized that the whole paradigm
of linearization of nonlinear control systems by either
static or dynamic feedback, along with the concept of
differentially flat systems, rely on establishing a feed-
back equivalence of a nonlinear system to a Brunovsky
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canonical form. Another example of a canonical form
of control systems is the chained form system [10].

The significance of normal forms in control theory
stems from two sources. First, the normal forms facili-
tate to understand the structure andbehavior of a control
system. This type of knowledge can be extracted from
the Brunovsky canonical form that tells us that a sys-
tem behaves just like a number of independent, parallel
chains of integrators. A similar role is played by normal
forms of space robots discovered recently in [14]; addi-
tionally these last normal forms have been exploited in
order to characterize a singular behavior of the robot.
Second, andmore important, is the applicability of nor-
mal forms for the design of control algorithms. Assum-
ing that both the normal formand the feedback transfor-
mation producing the normal form are known explic-
itly, we are in a position to transform by feedback a
control problem addressed in an original system to the
normal form, solve the problem in the normal form,
and then transfer the solution by the inverse feedback
back to the original system. This latter avenue will be
followed in this paper. In what follows, the application
of normal forms to control will be referred to as the
Normal Form Approach (NFA).

The objective of this paper is to examine the applica-
bility of the NFA tomotion planning of non-holonomic
robotic systems.As a sort of the benchmark problemwe
have chosen themotion planning of free–floating space
robots subject to the conservation of angular momen-
tum. Primarily, we use this problem as a means for
extending the knowledge on the NFA. For our case
study we have chosen a space robot designed in the
SpaceResearchCentre (SRC)of thePolishAcademyof
Science as a laboratory platform for experimental ver-
ification of control algorithms for servicing and debris
cleaning operations in Space [16]. The design of con-
trol algorithms for this robot presents a theoretical chal-
lenge and likely will find a practical implementation.
Specifically, we study the dynamics of the SRC space
manipulator composed of a floating base (a spacecraft)
and a 2DOF planar on-board manipulator with revo-
lute joints. The robot is driven exclusively by torques
exerted at these joints. It has been assumed that the
mounting point of the manipulator on the base can be
arbitrary, not necessarily coinciding with its center of
mass, comparewith [12]. For the SRCmanipulator, in a
conference paper [24]we have established the feedback
equivalence to the chained form system, and computed
explicitly the relevant feedback transformations.

In this paper the motion planning problem of the
space robot has been decomposed into the planning
of joint velocities of the on-board manipulator (veloc-
ity level) and the planning of torques exerted at the
joints (torque level). Our main contribution consists in
using the normal form to designing a motion planning
algorithm at the velocity level. Because the feedback
transformations to the normal form are known explic-
itly, the motion planning at velocity level provides a
closed form solution. Given the joint velocities, the
torque level motion planning has been reduced to the
standard inverse dynamics problem for the on-board
manipulator. The efficiency of the NFA tomotion plan-
ning has been demonstrated by numeric computations,
whose results have been compared with a solution of
the motion planning problem provided by the Endoge-
nous Configuration Space Approach (ECSA), an iter-
ative method of motion planning for non-holonomic
robotic systems, based on the concept of robot’s Jaco-
bian [21]. From the results of computations one can
learn that in space applications the NFA distinguishes
by its accuracy and efficiency, however, may encounter
difficulties concerned with computability, complexity,
and local existence of the feedback transformations. It
turns out that some of these difficulties can be allevi-
ated by a proper choice of the mounting point of the
on-board manipulator on the spacecraft.

