
Nonlinear Dyn (2021) 105:277–299
https://doi.org/10.1007/s11071-021-06431-1

ORIGINAL PAPER

PI/PID controller stabilizing sets of uncertain nonlinear
systems: an efficient surrogate model-based approach

Jorge-Humberto Urrea-Quintero ·
Jan N. Fuhg · Michele Marino · Amélie Fau

Received: 13 October 2020 / Accepted: 3 April 2021 / Published online: 9 June 2021
© The Author(s) 2021

Abstract Closed forms of stabilizing sets are gener-
ally only available for linearized systems. An innova-
tive numerical strategy to estimate stabilizing sets of PI
or PID controllers tackling (uncertain) nonlinear sys-
tems is proposed. The stability of the closed-loop sys-
tem is characterized by the sign of the largest Lyapunov
exponent (LLE). In this framework, the bottleneck is
the computational cost associated with the solution
of the system, particularly including uncertainties. To
overcome this issue, an adaptive surrogate algorithm,
the Monte Carlo intersite Voronoi (MiVor) scheme, is
adopted to pertinently explore the domain of the con-
troller parameters and classify it into stable/unstable
regions from a low number of nonlinear estimations.
The result of the random analysis is a stochastic set
providing probability information regarding the capa-
bilities of PI or PIDcontrollers to stabilize the nonlinear
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system and the risk of instabilities. Theminimumof the
LLE is proposed as tuning rule of the controller param-
eters. It is expected that using a tuning rule like this
results in PID controllers producing the highest closed-
loop convergence rate, thus being robust against model
parametric uncertainties and capable of avoiding large
fluctuating behavior. The capabilities of the innovative
approach are demonstrated by estimating robust stabi-
lizing sets for the blood glucose regulation problem in
type 1 diabetes patients.

Keywords Nonlinear dynamic systems · Stabilizing
set · Uncertainty · PID controller

1 Introduction

The classical proportional-integral-derivative (PID)
controller is themain player in engineering applications
to automatically regulate most process variables [59].
However, it has been observed that only about one-third
of the PID-based control loops work properly, one third
have poorly tuned controllers, and the last third of the
loops have controllers that are not working automati-
cally but are bypassed by the users to operate them in
manual mode [36]. These drawbacks are not due to the
lack of tuning rules, as over 1700 PID controller tuning
rules have been referenced in [53].

A first limitation is due to the difficulty of accurately
modeling real systems. One possibility might be that
the understanding of a given system to synthesize an
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accurate first-principle model is not always complete.
Another possibility is that a complete model does exist,
but itsmathematical complexitymakes it impractical or
inconvenient to use in control applications [2]. Besides,
controller design is usually based on linearization or
heuristic simplification, which assumes that nonlinear
systems can be accurately represented by a first- or
second-order plus time delay linear models [5,44,45].
Finally, real working conditions are not precisely pre-
dictable, so designing a robust controller to the uncer-
tain operating conditions is not an easy task, see, e.g.,
[3,56] for a specific reviewon the topic. To limitmodel-
ing simplifications, the tuning problem can be reformu-
lated into an explicit optimization problem where one
or several closed-loop performance indices are mini-
mized to design a goal-oriented optimal PID controller
[65]. However, this versatile approach faces classical
optimization challenges, e.g., the objective function
might be nonconvex, nonlinear or with several local
minima. Additionally, it usually aims at designing an
unique optimal operating point, specifically designed
for a chosen objective while disregarding the uncer-
tain controller environment. Therefore, it might result
in a lack of robustness of the obtained PID controllers
against the system parametric uncertainty [68].

This challenge has recently been handled in, e.g.,
[57] by using stochastic programming techniques. The
PID controller tuning problem is formulated as a
stochastic problem where both model parameters and
closed-loop system set points are modeled as random
variables. Then, these random variables are sampled
using a Monte Carlo algorithm, and many realizations
of the closed-loop systemdynamical evolution are eval-
uated in order to find the set of controller parameters
minimizing a cost function describing the system’s per-
formance. Such a framework allows to robustly opti-
mize the dynamical performance of uncertain closed-
loop systems. However, one limitation persists, namely
the PID controller parameter space is not a priori clas-
sified into stable/unstable behaviors. Therefore, sig-
nificant computational resources could be allocated
to search solutions of the optimization problem into
the unstable controller region, whereas non-stabilizing
behavior could lead to catastrophic outputs [55]. It has
been shown that even for linear cases, the stabilizing set
can be composed of an unbounded set, a close bounded
set, or evenmore thanone closedboundeddisconnected
set within the parametric design space [19].

The estimation of the parametric subdomain leading
to stable behavior has received considerable attention
in the technical literature for the last two decades, but
only considering linear systemswhere computationally
tractable algorithms that estimate the complete set of
stabilizing PID controllers have been developed. The
reader is referred to [60] for a comparative overview
of different approaches for the calculation of the set
of all stabilizing PID controller parameters. Further-
more, see [19,22,61] for a more detailed description
about the challenges of computing thesePID stabilizing
regions and the algorithmic implementation of some of
the available methods.

TheRouth–Hurwitz criterion is themost popular cri-
terion for the first- and second-order linear time invari-
ant systems to find the PI/PID controller stabilizing set.
But, a naive application of Routh–Hurwitz’s criterion
will result in a description of the stabilizing set com-
posed of highly nonlinear and intractable inequalities
[18]. Uncertain linear systems, on the other hand, are
commonly represented as so-called interval plants, and
their stability is analyzed through their characteristic
interval polynomial employing the Kharitonov theo-
rem [8,35]. However, this approximation is only valid
for the first-order controllers such as PI controllers.
The analysis of PID controllers requires more general
results, such as the generalized Kharitonov theorem
[15]. Nonetheless, this theorem is not applicable for
nonlinear systems. To the best of the authors knowl-
edge, no approach has been presented yet to compute
the PID stabilizing set of nonlinear systems. This is the
goal of the current work.

The strategyproposed in thiswork aims to efficiently
compute the PID stabilizing set of nonlinear systems
in a finite time frame, considering system uncertain-
ties if required. It is built upon an adaptive randomized
algorithm and the analysis of the stability using the
largest Lyapunov exponent (LLE) to evaluate whether
a nonlinear system is internally stable or not along
some state trajectories [54]. Specifically, a positiveLLE
indicates that the closed-loop system presents unstable
behavior, whereas a negative LLE indicates that the
closed-loop system is stable [58]. Thus, the PID con-
troller space can be explored and classified into sta-
bilizing or non-stabilizing. Recent efforts have been
made to speed up the computation of the LLE in non-
linear systems, e.g., methods based on non-logarithm
computations [17] have been applied to the analysis of
the regulation error of closed-loop systems [7] lead-
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ing to 20–50 % of computational cost reduction in the
LLE estimation. However, LLE calculation for every
possible point within the parametric space would still
be time-consuming and computational resource-heavy.
Randomized algorithms have been proposed in the past
as simple and efficient solution for computing control-
lable, reachable, and controllers’ terminal region sets of
nonlinear systems, [13,62]. A detailed review of appli-
cations has been exposed in [63]. The main challenge
of adopting a randomized algorithm is due to the curse
of dimensionality [28]. To overcome this limitation,
the proposed numerical strategy relies on an adaptive
surrogate model technique to speed this process up,
the so-called Monte Carlo intersite Voronoi (MiVor)
scheme [24]. This algorithm is dedicated to classifi-
cation analysis based on regression metamodels sup-
ported by a machine learning technique known as ordi-
nary kriging that is defined byGaussian processes. (The
reader is referred to [42] for an overview of ordinary
kriging.) By using the MiVor algorithm, the domain of
the PID controller parameters is proficiently explored
allowing to identify the stabilizing region of closed-
loop nonlinear systems at low cost. Furthermore, this
approach is extended to incorporate system uncertain-
ties due to mixed effects of initial and working con-
ditions, resulting in a probabilistic PID controller sta-
bilizing set with which it is possible to robustly select
the PID controller parameters guaranteeing the closed-
loop system’s internal stability.