In order to put the content of this paper in a broader
context, it should be recalled that (the kinematics or
dynamics of) a non-holonomic robotic system can be
represented by means of a driftless control system or
a control affine system. The motion planning for such
systems constitutes a preliminary step of synthesis of a
control algorithm, that amounts to finding a control able
to drive the system from its initial to a terminal state, in
a prescribed time. Given this control, we can also com-
pute a trajectory joining these two states that serves as
a reference trajectory. The motion planning is a typical
control problem amenable to a variety of existingmeth-
ods of control theory; the monograph [8] may serve as
the “bible” of this topic. Usually, these methods resort
to intense iterative numeric computations; the ECSA is
such an example. In contrast to iterative methods, the
NFA offers a closed form motion planning algorithm.
The second step of synthesis of a control algorithm,
following the motion planning, consists in the tracking
control of the reference trajectory. To this objective,
in [22] we have used a predicitive control algorithm
to track a trajectory of a wheeled mobile robot, that
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has been planned using the ECSA. In [17] a model
predictive control algorithm has been applied to track-
ing control a free-floating space robot. Desirable per-
formance qualities characterize the finite-time tracking
algorithm for mobile manipulators, based on the termi-
nal sliding mode manifold technique, described in [4].
As is well known, both the predictive control as well
as the sliding mode control exhibit some robustness
against model uncertainty and external disturbance. It
is worth recalling that the trajectory tracking problem
in chained form systems, like our normal form, can
be solved by means of the backstepping technique [7].
Another paradigm of trajectory tracking control is the
practical stability. In [9] a practical asymptotic stability
of a trajectory tracking algorithm has been achieved by
exploiting the technique of transverse functions. Three
future perspectives of trajectory tracking control have
been opened recently by a combination of finite-time
and practical stability. A prescribed performance of the
tracking error can be achieved by joint neural network
and backstepping techniques [18]. A prescribed perfor-
mance and disturbance estimation can be realized by
an event-triggered, fuzzy-adaptive control fostered in
[20]. Finally, a designof a fuzzy-adaptive, fault-tolerant
control algorithm, able to cope with faults of actuators,
has been presented in [19].

The composition of this paper is the following. We
begin with Sect. 2 focused on the definition of feed-
back equivalence. Section 3 introduces the SRC space
manipulator, its Lagrangian, and its control system rep-
resentation.A fundamental theoremon thenormal form
and the related feedback transformations are provided
in Sect. 4. In Sect. 5 results of numerical computa-
tions have been collected, culminating in an analysis
of advantages and limitations of the NFA presented in
Sect. 6. Section 7 concludes the paper. For complete-
ness, inAppendixwe have included a proof of Theorem
1.

2 Normal forms

In this sectionwe recall the concepts of feedback equiv-
alence and normal forms of control systems, as well
as design a normal form-based motion planning algo-
rithm. Let two control-affine systems

Σ : q̇ = f (q) + G(q)u = f (q) +
m∑

i=1

gi (q)ui ,

Σ̃ : ˙̃q = f̃ (q̃) + G̃(q̃)ũ = f̃ (q̃) +
m∑

i=1

g̃i (q̃)ũi , (1)

be given, where q, q̃ ∈ R
n and u, ũ ∈ R

m , and all
vector fields defining these systems are smooth (C∞).
Systems σ and σ̃ are referred to as feedback equivalent
if there exist a smooth diffeomorphism q̃ = ϕ(q) and a
control affine feedback u = α(q) + β(q)ũ defined by
a smooth function α(q) and a smooth invertible matrix
β(q), such that

∂ϕ(q)

∂q
( f (q) + G(q)α(q)) = f̃ (ϕ(q)),

∂ϕ(q)

∂q
G(q)β(q) = G̃(ϕ(q)). (2)

When the feedback transformations, specifically dif-
feomorphism ϕ(q), are defined only locally, the feed-
back equivalence is called local.A control affine system
Σ̃ = Σ0, of simple form, that is feedback equivalent
to a given system bears the name of normal form of
this system. The “simplicity” of the normal form can
hardly be defined mathematically, however, usually it
can be decided credibly after inspection of the system
equations. Obviously, from the control point of view a
crucial requirement is availability of control algorithms
for the system in the normal form.

The role of the NFA in motion planning can be
summarized in the following way. Suppose that we
have established a normal form Σ0 of a control
system Σ , along with the feedback transformations
(ϕ(q), α(q), β(q)). Let a motion planning problem be
addressed in system Σ , consisting of finding a control
u(t) such that the system’s trajectory at a certain time
T > 0 reaches a prescribed point qd in the state space.
Knowing the state diffeomorphism ϕ we compute q̃d =
ϕ(qd), and re-formulate the problem in the normal form
system: find a control ũ(t) such that q̃(T ) = q̃d. Next,
using a motion planning algorithm available for the
normal form, we compute a control ũd(t) and the cor-
responding trajectory q̃d(t) defining a solution of the
problem. Finally, using the inverse feedback transfor-
mations, we find the trajectory qd(t) = ϕ−1(q̃d(t)) and
the control ud(t) = α(qd(t)) + β(qd(t))ũd(t) solving
the motion planning problem in the original system.
If the feedback transformations and their inverse are
given explicitly, in the closed form, it may be assumed
that the computation of control can be accomplished
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Fig. 1 Top: motion planning problem, bottom: motion planning
using NFA

Fig. 2 SRC space manipulator: view

with arbitrary accuracy and efficiency. For the Reader’s
convenience, main features of the NFA have been dis-
played schematically in Fig. 1 (MPA=motion planning
algorithm, F = feedback).

3 Space robot

As an illustration of application of the NFA we shall
solve a motion planning problem for the space robot
shown in Fig. 2, called the SRC space manipulator.

TheSRCspacemanipulator has been designed in the
Space Research Center of the Polish Academy of Sci-
ence as a prototype device for experiments with inter-
ception of various objects in Space, including removing
space debris. This is a free-floating robot, composed of
a planar base and a planar, 2DOF on-board manipula-
tor with revolute joints. Technical characteristics of the
robot can be found in [16]. A schematic picture of the
SRC space manipulator is shown in Fig. 3.

Various aspects of mathematical modeling and con-
trol of theSRCspacemanipulator have been considered
in our previous publications [14,23], under assumption
that the on-board manipulator is attached to the base at
its center of mass (i.e. in Fig. 3 both a, b = 0.). In

Fig. 3 SRC space manipulator: schematic

particular, in [23] two normal forms of the SRC space
manipulator were discovered, that in [14] have been
extended to robots carrying on board more than 2 DOF
manipulators. In a recent paper [24] a normal form (the
chained form system) of the SRC space manipulator
has been established for the case of arbitrary a and b.
This last result will be taken as a guideline in this paper.

3.1 Lagrangian

In coordinates q = (x̄, ȳ, φ, θ1, θ2) ∈ R
2 × T

3 denot-
ing, respectively, the position of the center of mass of
the robot and the orientation of its base with respect
to the external frame (X,Y ), and joint positions of the
on-boardmanipulator, theLagrangian of theSRCspace
manipulator can be expressed, see [24], as

L(q, q̇) = 1

2
mc( ˙̄x2 + ˙̄y2)

+ 1

2
IP φ̇2 + 1

2
A(φ̇ + θ̇1)

2 + 1

2
B(φ̇ + θ̇12)

2

+ C(φ̇ + θ̇1)(φ̇ + θ̇12)c2

+ Dφ̇(φ̇ + θ̇1)(ac1 + bs1)
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Fig. 4 Motion planning: a = b = 0, feedback (11)

+ Eφ̇(φ̇ + θ̇12)(ac12 + bs12). (3)

The notations used in (3) have the following meaning:
mi , li , di , i = 1, 2, denote the mass, the length and the
position of the center of mass of the i th link, a, b are
coordinates of the mounting point with respect to the
body frame (Xb,Yb), θ12 = θ1 + θ2, and si , ci , denote,
respectively, sin(θi ) and cos(θi ). Also, we define

mc = M + m1 + m2,

A = m1m2(l1 − d1)2 + M(m1d21 + m2l21)

mc
,

B = (M + m1)m2d22
mc

,

C = m1m2(l1 − d1)d2 + Mm2l1d2
mc

,

D = M(m1d1 + m2l1)

mc
,

E = Mm2d2
mc

,

IP = I + M(m1 + m2)(a2 + b2)

mc
,

where symbols M and I refer to the mass and the
moment of inertia of the base. Numerical values of
parameters of the SRC space manipulator will be spec-
ified in the section devoted to computations.