The validity of the presented approach is shown for
the blood glucose regulation in type 1 diabetes patients
adopting the nonlinearmodel presented in [38]. For this
application, computing robust stabilizing sets based on
linear approaches can easily lead to controllers that
either stabilize the closed-loop system in a long imprac-
tical (and physiologically dangerous) time window or
produce poor closed-loop performance. Then, using
the LLE as the controller’s tuning rule, controller per-

formance limits are determined for PI and PID sce-
narios. Stabilizing sets are computed for nominal and
uncertain closed-loop simulations, and their dynamical
performance is evaluated adopting some performance
indices. The proposed computational framework opens
up possibilities for the design of PI and PID controllers,
which will be explored in the present paper.

The remainder of this paper is organized as follows:
The problem formulation of computing the PID stabi-
lizing set for uncertain nonlinear systems is introduced
in Sect. 2. The new numerical strategy based on LLE
and the adaptive surrogate model MiVor is presented in
Sect. 3, which is the core of the contribution. Two vari-
ants are proposed to tackle nominal or robust design
of the controller. Section 4 illustrates the application
of the proposed approach to compute PI and PID sta-
bilizing sets to the blood glucose regulation problem
in type 1 diabetes patients. Some final discussions and
concluding remarks are provided in Sect. 5.

2 Guaranteeing the stability behavior of a
nonlinear dynamic system

Arepresentation of the feedback control systemconsid-
ered in thiswork is illustrated inFig. 1. In general terms,
the purpose of such a closed-loop configuration is to
regulate the output y(t) ∈ Y ⊆ R

ny to asymptotically
track the reference trajectory r(t) ∈ R ⊆ R

nr , based
on the variation of the control action u(t) ∈ U ⊆ R

nu ,
while a class of exogenous disturbances d(t) ∈ D ⊆
R
nd is applied. x ∈ X ⊆ R

nx denotes the set of internal
variables or states, which can be quantities of interest
without being controlled by the user, hence Y ⊆ X .
The (sub)setsX ,U ,Y , andD are compact. Symbols nx ,
nu , ny , nd , and n p denote the consistent space dimen-
sions.
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Nonlinear dynamical systems can be generally
described by the following set of equations:

ẋ(t) = f (x(t), u(t), d(t), p)

y(t) = g (x(t), d(t), p)
(1)

where f : R
nx × R

nu × R
nd × R

n p → R
nx and

g : R
nx ×R

nu ×R
nd ×R

n p → R
ny could be either lin-

ear or nonlinear locally Lipschitz-continuous differen-
tiable functions. The system parameters p ∈ P ⊆ R

n p

can be uncertain with P a compact (sub)set and n p the
parameters space dimension. It is important to remark
thatmany control systems are defined such that they are
affine in their control variables. Therefore, if necessary,
a reformulation of Eq. (1) can be done under the addi-
tional assumption that u is Lipschitz continuous such
that the nonlinear control system is affine in the con-
trol function u [34]. However, here no assumption of
linearity in control variable is done, and the approach
is exposed for general cases.

2.1 The robust output regulation problem

For the case of (uncertain) nonlinear systems, it is often
assumed that the disturbances d(t) and the references
r(t) have the following properties (e.g., see Khalil’s
work [39]):

(1) d(t) and r(t) and their derivatives up to the i-th
derivative are bounded. The derivatives of these
function at degree i denoted, respectively, by
d(i)(t) and r(i)(t) are piecewise continuous.

(2) D(t) and R(t) are defined as

D(t) =
⎡
⎢⎣

d(t)
...

d(i)(t)

⎤
⎥⎦ , R(t) =

⎡
⎢⎣

r(t)
...

r(i)(t)

⎤
⎥⎦ , (2)

(3) limt→∞
[D(t) − D̄(t)

] = 0 and limt→∞ [R(t)−
R̄(t)

] = 0, where D̄ and R̄ are generated by the
exosystem

ẇ = S(σ )w,[D̄
R̄

]
= Γ (w).

(3)

Functions S(·) and Γ (·) are assumed to be smooth
functions and w belongs to a compact set W .

The exosystem depends on a vector σ ∈ R
nσ of

unknown parameters, with its values assumed to
range over a known compact set Σ .

The regulation error is defined by

e(t) = y(t) − r(t). (4)

The control input u to the system described by
Eq. (1) has to be provided by an error-feedback con-
troller modeled by equations of the form

ξ̇ = Λ(ξ , e),

u = Θ(ξ , e),
(5)

with the states ξ ∈ Ξ ⊆ R
nξ andwhereΞ is a compact

(sub)set of dimension nξ . The functions Λ(ξ , e) and
Θ(ξ , e) are smoothwithΛ(0, 0) = 0 andΘ(0, 0) = 0.

Let the vector ν be given by

ν(t) =
[D(t) − D̄(t)
R(t) − R̄(t)

]
. (6)

Then, the regulation problem consists of finding a con-
troller of the form as detailed in Eq. (5) with parameters
tuning the evolution of the control law defined in the
set Kξ ⊆ R

nKξ , such that:

(1) the equilibrium (x, ξ) = 0 of the unforced closed-
loop system

ẋ = f (x,Θ(ξ , e), ν, p),

ξ̇ = Λ(ξ , g(x, ν, p)),
(7)

is asymptotically stable for every p;
(2) the trajectory (x(t), ξ(t)) of the closed-loop sys-

tem

ν̇ = S(σ )ν,

ẋ = f (x,Θ(ξ , e), ν, p),

ξ̇ = Λ(ξ , g(x, ν, p) − r),

(8)

exists for all t ≥ 0, is bounded and satisfies

lim
t→∞ e = 0 (9)

for any p and Σ , independent of the initial condi-
tions (x(0), ξ(0), ν(0)).
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Thus, limt→∞ ν = 0 and ν(t) remains in a compact
set. The steady-state behavior of the system is repre-
sented by the zero-error manifold given by (x, ξ) = 0.
The system representation of Eq. (8) is known as the
normal form of the system (1), and it defines the robust
nonlinear output regulation problem where PI or PID
controllers could be designed to achieve the control
objective [23,39,40,46].

Disturbance rejection and reference tracking must
be achieved while preserving the internal stability of
the closed-loop system. It is well known that for (uncer-
tain) nonlinear systems this task can be successfully
achieved in a robust sense by some types of inte-
gral controllers as proved in [40]. Particularly, the
PID controller in its classical form is also able to
achieve robust regulation for piecewise constant ref-
erences while rejecting constant or vanishing pertur-
bations, e.g., see [21]. More recently, this result was
extended using a discontinuous PID controller able
to track general time-varying references in finite time
while rejecting general time-varying perturbations for
uncertain single-input single-output nonlinear systems
[46]. Nonetheless, this work is only concerned with the
first case, i.e., the asymptotic tracking of a piecewise
constant reference r(t) and the rejection of constant
or vanishing perturbations d(t) for which the control
objective can be achieved using PI or PID controllers.

2.2 PI/PID controllers

In this work, classical PI and PID controllers are
adopted. Considering a PID controller, the value of the
control action u(t) is computed from the feedback error
e(t) = r(t) − y(t) as follows:

{
ξ̇ = ki e(t),

u(t) = kpe(t) + ξ(t) + kd ė(t),
(10)

The control action is then defined by the sum of three
terms. The first term, kp, named P-term is proportional
to the error. The second term, ki , which is proportional
to the integral of the error is usually referred to as the
I-term. Finally, the last term, kd , defined by being pro-
portional to the derivative of the error is called the D-
term. From Eq. (10), control actions corresponding to
P, PI, or PD controllers could be derived straightfor-
wardly by just canceling out the non-including actions,
e.g., setting kd = 0, for defining a PI controller.