Because the robot is free-floating, the linear and
angular momenta are conserved during its motion,
resulting in the following equations of motion

mc ˙̄x = p1, mc ˙̄y = p2 (4)

F φ̇ + Gθ̇1 + H θ̇2 = p (5)
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Fig. 5 Motion planning: a = b = 0, feedback (12)

d

dt

∂L

∂θ̇i
− ∂L

∂θi
= τi , i = 1, 2. (6)

Constants p1, p2 and p in Eqs. (4) and (5) represent
the conserved linear and angular momenta. Equation
(6) refers to the dynamics of the on-board manipula-
tor whose joints are actuated by torques τ1 and τ2. It
is clearly seen from (4) that the center of mass of the
robot moves uniformly along a straight line, in a way
completely independent of the motions described by
the remaining two equations. For this reason, we shall
focus on Eq. (5), and solve the motion planning prob-
lem assuming joint velocities as controls. Eventually,
the actuating torques will be determined from equation
(6).

3.2 Control system representation

For p = 0 (e.g. when at the initial time instant the
base and the joints do not move), condition (5) of the
angular momentum conservation results in a driftless
control system

q̇ = g1(q)u1 + g2(q)u2, (7)

where q = (φ, θ1, θ2) ∈ T
3, defined by a pair of con-

trol vector fields g1(q) = (−G
F , 1, 0)� and g2(q) =

(− H
F , 0, 1)�. These vector fields are determined by

three functions

F(θ1, θ2) = IP + A + B + 2Cc2 + 2D(ac1 + bs1)

+ 2E (ac12 + bs12),

G(θ1, θ2) = A + B + 2Cc2 + D(ac1 + bs1)
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Fig. 6 Motion planning: a = b = 0.1, feedback (14)

+ E (ac12 + bs12),

H(θ1, θ2) = B + Cc2 + E(ac12 + bs12) (8)

computed in [24]. In the same reference it has been
shown that if the function

σ(q) = (BD − CE)(−as1 + bc1)

+ (CD − AE)(−as12 + bc12)

+ (DE(a2 + b2) − CIP )s2 (9)

is nonzero, system (7) is controllable.

4 Chained form system

In reference [24] we have established that the driftless
system (7) is feedback equivalent to the chained form
system (a normal form)

Σ0 : ż1 = v1, ż2 = v2, ż3 = z2v1. (10)

This is elucidated by the following

Theorem 1 1. If a = b = 0 then system (7) is feed-
back equivalent to the chained form system (10) on
condition that sin θ2 �= 0. The feedback transfor-
mation establishing this equivalence has either the
form

z1 = φ + θ1, z2 = −2Cc2,

z3 = (I + A + B)φ + (A + B)θ1 + Bθ2 + Cs2,

v1 = I

F
u1 − H

F
u2, v2 = 2Cs2u2, (11)
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Fig. 7 Motion planning: a = b = 0.2, feedback (14)

or the form

z1 = θ1, z2 = −sign(s2)
G

F
,

z3 = sign(s2)φ − 1

4
π + 1

2
θ2

+ 1

2

U − 2B√
U 2 − 4C2

arcsin
2C +Uc2
U + 2Cc2

v1 = u1, v2 = 2CI|s2|
(U + 2Cc2)2

u2. (12)

Hereabout, sign(·) denotes the sign function, and
| · | is the modulus. Functions F, G and H need to
be taken as

F(θ2) = I + A + B + 2Cc2,

G(θ2) = A + B + 2Cc2,

H(θ2) = B + Cc2,

and U = I + A + B.
2. If a �= 0 or b �= 0 then system (7) is feedback

equivalent to the chained form system (10) provided
that function σ(q) defined by (9) and function