The I-term of the PID controller guarantees that y(t)
will asymptotically track r(t) as long as the closed-loop
control system is stable. The addition of an integra-
tor to the plant tends to make the systems less stable
because the integrator is an inherently unstable device.
Therefore, the problem of stabilizing the closed-loop
control system becomes a critical issue, whereas the
open-loop nonlinear system could be intrinsically sta-
ble [18]. Accordingly, the combination of the P- and
I-terms is needed, if possible, to stabilize the closed-
loop control system and to adjust the transient response
of the system. Thus, the aim of thiswork is to efficiently
solve the problem of stabilizing (uncertain) nonlinear
systems by PI or PID controllers, more particularly to
compute in a computational tractable way the entire set
of PI or PID stabilizing controllers given a reasonable
finite time to achieve the output regulation.

2.3 PI/PID stabilizing sets

Consider the case of a PID controller. The PID stabiliz-
ing set of the nonlinear system given by Eq. (1) consists
in the set ΩPID of parameters k := [

kp, ki , kd
]
such

that for all initial values x(0) within the controller’s
terminal region Ω(x) ⊆ Ct , any disturbance d(t) ∈ D
can be attenuated by the system such that the state can
recover an equilibrium point, while the output reaches
the reference value, i.e.,

ΩPID := {k ∈ K ⊆ R
3 | lim

t→∞ y = r ∧ lim
t→∞ x = x∗},

(11)

where x∗ is an equilibrium point of the system (1) and
nr = ny . The controller parameter space is denoted by
K ⊆ R

3.
For nonlinear cases, the existence of the set ΩPID

for a class of the second-order nonlinear uncertain sys-
tems has recently been proven in [70]. This result has
been extended to a general class of single-input single-
output high-order affine-nonlinear uncertain systems in
[71]. Nonetheless, the estimation of ΩPID for closed-
loop (uncertain) nonlinear systems remains challeng-
ing. One of the main limitations is the lack of tools
to accurately determine its boundaries without simul-
taneously leading to a nonlinear-nonconvex optimiza-
tion problem formost of the set-membership parameter
problems [14]. However, instead of choosing a direct
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estimation of ΩPID, it is possible to use a Monte Carlo
approach spanning the controller parameter spaceK to
evaluate an indicator of the closed-loop system’s con-
vergence rate for each sample, and then classifyK into
stable or unstable regions from these discrete simula-
tions. It can be noticed that definition given by Eq. (11)
also applies for the PI controller case if kd = 0.

It can be noticed that Eq. (11) requires that the sta-
bilization of the closed-loop control system is guaran-
teed at infinity. However, this mathematical definition
appears not be entirely compatible with real-life appli-
cations, where it is desired that the system stabilizes
in a finite time and satisfies some transient response
requirements, e.g., oscillations of reasonable ampli-
tudes. From an engineering viewpoint, all these addi-
tional controller design specifications are included in
the search forΩPID. In this paper,we tackle the problem
of the finite time stabilization of the controlled output
by evaluating a priori whether the closed-loop system
reaches its steady state in a user given time to the com-
putation of the LLE. Moreover, because the compu-
tation of the controller’s stabilizing set is based on the
LLE—informing the rate of convergence of the closed-
loop system—this information can be further exploited
and the PI/PID controller tuning parameters selected
such that they coincide with the minimum LLE, an
idea previously introduced in [7]. Thus, as an addi-
tional advantage of the data-driven solution, an opti-
mal PI/PIDcontroller is designed from the performance
viewpoint similar to those typically designed to min-
imize, e.g., some indices performance as the integral
of the absolute error or integral of the time-weighted
absolute error indices.

2.4 Controllable set

The controllable set, which plays an important role in
the analysis of nonlinear systems, is composed of all the
states x ∈ X fromwhich the systemcan be driven to the
operating point x∗, assumed to be stable in the sense of
Lyapunov, by applying a sequence of control actions
u(•) ∈ U without any restrictions on the controller
design method [28,29,66].

Given a set Ωτ , such that x∗ ∈ Ωτ , the controllable
set Ct (Ωτ ) toΩτ in a time t = τ is the set of all states x
for which x(0) ∈ X and a sequence of control actions
u(•) ∈ U exists such that if x∗ can be reached from x,

then x(τ ) ∈ Ωτ , as follows:

Ct (Ωτ ) := {x ∈ X | ∃ u ∈ U : ϕ
(
τ, x, u, p∗) ∈ Ωτ },

(12)

where ϕ is the transition function that represents the
system evolution from the initial condition x(0) to the
final one x(τ ) = ϕ(τ ; x(0), t). The controllable set
satisfies the two crucial following properties:

(1) Ct (Ωτ ) is an invariant set with respect to the set of
the admissible control actions set U .

(2) Ct is the set of all initial conditions of system (1) in
the admissible state-space fromwhich it is possible
to drive system (1) to the interior ofΩτ with a given
sequence of control actions and a time t < ∞.

Ωτ must not be a single state-space point but a small
state-space regionbecause the probability of driving the
system to a single point is equal to zero. The size ofΩτ

can be thought of as a controller accuracy constraint,
i.e., if the size of Ωτ approaches the size of a point
in the state-space, a very precise control strategy must
be implemented to drive the system inside Ωτ . On the
contrary, if Ωτ represents a larger state-space region, a
more flexible control strategy could be adopted.

3 Innovative numerical strategy to efficiently
estimate robust stabilizing sets

The goal of this work is to propose a numerical
approach for estimating the PI/PID stabilizing set of
(uncertain) nonlinear systems at low computational
cost. The approach is based on Monte Carlo sampling
and equipped with adaptive surrogate model technique
to explore the parametric space very efficiently and
reduce the explicit nonlinear computations most pro-
ficiently. This strategy allows for computing the stabi-
lizing set at reasonable cost even for challenging sce-
narios, as controllers in the presence of uncertainty in
terms of initial conditions or external disturbance.

3.1 Stability information

The stabilizing set has been defined by Eq. (11). A
practical tool to question the stability of a differential
equation is Lyapunov exponents denoted by {λi }i∈1,nx
and defined as the averaged convergence rate of nearby
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orbits in state-space [54]. From the spectrum of these
exponents, the local stability or instability of the sys-
tem can be known. A negative λi reveals local stabil-
ity in this direction, whereas a positive value indicates
instability [58]. Analytical solutions of the Lyapunov
exponents are only available for simple problems.
For more complicated continuous problems, numer-
ical techniques have been proposed to estimate the
Lyapunov exponents by following the evolution of
principal axes on a given time series as proposed in
[9,43,58,69]. These methods employed in multiple
studies, e.g., [4,37], are naturally reliant on the descrip-
tiveness of the given time series setting. From a com-
parative study [16], it has been established that theWolf
algorithm proposed by [69] performs better for small
data sets compared to the Rosenstein method [58].
Based on this premise, theWolf algorithm is employed
herein.