P(q) = −Cs2 + E(−as12 + bc12) (13)

are nonzero. The feedback transformation estab-
lishing this equivalence is given by

z1 = h1(q) = θ1,

z3 = h2(q) = −sign(P)φ − 1

2
arcsin

F −U

2 f
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Fig. 8 Motion planning: a = b = 0.3, feedback (14)

+ Z

2
√
d
arcsin

FU − d

2 f F
,

z2 = h3(q) = sign(P)
G

F
+ ∂h2(q)

∂θ1

v1 = u1, v2 = ∂h3(q)

∂θ1
u1 + sign(P)

2σ

F2 u2, (14)

where functions F and G are defined by (8), and

U = IP + A + B + 2D(ac1 + bs1), Z = U − 2B,

f =
√
C2 + 2CE(ac1 + bs1) + E2(a2 + b2),

d = U 2 − 4 f 2. (15)

A proof of this theorem has been provided originally in
op. cit., but, to make this paper self-contained, it will be
reproduced in Appendix. It should be noticed that the

feedback (11) has been tuned specifically to the form
of system (7) with a = b = 0, whereas feedback (12)
comes out after a substitution of a = b = 0 into the
general feedback transformations (14).

5 Numerical computations

In this section we demonstrate an application of the
normal form (10) to an example motion planning prob-
lem for the SRC space manipulator (7). The motion
planning problem consists in finding a control that
will carry out the system from the initial configura-
tion q0 = (45◦, 120◦, 80◦)� to the final configuration
qd = (0◦, 180◦, 140◦)� within time T = 10s. The fol-
lowing numerical values of the robot’s geometric and
mechanical parameters have been borrowed from [15]:
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Fig. 9 Motion planning: a = b = 0, ECSA

l1 = 0.619m, l2 = 0.6m,

d1 = 0.313m, d2 = 0.287m,

M = 12.9kg, I = 0.208kgm2,

m1 = 4.5kg, m2 = 1.5kg.

Solution of the problem for a = b = 0 will be found
first using the feedback transformations (11) and (12),
and then for several cases of a �= and b �= 0 by means
of the feedback transformations (14). For comparison,
for nonzero a and b, a solution of this motion planning
problem provided by the Endogenous Configuration
Space Approach will also be delivered.

For the Normal Form Approach, the initial and final
configurations have been first transferred to the normal
form in accordance with the procedure described in
section 2, yielding z0 and zd . Then, themotion planning

problem in the chained form system has been solved by
adopting polynomial control functions, compare [13,
25],

v1(t) = a1 + b1t + c1t
2 + d1t

3 and

v2(t) = a2 + b2t + c2t
2,

subject to a request that the initial and final values of
controls (in the normal form as well in the original
system) need to be zero. The coefficients of control
functions have been computed symbolically as

a1 = 0,

b1 = 4(22w1w2 − 35w3 + 35w1z20)

3w2T 2 ,

c1 = −4(19w1w2 − 35w3 + 35w1z20)

w2T 3 ,

d1 = 140(w1w2 − 2w3 + 2w1z20)

3w2T 4 ,
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Fig. 10 Motion planning: a = b = 0.1, ECSA

and

a2 = 0, b2 = 6w2

T 2 , c2 = −6w2

T 3 ,

where

w1 = zd1 − z01, w2 = zd2 − z02, w3 = zd3 − z03,

and T = 10.
For a = b = 0, results of solving the problem using

the NFA with feedback (11) are displayed in Fig. 4,
while for the feedback transformation (12) – they are
shown in Fig. 5. The next Figs. 6, 7 and 8 show solu-
tions of this problem, respectively, for a = b = 0.1,
a = b = 0.2, and a = b = 0.3, obtained by the NFA
employing the feedback transformation (14). These fig-
ures display trajectories of the base orientation and the
joint positions, trajectories of the normal form vari-
ables z, velocity controls in system (5), and torques
driving the system (6). Correspondingly, Figs. 9, 10,

11 and 12 present solutions for these same parameters
a and b, provided by the ECSA based on the Jacobian
pseudoinverse, and making use of trigonometric con-
trol functions with constant terms and the first order
harmonics. Domains of existence of the feedback (14)
for various a and b are presented in Figs. 13 and 14.

6 Discussion

While conducting computations we have made a num-
ber of observations that reveal advantages and limita-
tions of the NFA. A fundamental advantage is that the
normal form approach provides a closed form solution
to the motion planning problem. This is accomplished
by replacing a complicated control problem in the orig-
inal system by a much simpler problem addressed in
the normal form, and using direct and inverse feedback
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Fig. 11 Motion planning: a = b = 0.2, ECSA

transformations, see Fig. 1. Basically, if the feedback
transformations are available in the closed form, the
computation of control signals should be as accurate
and efficient as our computing machinery allows. In
our case, a moderately optimized program code has
resulted in the computation time of the velocity con-
trol u(t) about 0.2s for the case of a = b = 0, and
in average of 1.3s for a, b �= 0. When the torques are
to be found, an extra 0.15s needs to be added for zero
a and b, and 0.4s otherwise. This additional time is
devoted to solving the inverse dynamics problem in sys-
tem (6), accompanied by the interpolation of some sig-
nals. Computations referring to the ECSA have taken
about 1.5s, plus extra 0.5s to determine the torques.Our
computations have been done on aPCequippedwith i7-
6700HQCPU2.60GHz and 16GBRAM.Note that the
computation time for the ECSA, as an iterativemethod,

will grow up when increasing the required accuracy of
results, whereas the available accuracy of the NFA is
practically unlimited.

On the other hand, the following limitations of the
NFA need to be recognized:

1. Computability of feedback transformations: Typi-
cally, conditions for the existence of feedback trans-
formations that establish the equivalence between
control systems (1) are not constructive. If they
are satisfied, the feedback transformations need to
be found by solving the equivalence Eq. (2) for
(ϕ(q), α(q), β(q)), given the vector fields f, f̃ ,
gi , g̃i . These are PDEs whose explicit solution may
be hard or just impossible to obtain explicitly. This
is not our case, but this difficulty is faced when
studying normal forms of the extended SCR space
manipulator derived in [14].
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Fig. 12 Motion planning: a = b = 0.3, ECSA

2. Complexity of feedback transformations: Even if
the solution of the equivalence equations is avail-
able in the closed form, it may be complex, like our
formula (14). A closer look at these transforma-
tions prompts two observations. Firstly, formulas
for the partial derivatives ∂h2

∂θ1
and ∂h3

∂θ1
look quite

complicated, so we have restrained from writing
them explicitly and left them to be processed by
computer. Secondly, the inversion of the diffeomor-
phism z = h(φ, θ1, θ2) necessarily invokes numer-
ical computations. To be more specific, given z, it
is easy to determine θ1 = z1. Next, given θ1, and
using the fact that h3 does not depend on φ, we use
the equation z2 = h3(q) in order to find θ2. This
is allowed, at least locally, by the Implicit Func-
tion Theorem since ∂h3

∂θ2
�= 0 whenever σ(q) �= 0.

Therefore, θ2(z1, z2) can be computed numerically,
e.g. using the Newton algorithm

dθ2(s)

ds
= −γ

(
∂h3(z1, θ2)

∂θ2

)−1

(h3(z1, θ2) − z2),

and passing to the limit θ2 = lims→+∞ θ2(s).
Having found θ1 and θ2, we finish by analytically
computing φ(z1, z2.z3) from the identity z3 =
h2(φ, z1, z2). We have been following exactly this
way in our computations. Noticeably, within the
NFA we have just a single iterative numerical pro-
cess, whereas the ECSA involvesmultidimensional
numerical computations.