Given time series data and a meaningful time frame,
thismethodoffers a practical tool to check for the stabil-
ity of a nonlinear system in finite time. As defined pre-
viously, the controller parameters denoted k that yield
stable behavior are looked for withinK ⊆ R

3. Further-
more, let one element of Ct (Ωτ ) given by Eq. (12) be
denoted by c. Time series data are assumed to be depen-
dent on c, p, k, at a time interval [0, t f ], the output time
series is given by x̃(c, p, k). In detail, x̃ can either refer
to the exact or numerical estimate of the system’smodel
and has the same dimension as the system space state
nx . Then, based on the Wolf algorithm [69], the largest
Lyapunov exponent LLE(x̃(c, p, k)) = max

i∈[1,nx ]
λi as

the quantity of interest is numerically estimated at
time t = t f . The PID stabilizing set can be numeri-
cally approximated through a discretized computation
based on the evaluation of the LLE for a large set of
nref points uniformly distributed over the parametric
domain K. Thus, the stabilizing region is given by the
n+ reference points which yield a stabilizing behav-
ior, whereas the unstable region is the complementary
parametric domain associated with the n− points with
non-stabilizing behavior, such that n = n+ + n−. It is
well established that the larger the number of samples
nref , the better the approximation of the PID stabilizing
set.However, increasing the number of reference points
can also drastically increase the required computational
effort, particularly due to the curse of dimensionality.

3.2 Surrogate model generation

To reduce the computational cost due to the sampling
approach, a kriging surrogate model is adopted based
on an efficient adaptive sampling technique called
Monte Carlo intersite Voronoi (MiVor) [24]. Used for
the stability analysis of a friction-induced oscillator of
Duffing’s type, it has shown to yield accurate results
for complex binary classification problems [25].MiVor
relies on the interpolation of observations by the so-
called ordinary kriging technique which is defined by
Gaussian processes. In general, ordinary kriging surro-
gate models can be trained with existing training data
Dtrain = {(ki ,LLEi ) ∈ R

ntrain , i = 1, . . . ,mtrain}, with
ntrain the space of the training data. However, since an
evaluation of the function LLE is time-expensive, the
number of data points mtrain in the training set shall be
as small as possible while yielding acceptable predic-
tion. For that purpose, adaptive sampling techniques
allow to efficiently generate a small dataset [26].

Starting from an initial set of observation points
Dini = {(ki ,LLEi ), i = 1, . . . ,m}, such that m 

mtrain, a surrogate model L̂LE : R

ntrain → R is gener-
ated that aims to fit the given data based on a best lin-
ear unbiased predictor. Adaptive sampling techniques
generally rely on the evaluation of the current meta-
model L̂LE to design a new sample point km+1 that
shall decrease the error of the updated metamodel with
respect to the exact function at most. In this con-
text, MiVor provides balanced contribution from ran-
dom exploration of the parametric space and local-
ized exploitation of regions with specific features. In
details, as long as samples are only within one class of
stabilizing or non-stabilizing behaviors, the new sam-
ple is defined randomly to scan the domain and get
unpredictable new knowledge. As soon as the dataset
includes samples with both behaviors, exploitation of
the dataset is performed based on the analysis of a
Voronoi tessellation built upon existing samples. Then,
the newsample is attributed to zoneswhich are assumed
to be associated with crucial lack of knowledge, i.e.,
regions where lie uncertain boundaries between two
classes (here: stable or unstable). The dataset is itera-
tively enlarged until a convergence criterion is fulfilled
and an acceptable surrogate model is established. The
general workflow of enriching the data sets to com-
pute PID stabilizing sets of nonlinear systems using
the MiVor algorithm is visualized in Fig. 2. Exhaustive
details about the algorithm are given in [25].
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A bounded design space K
A simulator LLE

Initial input data K = {k1, . . . , km}.

Evaluate the LLE value
L = {LLE1, . . . , LLEm} or LLEm+1

at new input K or km+1.

Update the dataset.
Set D = {K,L}.

Fit the metamodel L̂LE(D).

Find the new sample point
with MiVor algorithm.

Convergence?m = m+ 1

Done

no

yes

Fig. 2 Workflow for building a metamodel based on an adaptive
design of experiments with the MiVor algorithm

3.3 Guarantee of robustness

In the literature, it is well known that PID controllers
and in general linear feedback controllers, have a local
validity, i.e., considering fixed controller parameters,
the closed-loop system might work well only around
nominal operating conditions, whereas its performance
may deteriorate, deviating from its nominal value for
instance, or even become unstable if large disturbances
occur [1,52]. It is noteworthy that evaluating the closed-
loop capabilities to drive the system to the setpoint
once a disturbance appears is equivalent to evaluat-
ing the capabilities to handle a variety of initial condi-
tions. Similarly deterioration and instabilities are also
observed for nonlinear systems submitted to paramet-
ric uncertainty. Thus, estimating towhat extend the PID
controller validity holds or evaluating if the closed-loop
system response deteriorates symmetrically around the
nominal operating point is interesting information for
practical applications.

An extended numerical strategy to efficiently esti-
mate the effect of the initial condition and paramet-
ric uncertainty on the system controlled-output is pro-
posed to enhance the closed-loop system analysis. The
controllable set Ct is sampled evenly mc times using

a fast Latin hypercube technique [67] to create the
set C = {c1, . . . , ci , . . . , cmc }. For each initial con-
dition ci , the uncertain parameters are sampled mp

times to obtain P = { p1, . . . , p j , . . . pmp } using the
same sampling technique. Then, for each ci and p j

with (i, j) ∈ [1,mc] × [1,mp], a metamodel is built
utilizing the MiVor adaptive algorithm [24].

For each metamodel, the set K is initialized with
mkini samples uniformly distributed over the paramet-
ric domain using the Latin hypercube algorithm. The
adaptive sampling process is stopped as soon as the
dataset contains mk samples, when it is assumed that
the metamodel has reached an acceptable accuracy.

Therefore, during the process, mc × mp metamod-
els are generated, with each surrogate model based on
mk time-series data sets. Our interest is on the stabi-
lizing behavior of the system over the controller para-
metric domain, so considering a uniform distribution
over both the initial conditions and uncertain paramet-
ric conditions, a probabilistic metamodel is obtained. It
can be noticed that based on the same strategy, different
distributions could be considered for uncertain initial
conditions and parameters. Such probabilistic knowl-
edge can be exploited using all usual probabilistic tools.
For instance, the probability of instability can be eval-
uated. Thus, parameters associated with zero proba-
bility of instability preserve the closed-loop system’s
internal stability independently of the initial conditions
and parameters within their definition spaces. Then,
decision-making can be done based on the information
of probable unstable responses for some cases. Besides,
the averaged metamodel, which gives the mean LLE
value over the complete range K, can be estimated as
follows:

L̂LE(k) = 1

mcmp

mc∑
i=1

mp∑
j=1

L̂LEi j (k), ∀ k ∈ K.

(13)

The knowledge of L̂LE allows to evaluate the mean
behavior of the controller over the whole controller
design parametric space K, i.e., averaging the stabil-
ity behavior including the epistemic uncertainty due to
the lack of knowledge on initial conditions and some
other possible uncertain running conditions. Similarly
standard deviation or other probabilistic tools could be
employed as soon as usual Monte Carlo convergence
requirements are numerically satisfied. The strategy
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A bounded design space K
A bounded controllable set Ct
An uncertain system parameter space P
A simulator LLE

Sample the controllable set mc-times
C = {c1, . . . , cmc}. Set i = 1.

For ci, sample the uncertain sys-
tem parameters mp-times to obtain

P = {p1, . . . ,pmp}. Set j = 1.

Initialize a dataset in the design
space K = {k1, . . . ,kmkini }.

Adaptively build metamodel
L̂LEij with MiVor considering
ci and uj and by evaluating the
LLE until reaching mk samples.

j > mp?j = j + 1

i > mc?i = i+ 1

Done

Mean metamodel L̂LE.

yes

no

no

yes

Fig. 3 Workflow for building a metamodel to obtain robust con-
trol parameters given uncertain initial state and parameters

workflow is summarized in Fig. 3. It is based on two
iterative loops. The external loop takes the effect of
the closed-loop initial conditions over the PI stabiliz-
ing set into account, whereas the inner loop iterates on
the model parametric samples. Thus, an independent
metamodel is adaptively built for each possible pair of
initial conditions and model parameters so that mixed
effects on the stabilizing set can be described. Finally,
all the metamodel samples are analyzed together to get
a probabilistic analysis of the PI/PID stabilizing region
on the controller parameter domain.As a result, the sub-
set of PI/PID controllers assuring a robust stabilization
of the nonlinear closed-loop system is identified.