3. Local definiteness of feedback transformations: In
the feedback equivalence the diffeomorphism ϕ(q)

is usually defined only locally, on a certain neigh-
borhood of a specific point, so from the control
point of view establishing the size of its domain of
existence is of vital importance. This has been done
for the feedback transformations introduced inThe-
orem 1. As long as the manipulator is mounted at
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Fig. 13 Domains of existence of feedback (14): a = b = 0.1 and a = b = 0.2

Fig. 14 Domains of existence of feedback (14): a = b = 0.3 and a = 1.0, b = −1.0

the center of mass of the base, the feedback trans-
formation (11) exists if and only if sin θ2 �= 0. The
domain of existence of this feedback is quite large
and has a simple shape. It is easily observed that,

since for a = b = 0 the zero loci of functions σ(q)

and P(q) coincide, the domains of existence of (11)
and (12) are the same. The situation complicates
if the mounting point of the on-board manipulator
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is different than the center of mass. The feedback
transformation (14) is well defined on condition
that both the functions σ(q) and P(q) are nonzero.
Thismakes the domains of existence of (14) smaller
and of complicated shapes that restricts applicabil-
ity of the NFA. In order to vizualize the domains
of existence of feedback transformations (14) as
depending on the position of the mounting point
we present a number of plots for a = b = 0.1,
a = b = 0.2, a = b = 0.3 and a = 1.0, b = −1.0.
It follows that applicability of the NFA depends
strongly on the choice of the mounting point; the
approach seems fairly efficient in the three former
cases, but readily impossible in the last case. It turns
out that, if the NFA is to be used for the control of
a space robot, it makes sense to take into account
in the process of space robot design the plots like
Figs. 13 and 14, and mount the on-board manipu-
lator appropriately.

7 Conclusion

The objective of this paper has been to examine the
applicability of the Normal Form Approach to motion
planning of robots. A motion planning problem for a
space manipulator has been chosen as a sort of bench-
mark problem. This problem has two features: on the
one hand, refers to a practically meaningful example
of a control system, and on the other, involves rather
complex transformations producing the normal form.
A motion planning algorithm for this space robot has
been designed using the chained system normal form
of the robot’s dynamics. Thanks to explicitly known
feedback transformations amajor part of the solution of
the motion planning problem has been obtained in the
closed form. Performance of the NFA-based algorithm
has been examined, and compared with the ECSA-
based planning representing the class of iterative meth-
ods. Potential advantages anddisadvantages of theNFA
in motion planning have been recognized.
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8 Appendix: proof of theorem 1

We shall confine to demonstrating item 2 that refers to
the case of nonzero a and b. To this objective, relying
on the result of Murray and Sastry [10], pp. 369–370,
we associate with system (7) the distributions

Δ0 = span{g1, g2, g12},
Δ1 = span{g2, g12}, Δ2 = span{g2}. (16)

It is easily checked that outside posture singularities
σ(q) = 0, see (9), these distributions are involutive
and of dimension 3, 2 and 1. This allows us to intro-
duce coordinate functions h1, h2 and h3 satisfying the
following conditions

dh1Δ1 = 0, dh1g1 = 1, dh2Δ2 = 0, h3 = dh2g1.

(17)

Now, using the form of vector fields g1, g2 and g12, we
obtain

h1 = θ1, −H
∂h2
∂φ

+ F
∂h2
∂θ2

= 0. (18)

The partial differential equations defining h2 can be
solved by means of the method of characteristics. Fol-
lowing this method we need to find a first integral of
vector field X = (−H, 0, F)� that for fixed θ1 satisfies
the differential equation

y − dφ = H

F
dθ2
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= B + Cc2 + E(ac12 + bs12)

IP + A + B + 2Cc2 + 2D(ac1 + bs1) + 2E(ac12 + bs12)
dθ2.

(19)

Referring to notations (15) we observe that F = Z +
2H , Z being independent of θ2, so the right hand side
of (19) can be written as

F − Z

4F

dF

P
, (20)

where P = −Cs2 + E(−as12 + bc12), see (13). The
next observation is that

P2 + (F −U )2

4
= f 2, (21)

f depending only on θ1 or, equivalently,

P = sign(P)

√

f 2 − (F −U )2

4
. (22)

Finally, all these observations result in the differential
equation

−sign(P)dφ = sign(s2)
1

2

(F − Z)dF

F
√
4 f 2 − (F −U )2

= 1

2
(I1 − Z I2) (23)

whose solution depends on two elementary integrals

I1 =
∫

dF√
4 f 2 − (F −U )2

, and

I2 =
∫

dF

F
√
4 f 2 − (F −U )2

. (24)