It can be noticed that estimating the stabilizing set
requires a priori knowledge about the controllable set
Ct , i.e., the set of initial conditions from which it is
possible to control the open-loop system to the desired
set-point in a given time t . The algorithm to estimate
the controllable set is given in “Appendix C.”

Table 1 Input and state variable values for the trivial stable equi-
librium point of the nonlinear system

Inputs Value States Value

Uss 0mU l−1 min−1 Gss Gb mgdl−1

δ Iss 0mU l−1 Xss 0mU l−1

δUGss 0mU l−1 Iss Ib mU l−1

UGss 0mU l−1

4 Case study: blood glucose regulation in type 1
diabetes

The number of people with diabetes had risen from
108 million in 1980 to 422 million in 2014 [64]. Thus,
the global prevalence of diabetes among adults over 18
years of age has risen from 4.7% in 1980 to 8.5% in
2014. The patient of type 1 diabetes is totally dependent
on an external source of insulin to be infused at an
appropriate rate to maintain blood glucose level within
the narrow physiological range of 60–120 mg/dl.

4.1 Nonlinear dynamical model of type 1 diabetes

Many physiological models have been proposed to
describe glucose and/or insulin dynamics in type 1 dia-
betes [6,41]. Among them, the model adopted in this
study is an extended version of the Bergman’s minimal
model [10] denoted as Ext-BMM [38]. Even though
it is rather simple, that model is well known, able to
capture main features of the blood glucose and insulin
dynamics for some known physiological facts and has
been validated by a number of clinical studies, e.g., in
[11]. Thus, it has been frequently adopted to study the
blood glucose regulation problem [41], for instance in
[50,51] for control-related works.

It is essentially a compartmentalmodel consisting of
plasma glucose compartment, remote insulin compart-
ment, and plasma insulin compartment. The meal dis-
turbance dynamics are also considered as an extended
state of the system. System dynamics can be written in
its deviation form as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d (G − Gss )

dt
= −p1 (G − Gss ) − (X − Xss )

(G − Gss + Gb) +UG −UGss
d (X − Xss )

dt
= −p2 (X − Xss ) + p3 (I − Iss )

d (I − Iss )

dt
= −n (I − Iss ) + u(t) + δ I

d
(
UG −UGss

)
dt

= −p5
(
UG −UGss

) + δUG

(14)
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Table 2 Physiological significance and nominal values of model parameters [6]

Parameter Meaning Value Units

p∗
1 Nominal rate of glucose removal from plasma into liver of periphery 0.001 min−1

p∗
2 Nominal rate of insulin disappearance in remote compartment 0.028344 min−1

p∗
3 Rate of insulin appearance in remote compartment 5.035 × 10−5 min−1

p∗
5 Nominal time-to-peak plasma glucose due to exogenous glucose excursions 0.05 min−1

VI Insulin distribution volume 12

n∗ Nominal fractional disappearance rate constant for endogenous insulin 5/54 min−1

Gb Subject’s basal glucose level 81 mgdl−1

Table 3 Meal disturbances Time Meal disturbance δUG

Breakfast From 8 am to 8:30 am δUbreak
G = 0.30mg dl−1.min−1

Lunch From 1 pm to 1:30 pm δU lunch
G = 0.40mg dl−1 min−1

Snack From 4 pm to 4:30 pm δU snack
G = 0.15mg dl−1 min−1

Dinner From 7 pm to 7:30 pm δUdinner
G = 0.25mg dl−1 min−1

where unknowns G, X , I , andUG refer to plasma glu-
cose, remote insulin, plasma insulin concentrations,
and meal disturbance dynamics, respectively. More-
over, Gss , Xss , Iss , andUGss are the values of the state
variables at the equilibrium point or steady-state given
in Table 1. The control input denoted u is the exogenous
insulin infusion per volume required to regulate the
blood glucose concentration, so u(t) = UI (t)/VI with
UI (t) the exogenous insulin infusion and VI the insulin
distribution volume, which is a patient-dependent char-
acteristic. The meal disturbance activation input to
reproduce meal ingestion and the exercise net effect
are represented by two step functions of finite duration
denoted δUG and δ I , respectively.

The model depends on seven parameters p1, p2, p3,
n, p5, VI , and Gb, which are defined and quantified in
Table 2 [6]. It can be highlighted that here VI and Gb

are considered as deterministic values, whereas p1, p2,
n, and p5 can potentially be uncertain and only nominal
values p∗

i and n
∗ are given in Table 2. Indeed, discrep-

ancies of physiological parameters have been observed
between individuals as inter-patient variability [12,30].
But also, a given individual could present day-to-day
variation as intra-patient variability [20,48]. Therefore,
parameters p1, p2, p5 and n are modeled as uniform
random numbers on a domain with ±20% variation
from the nominal values following [49].

To provide simple and clear visualization, results
based on the innovative strategy are first shown for a
nominal PI controller. All results for kp are given in
10−1 mUmg−1 min−1, for ki in 10−1 mUmg−1 min−2

and for kd in 10−1 mUmg−1.

4.2 Meal disturbance and exercise simulation setup

For a given set of PI/PID controller parameter values,
the blood glucose concentration will be studied during
a time slot of 20 hours, from 4 am to 12 am. During
that period, four meal disturbance inputs (meal intake)
are considered as detailed in Table 3 and illustrated
in Fig. 4. Additionally, moderate-intensity exercise is
considered from 11 am to 12 am. The effect of this
single exercise bout on plasma insulin concentration
is characterized as a direct disturbance on the insulin
dynamics through a step change with a magnitude of
1.5mU l−1 min−1 applied to δ I [27].

4.3 Nominal stabilizing set by the MiVor algorithm

Estimating stabilizing sets based on linearization could
lead to a lack of capacity to regulate the blood glucose
concentration within the required range and a risk of
huge oscillations, as exposed in “AppendixA.”Toover-
come these drawbacks, theMiVor strategy based on the
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Fig. 4 Meal disturbance simulation setup. Four meal distur-
bance inputs (meal intake) are considered: breakfast at 8 AM,
lunch at 1 PM, a snack at 4 PM, and the dinner at 7 PM. These
meal intakes approximate a common daily routine of an average
person

nonlinear model of the system is used here for nominal
PI and PID controllers. In order to present the results in
a general way, PI and PID controller parameters as well
as the characteristic time of the stabilizing regions will
be normalized. For instance, normalized controller’s
proportional gain, k p ∈ [0, 1], can be obtained as fol-
lows: k p = (kp − kpmin)/(kpmax − kpmin) where kp is
the value of the proportional gain in the original range,
kpmin and kpmax are the minimum and maximum val-
ues kp can take, respectively. Same procedure applies
for ki and kd to obtain ki ∈ [0, 1] and kd ∈ [0, 1].
The normalized stabilizing time of the controllers sta-
bilizing region, denoted as T , is defined as the char-
acteristic time of the stabilizing regions divided by the
system’s open-loop setting time, defined as the time
elapsed from the application of a step input to the time
at which the open-loop system output has entered and
remains within an error band of 1% of the new steady
state. For the system described by Eq. (14), this time
turned out to be t = 5000 min.

4.3.1 PI controller case

First, a PI controller for the nominal case of the non-
linear system given by the set of equations (14) is ana-
lyzed. The parametric domains for kpPI and kiPI are
[0, 0.1] and [0, 6 × 10−6], respectively, while kdPI is
set to 0. The main control objective is to drive the
blood glucose level back to its nominal value (80mg/dl)
within 240 min after a meal disturbance appears.