In computation of these integrals we use the fact that
d = U 2 − 4 f 2 > 0. In this way, in accordance with
the method of characteristics, we obtain the coordinate
function h2(q). Having found h2, we set h3 = dh2g1
that, together with h1 = θ1, determines the coordinate
change. In order to find the feedback, we compute

ż1 = θ̇1 = u1 = v1,

ż2 = ∂h3
∂φ

φ̇ + ∂h3
∂θ1

u1 + ∂h3
∂θ2

u2 = ∂h3
∂θ1

u1

+ sign(P)
∂

∂θ2

(
G

F

)
u2 + ∂2h2

∂θ2∂θ1
u2

= ∂h3
∂θ1

u1 + sign(P)

(
∂

∂θ2

(
G

F

)
− ∂

∂θ1

(
H

F

))
u2

= ∂h3
∂θ1

u1 + sign(P)
2σ

F2 u2 = v2,

ż3 = ∂h2
∂φ

φ̇ + ∂h2
∂θ1

u1 + ∂h2
∂θ2

u2

= −sign(P)

(
−G

F
u1 − H

F
u2

)

+ ∂h2
∂θ1

u1 − sign(P)
H

F
u2

=
(
sign(P)

G

F
+ ∂h2

∂θ1

)
u1 = z2v1. (25)

Obviously, having substituted into (14) a = b = 0, we
get (12).

References

1. Abraham, R., Marsden, J.E., Ratiu, T.: Manifolds, Tensor
Analysis, and Applications, pp. 370–376. Springer, New
York (1988)

2. Brunovsky, P.: A classification of linear controllable sys-
tems. Kybernetika 6, 173–188 (1968)

3. Bryant, R., et al.: Exterior Differential Systems, pp. 33–38.
Springer, New York (1991)

4. Galicki, M.: Tracking the kinematically optimal trajectories
by mobile manipulator. J. Intell. Robotic Syst. 93, 635–648
(2019)

5. Gardner, R.B.: Differential geometric methods interfacing
control theory. In: Brockett, R., Millman, R.S., Sussmann,
H.J. (eds.)DifferenytialGeometricControl Theory, pp. 117–
180. Birkhäuser, Boston (1983)

6. Jakubczyk, B.: Equivalence and invariants of nonlinear con-
trol systems. In: Sussmann, H.J. (ed.) Nonlinear Controlla-
bility and Optimal Control, pp. 177–218. M. Dekker, New
York (1998)

7. Jiang,Z.-P.,Nijmeijer,H.:A recursive technique for tracking
control of nonholonomic systems in chained form. IEEE
Trans. on Automat. Control 44, 265–279 (1999)

8. La Valle, S.M.: Planning Algorithms, pp. 787–924. Cam-
bridge University Press, Cambridge (2006)

9. Morin, P., Samson, C.: Control of nonholonomic robots
based on the transverse function approach. IEEE Trans.
Robot. 27, 1058–1073 (2009)

10. Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Intro-
duction to Robotic Manipulation, pp. 363–371. CRC Press,
Boca Raton (1994)

11. Nowicki, M.: Feedback Linearization of Mechanical Con-
trol Systems, Ph.D. thesis, Institut National des Sciences
Appliquées de Rouen and Poznan University of Technology
(2020)

12. Papadopoulos, E., Nanos, K.: On configuration planning
of free-floating space robots, In: Proc.15th CISM-IFToMM
Symposium on Robot Design, Dynamics and Control, Mon-
treal, Canada, June 14–18 (2004)

123



Normal form approach in the motion planning of space robots 2245

13. Papadopoulos, E., Tortopidis, I., Nanos, K.: Smooth plan-
ning for free-floating space robots using polynomials, in
Proc. IEEE Int. Conference on Robotics and Automation,
Barcelona, Spain, (April 2005), pp. 4283–4288
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