A convergence analysis of the MiVor results with
respect to straightforward Monte Carlo reference solu-
tion is presented in “Appendix B.” Only metamod-

els considered as converged are exposed herein. They
are generated from an initial dataset of 10 sample
points and 120 additional points designed with the
adaptive MiVor scheme. In “Appendix B,” it is shown
that, thanks to the MiVor algorithm, sample points for
couples (k pPI , kiPI ) within the parameters domain for
the evaluation of the Ext. BBM system performance
is automatically located around the stabilizing region
(i.e., the area of interest). Furthermore, only 150 sample
points located via MiVor lead practically a 100% accu-
racy in the stability region classification, with respect
to an uniform (and non-adaptive) evaluation of 20,000
points in the parameters domain.
Stability analysis at T = 1. In Fig. 5a the L̂LE meta-
model at T = 1 is depicted with the black dashed line
representing the boundary between positive and nega-
tive values. It is noteworthy that the smallest LLE value
is not located in the middle of the stabilizing region
but slightly shifted to the bottom left-hand side cor-
ner, as indicated by the red dot. This differs from the
result based on the linearization approach exposed in
“Appendix A.” In fact, using a linear-based approach
led to a PI controller parameters set that is located out-
side the nominal stabilizing region adopting the non-
linear approximation. The implication of this result is
that the so-called nominal linear PI controller (NomL-
PI) produces an oscillatory response of the nonlinear
closed-loop system (see Fig. 13 in “Appendix A”).

In Fig. 5b, from the L̂LE information, the normal-
ized parametric space K is classified into the regions
producing a stable closed-loop system response repre-
sented as a gray subdomain, and the unstable behavior
colored in red. Again, in comparison with linearized
results (see “Appendix A”), it can be observed that the
nonlinear stabilizing region is much smaller than the PI
stabilizing region considering the nominal linearmodel
(NomL-PI controller).
Stability analysis for different stabilizing times. Con-
trary to linearization approaches, the analysis of stabil-
ity based on the LLE may depend on the time frame
in which the system internal stability is observed. Con-
sequently, varying the time of interest could affect the
estimation of the PI stabilizing region. PI stabilizing
regions obtained for times T = {1, 0.3, 0.2, 0.1} are
shown in Fig. 6. It can be noticed that the PI stabiliz-
ing region shrinks when the time of interest is smaller.
Thus, the stabilizing region is the smallest set when
T = 0.2. The localization of the minimum LLE value
also changes as the analysis time varies, even though,
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Fig. 5 Stability analysis
based on the nominal
nonlinear model for the PI
controller (NomNL) at
T = 1 (black dashed line)
compared to the linearized
models for nominal
NomL-PI controller (blue
dotted line): a L̂LE values b
surrogate classification into
stable (gray) and non-stable
(red) regions. The red dots
denote the location of
minimal L̂LE value. (Color
figure online)

Fig. 6 PI stabilizing set at
different times: L̂LE at a
T = 1, b T = 0.3, c
T = 0.2, d boundaries
between stable and
non-stable regions for
different values of T . Red
and gray regions represent
the unstable and stable
regions, respectively, for the
case T = 1. Red symbols
and the blue dot denote the
location of minimal L̂LE
values. (Color figure online)

for all the simulated cases this minimum LLE value is
located near to the bottom left-hand side corner of the
PI controller domain. The normalized parameters cor-
responding to minimum LLE value for each case are
detailed in Table 4.

From Fig. 6d, it can be noticed that at T = 0.2, the
size of the PI stabilizing region has significantly shrunk
compared to the set at T = 1. It can be established that
below T = 0.1 the stabilizing region almost vanishes
as shown in Fig. 7a. The PI controller parameters are
reported in Table 4 and illustrated as blue dots in Fig. 7.
A zoom on the boundaries of the stabilizing domains
is presented in Fig. 7b. The stabilizing set obtained at
T = 0.1 is not contained by the other stable regions,

Table 4 NL-PI controller parameters tuned from the minimum
LLE computed at different normalized stabilizing times

NL-PI controller parameters
T k pPI kiPI

1 0.133 0.083

0.3 0.072 0.015

0.2 0.061 7.613 × 10−5

0.1 0.036 2.633 × 10−6

highlighting the dependency of the analysis on the time
at which system’s internal stability is studied. As L̂LE
is positive for almost the whole parametric domain, as
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Fig. 7 PI stabilizing set at
T = 0.1: a L̂LE, b
comparison of the location
of minimal L̂LE value at
T = 0.1 (blue point) with
respect to the locations at
T = {1, 0.3, 0.2} (red
symbols). Zoom of Fig. 6d.
(Color figure online)

Fig. 8 PID stabilizing sets
at a T = 0.048 and b
T = 0.1. Black dots denote
the location of min(L̂LE).
(Color figure online)

Table 5 MiVor-PID controller parameters for the nominal case

MiVor-PID controller parameters

T k pPID kiPID kdPID

Nominal 0.1 0.208 0.025 0.357

0.048 0.197 0.114 0.372

illustrated in Fig. 7a, adopting a PI controller for the
nonlinear problem of interest appears insufficient as
it is not possible to stabilize the closed-loop control
system at times lower than T = 0.1 (i.e., 8.3 h). In
fact, this time interval is too long for the blood glu-
cose regulation problem, which includes perturbations
around every 4 h due to meal intake or physical activity
within the daily routine. Therefore, these results open
the door for adopting better a PID controller including
the derivative gain kd in order to enhance the closed-
loop control system performance.

4.3.2 PID controller case

The stabilizing set for the PID controller with nomi-
nal values of the model parameters is estimated with
the surrogate model based on 30 initial sample points

equally distributed over the normalized parametric
domain and additional 170 points obtained with the
adaptive MiVor scheme. The parametric domain is
defined as: kpPID ∈ [0, 1], kiPID ∈ [0, 6 × 10−2], and
kdPID ∈ [0, 10]. The PID stabilizing sets considering
T = 0.1 and T = 0.048 (t = 240 min) are repre-
sented in Fig. 8a, b, respectively. L̂LE values inside the
stable region are depicted, whereas positive values are
not depicted for sake of clear visualization. It can be
noticed that only a slight difference in size and shape
between both PID stabilizing sets is obtained.However,
L̂LE profiles significantly differ within the stabilizing
set leading to a large difference in the localization of
the minimal L̂LE values, optimal normalized parame-
ters are detailed in Table 5 for both cases. Besides, it
can be seen that in the case of the PID stabilizing region
at T = 0.1, the amplitude of the negative L̂LE values
is higher, whereas at T = 0.048 there are more PID
controller parameters near to the instability due to the
proximity of the L̂LE values to zero. As expected, for
both cases, a larger kdPID results in a larger size of the
stabilizing set projected onto the plane k pPID − kiPID ,
as observed by other authors for linear applications
[31,32].
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Fig. 9 Robust stabilizing
regions for PI controller
considering initial condition
and model uncertainty:
L̂LEi j at a T = 0.2 and c
T = 0.3, probability of
belonging to stabilizing
class at b T = 0.2 and d
T = 0.3. The dashed black
line delimits the stable
(gray) and unstable (red)
regions, with unstable
region defined as the

domain for which L̂LE > 0.
Red dots denote the location
of the minimal value of
L̂LE. (Color figure online)

Fig. 10 Robust stabilizing
regions for PID controller
considering initial condition
and model uncertainty:
L̂LEi j at a T = 0.048 and c
T = 0.1, probability of
belonging to stabilizing
class at a T = 0.048 and c
T = 0.1. Black dots denote
the location of the minimal
value of L̂LE. (Color figure
online)
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4.4 Robust stabilizing set by the MiVor algorithm

In this section, the extended method to compute the
PI/PID stabilizing region of nonlinear systems includ-
ing the effect of uncertain initial conditions and model
parameter p is investigated for the similar nonlinear
model defined by Eq. (14). The controllable set is esti-
mated considering T = 0.1 as reference time. For sake
of compactness, only results considering mixed effects
of initial conditions and model parameters are exposed
herein. However, similar strategy can be developed for
investigating only one of these effects.

4.4.1 PI controller case

In the previous section, it was concluded that a PI con-
troller is not enough to regulate the blood glucose level
to its nominal value in a practical time interval. For sure,
this result is not expected to change when considering
the effect of the initial conditions and model param-
eters uncertainty. However, for comparison purposes,
probabilistic stabilizing regions are computed for a PI
controller to investigate how they are affected by uncer-
tainties in terms of size and shape at T = {0.3, 0.2}.
The controller parameter space is defined as kpRob−PI ∈
[0, 0.03] and kiRob−PI ∈ [0, 9 × 10−5].

The mean metamodels estimated over 300 meta-
models are shown in Fig. 9a, c for T = 0.2 and
T = 0.3, respectively, where the boundary between
positive and negative LLE values is delimited by the
transition from the light to the dark red color (positive
values). The boundary of the LLE reference solution at
T = 0.3 accounting for the nominal model parameters
is plotted (dashed line) for comparison purposes. The
minimal values of L̂LE, considered as the controller
tuning criterion, are visualized as red dots. It can be
noticed that the position of the two minimal values is
practically coincident. In Fig. 9b, d the probability of
belonging to stabilizing class for T = 0.2 and T = 0.3
is presented, and the probability maps are very similar
for both cases.

As a side note, a similar analysis considering uncer-
tainties can be done based on a linearization approach.
The results exposed in “Appendix A” show that a
robust linear-based approach provides significantly
smaller stabilizing sets than the nominal linear case,
buy anyway highly different from the robust stabiliz-
ing set obtained considering the nonlinear approxima-
tion adopted in this work. Then, overestimating the PI

Table 6 MiVor-PID controller parameters considering the nom-
inal case and the initial conditions and parameter uncertainties
effects at different times

MiVor-PID controller parameters

T k pRob−PID kiRob−PID kdRob−PID

Robust 0.1 0.246 0.008 0.659

0.048 0.281 0.014 0.891

controller stabilizing regions could produce a practical
stabilizing time for the uncertain nonlinear system.

4.4.2 PID controller case

Considering similarly uncertain initial conditions and
model parameters, the probabilistic stabilizing regions
are evaluated over the parametric domain kpRob−PID ∈
[0, 1], kiRob−PID ∈ [0, 6×10−2], and kdRob−PID ∈ [0, 10].
Average metamodels L̂LE evaluated at T = 0.048 and
T = 0.1 over 300 generated metamodels are shown in
Fig. 10a, c, respectively. The probability of belonging
to stabilizing regions is given in Fig. 10b, d. It can be
noticed that, as expected, the PID stabilizing regions
differ from the nominal case, which is given in Fig. 8
both in terms of size and shape. Including uncertainties,
the stabilizing region has reduced its size. The locations

of minimal values of the average metamodel L̂LE are
visualized by black dots as detailed in Table 6. Their
positions do not significantly differ for the two time
intervals, but they do from the ones without consid-
ering uncertainties (cf., the nominal in Table 5). The
time T = 0.048 (Fig. 10a, b) is associated with a very
small stabilizing region, thus being the minimal time
for which it is possible to robustly stabilize the closed-
loop nonlinear system when adopting a PID controller.

The output of the closed-loop dynamical system for
the robust PID controller is investigated for the meal
disturbance and exercise bout defined in Sect. 4.2. The
parameters p1, p2, p3 and n are modeled as random
with uniform distributions on a domain with 20% vari-
ation from their nominal values. 1000 samples are used
to represent them. It can be seen in Fig. 11 that the con-
troller performs very well (Fig. 11d–h), and it is able
to stabilize the blood glucose level within the next 2 h
after a disturbance appears independently of the value
of the random parameters. Besides, it can be noticed
that optimizing the controller parameter, using the LLE
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Fig. 11 Closed-loop
control system response for
the robust PID controllers
applied to the nonlinear
Ext-BMM considering
model parameters
uncertainty

T = 0.1

(a) Control action

T = 0.048

(e) Control action

(b) Concentration of remote insulin (f) Concentration of remote insulin

(c) Plasma insulin concentration (g) Plasma insulin concentration

(d) Blood glucose concentration (h) Blood glucose concentration
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estimations for T = 0.1 (Fig. 11a–d) or T = 0.048
(t = 240 min) (Fig. 11e–h), provides proficient and
similar controllers in both cases.

As a conclusion, it can be said that, using the MiVor
algorithm, it is possible to effectively classify the con-
troller space, evenunder uncertainties,which are highly
critical for the glucose control as for many control
applications.

5 Conclusions

A computational framework based on a machine learn-
ing algorithm has been proposed in this paper to esti-
mate the PID stabilizing set of closed-loop (uncer-
tain) nonlinear dynamical system. It was shown that
using linear approximation could easily lead to unsta-
ble responses of the closed-loop system. Therefore,
the computation of the stabilizing set should be based
on the original nonlinear model, thus guaranteeing a
proper evaluation of the internal stability properties.
To make the computation of the PI or PID stabilizing
viable, the largest Lyapunov exponent (LLE) has been
chosen as the system’s internal stability indicator and
the MiVor algorithm was adopted to base the estima-
tion on very few sample points. The capabilities of the
approach have been demonstrated by computing the PI
andPIDstabilizing sets for the bloodglucose regulation
problem in type 1 diabetes patients. Finally, the mini-
mum LLE has been used as a tuning rule for the PI and
PID controllers leading to efficient closed-loop systems
even under uncertainties. The proposed approach has
been thoroughly investigated with an extensive numer-
ical study for its application in blood glucose control.
It appears flexible and proficient for nonlinear con-
trol systems under uncertainty. Hence, it might also be
applicable to other applications with moderate numer-
ical efforts. However, since the framework relies on
heuristic methods, its performances need to be care-
fully checked when utilized for new systems.
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a copy of this licence, visit http://creativecommons.org/licenses/
by/4.0/.

Appendix A: controller design based on lineariza-
tion approach

Controller stabilizing regions for nonlinear applica-
tions are commonly estimated based on the lineariza-
tion of the governing system equations around a stable
equilibrium point. Thus, in this appendix, Kharitonov’s
theorem [8,35] is adopted to compute the PI controller
stabilizing set when applied to the blood glucose con-
centration regulation problem in patients with type 1
diabetes, considering the model given by Eq. (14) with
the exogenous insulin infusion per volume u as control
input.
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Fig. 12 PI stabilizing sets based on linearization around an equi-
librium point

The nonlinear model is linearized in an equilibrium
point denoted xss = {Gss, Xss, Iss,UGss }, which is
the trivial solution corresponding to zero input values.
The equilibrium state is detailed in Table 1, where Gb

and Ib are patient-specific constants given in Table 2.
The linear relation is transformed from time to fre-
quency domain using Laplace transformation. The
transformations of G(t) and u(t) are denoted G̃(s) and
Ũ (s), respectively, and they depend on the frequency
s. Based on the Kharitonov theorem, the set of the sta-
bilizing PI controllers is estimated from the expression
of the transfer function P defined as follows:

P(s) = G̃(s)

Ũ (s)
= −0.004078

s3 + 0.1219s2 + 0.002745s + 2.624 × 10−6 .

(15)

The Kharitonov theorem addresses the stability prob-
lem of interval polynomials [15]. Thus, it can be con-
sidered as a generalization of the Routh–Hurwitz sta-
bility test, which tackles polynomials with fixed coeffi-
cients, to study the stability of polynomials with uncer-
tain coefficients. The resulting normalized nominal PI
stabilizing set over the values k pPI and kiPI is visualized
in Fig. 12.

Considering an uncertainty up to 20 % in the trans-
fer function coefficients, a robust set of PI controllers
capable of facing the random challenge is estimated.
It can be observed that considering the system uncer-
tainty, the size of the PI stabilizing region is largely
reduced as previously observed in [32,33,47].

Controller parameters are designed following the
non-fragile tuning criterion, i.e., avoiding PI controller
values close to instability in the k pPI -kiPI plane [33].
Then, parametric values are selected at the center of
the largest circle inscribed inside the stabilizing region.

For the nominal case referred to as the nominal-linear
PI controller (NomL-PI), the controller parameters are
kNomL-PI
p = 0.041 and kNomL-PI

i = 2.280 × 10−4, rep-
resented by the red square. For the robust design called
the robust-linear PI controller (RobL-PI), the PI con-
troller parameters represented by the red dot, following
the same non-fragile criterion, are kRobL-PIp = 0.022
and kRobL-PIi = 1.170 × 10−4.

These stabilizingparameters have thus beendesigned
from a linearization of the nonlinear system. A simu-
lation is performed to verify whether controllers per-
form indeed satisfactorily considering the nonlinear
Ext-BMM model as given in Eq. (14).

The closed-loop variability response is investigated
adopting the simulation setup for the meal disturbance
and exercise bout specified in Sect. 4.2 assuming the
four model parameters p1, p2, p3 and p5 are random
numbers with uniform distribution between 0.8 and 1.2
times their nominal values.

Results obtained from1000 samples are displayed in
Fig. 13a–d for the NomL-PI controller and in Fig. 13e–
h for the RobL-PI controller.

The control input, which is the exogenous insulin
infusion per volume required to regulate the blood glu-
cose concentration, is shown in Fig. 13a, e for the
NomL-PI and RobL-PI controllers, respectively. It can
be seen that the robust controller provides a control
input with much less fluctuation even for important
variations of the model parameters. Similar observa-
tions can be done for the remote insulin X and the
plasma insulin concentration I in Fig. 13b, f and c,
g. The main interest is on the control output, and the
plasma glucose G is illustrated in Fig. 13d, h. It can
be seen that the control output shows large oscilla-
tions and neither NomL-PI nor RobL-PI controllers are
able to maintain the blood glucose within the hypo-
/hyperglycemia limits considering the nonlinear model
for the applied disturbances. Additionally, the closed-
loop system considering the nonlinear model seems to
never reach the steady state before the appearance of
next disturbances. Thus, a PI controller able to robustly
preserve the stability of the linearized closed-loop sys-
tem is not enough to fulfill the blood glucose regulation
control objective.
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Fig. 13 Responses of the
closed-loop control system
for NomL-PI and RobL-PI
controllers

NomL-PI RobL-PI

(a) Control action (e) Control action

(b) Concentration of remote insulin (f) Concentration of remote insulin

(c) Plasma insulin concentration (g) Plasma insulin concentration

(d) Blood glucose concentration (h) Blood glucose concentration

Appendix B: MiVor algorithm convergence test

In this appendix, the convergence behavior of the
MiVor technique for the nominal nonlinear PI con-

troller stabilizing case is exposed. The convergence of
the surrogate model is checked in comparison with a
reference solution obtained from nref = 20,000 points
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Fig. 14 MiVor convergence
study for the PI stabilizing
region at T = 0.2. a Sample
positions of the metamodel
over the parametric space,
b convergence of the two
error metrics over the
number of samples
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Fig. 15 MiVor convergence
for the PI controller at
T = 0.15. a Positions of the
150 metamodel samples
over the parametric space,
b convergence of the two
error metrics over the
number of samples
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uniformly distributed over the parametric domain.
These points are split between the number of refer-
ence points in the stabilizing region denoted n+

ref and
the number of reference points which yield an unstable
result denoted n−

ref such that nref = n+
ref + n−

ref . The
accuracy of the metamodel is estimated through the
point-wisemetrics a−

p and a+
p , which describe the num-

ber of points in percent of n−
ref and n+

ref , respectively,
which are accurately classified by the metamodel.

From an initial set of 10 sample points uniformly
distributed over the parametric domain, 140 points are
added to the dataset using the adaptive MiVor scheme.
Due to the randomness of the adaptive scheme, the
metrics are averaged over 10 independent runs of the
scheme. Sample positions and metamodel visualiza-
tions are randomly picked among the set of results.

The surrogate approach is validated for the nomi-
nal controller at T = 0.2 as shown in Fig. 14. The
reference classification between non-stabilizing region
in red and stabilizing domain in gray for the reference
solution is depicted as well as MiVor sample points in
Fig. 14a. Amajority of them are found around the stabi-
lizing region. The averaged convergence of the metrics
is shown in Fig. 14b. It can be seen that after around
70 samples both indicators reach a value of around

99% correctly classified points. However, the stabiliz-
ing region of that example is rather large as shown in
Fig. 14a, and the next study looks at a case with a small
stabilizing domain in order to investigate the robustness
of the algorithm for a more challenging application.

Performances of themetamodel for the nominal con-
troller at T = 0.15 are shown in Fig. 15. The stabilizing
and non-stabilizing regions obtained for the reference
solution are highlighted in gray and red, respectively,
over the parametric domain in Fig. 15a. It is visible
that the stabilizing region is smaller in this case. MiVor
sample points are depicted in Fig. 15a. The averaged
convergence results of the error metrics are shown in
Fig. 15b. It can be observed that due to the small size of
the stabilizing domain, initial dataset comprises none
sample within the stabilizing region, so the a−

p value
is initially zero, whereas a+

p is at 100%. After around
40 observations, a first sample with stabilizing behav-
ior is found and a+

p starts increasing. After around 70
samples the metric value is stabilized at around 97%
accurately predicted reference points. It can be recog-
nized that the adaptive algorithm samples particularly
around the stable region, creating a metamodel with
high local accuracy in that domain.
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Thus, the chosen MiVor algorithm appears robust
even for challenging scenario. For considered cases,
150 samples are enough to reach the MiVor algo-
rithm convergence. Thus, all the MiVor results pre-
sented in this paper are performed taking 150 sam-
ples within the two-dimensional parametric space.
For three-dimensional application, 150 samples are
included in the dataset.

Appendix C: Controllable set computation

The controllable set can be approximated accurately
with both a bounded error and a risk failure quantifi-
cation using the randomized algorithm introduced by
[28], as summarized in Box 1. The same algorithmwas
adopted by [29] for the controllability analysis and ref-
erence trajectories design of some semi-batch reactors.

Given: A final condition set Ωτ to be reached in a
given t = τ , an error ε and a fail risk δ, the admis-
sible space-state set X ⊆ R

n and the admissible
control action set U :
1. Find the sample size N by the Chernoff

inequality N ≥ (1/2ε2) log(2/δ).
2. Get N samples x � Uniform(X ) and u �

Uniform(U).
3. Obtain the solution x(τ ) in accordance with

the system’s model ẋ = f (x, u, d, p).
4. Evaluate whether x(τ ) ∈ Ωτ .
5. Return an estimation of the controllable set

Ct (Ωτ ), with probability PN = (1 − δ), such
that,

PN
{
x ∈ X N : ∣∣P(Ct (Ωτ )) − P̂(Ct (Ωτ ); x)

∣∣ > ε
}

(16)

≤ 2 exp(−2Nε2).

Box 1: Controllable set computation using a random-
ized algorithm.
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