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Abstract The extensive proliferation of recent coro-
navirus (COVID-19), all over the world, is the out-
come of social interactions throughmassive transporta-
tion, gatherings and population growth. To disrupt the
widespread of COVID-19, a mechanism for social dis-
tancing is indispensable. Also, to predict the effective-
ness and quantity of social distancing for a particu-
lar social network, with a certain contagion, a gener-
alized model is needed. In this manuscript, we pro-
pose a social distancing mediated generalized model
to predict the pandemic spread of COVID-19. By con-
sidering growth rate as a temporal harmonic function
damped with social distancing in generalized Richard
model and by using the data of confirmed COVID-19
cases in China, USA and India, we find that, with time,
the cumulative spread grows more rapidly due to weak
social distancing as compared to the stronger social dis-
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tancing, where it is explicitly decreasing. Furthermore,
we predict the possible outcomes with various social
distancing scenarios by considering highest growth rate
as an initial state, and illustrate that the increase in
social distancing tremendously decreases growth rate,
even it tends to reach zero in lockdown regimes. Our
findings not only provide epidemic growth scenarios as
a function of social distancing but also provide a mod-
ified growth model to predict controlled information
flow in any network.

Keywords COVID-19 · Growth models · Epidemiol-
ogy · Network formation and growth

1 Introduction

The prevention from coronavirus (COVID-19), all over
theworld, has become an utmost challenge formankind
[1–6]. It has cost hundreds of thousands of lives and
affected millions, and still growing with its ruthless
nature [7]. In 14th century, the bubonic Black Death
took nine years to proliferate across Europe because it
was restricted by the average 1.5 km daily travel disper-
sion of that time [8]. However, the recent COVID-19
has no such limitations and it just took days to spread
all over the world. The reason behind such frighten-
ing difference is in the increase in social interactions
stimulated by massive transportation networks, gath-
erings and overall population growth, which led to an
aggressive spreadofCOVID-19 [6,9,10]. Theonlyway
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to minimize social interactions is to implement social
distancing mechanism, or policies, and, more impor-
tantly, closing or decreasing mobility in transportation
networks–especially in social networks where the con-
tagion factor is higher [11–14].

Over the years, the research on network epidemi-
ology [15] has enabled us to analyze the growth of
pandemic processes by developing a wide range of
numerical methods and models [16–19]. These mod-
els notably include SIR [20], SEIR [21], and neural
network-based control models [22], which are vali-
dated for the analysis and short-term prediction of
various previous [23–26] and recent pandemics, like
COVID-19 [27–32]. However, the mechanistic models
are quite fragile because of the dependence on underly-
ing spatio-temporal microscopic processes, which are
often missing in ongoing metapopulation pandemics
[33,34].

Meanwhile, the phenomenological processes—which
are more robust in calibration with empirical data
[35]—like exponential, generalized exponential, logis-
tic and Richard growth models have been validated to
provide the dynamical analysis of the pandemic, like
Black Death, Ebola virus, influenza, Zika virus, SARS,
MERS [36–39], even for COVID-19 [40,41]. Among
them, generalized logistic and Richard models, in spite
of crucial dependence on enough empirical data, pro-
vide more reliable analysis than exponential models,
because of the dynamical saturation at the later stages
of pandemic [42,43]. Although, the phenomenological
models have been sufficiently tested, but there is an
absence of a standardized model to incorporate the ele-
ment of social distancing with respect to the growth
rate. Thus, to successfully design, apply and moni-
tor social distancing mechanism, an effective as well
as generalized mathematical model is needed to pre-
dict the usefulness of the social distancing for local
(national) or non-local (global) in less or more conta-
gious social networks.

In this manuscript, we proposed a social distanc-
ing induced generalized model to predict the growth
of COVID-19. By modeling daily growth rate as a
time dependent harmonic function, which is damped
with the distance between each entity and its surround-
ing entities in a social network, we study the effects
of social distancing (or lockdown) on the cumulative
growth of the spread. We illustrate the comparison
between state of the art growth mathematical models
with and without modified growth rate and find that the

modified Richard model, with harmonically modified
growth rate, provides the most reliable growth predic-
tions. By using modified Richard model, in calibration
with empirical data of China, USA and India, we show
that the daily growth rate as well as the total cumulative
number of confirmed cases are (or could) increasing at
weak social distancing factor in each network. How-
ever, the higher values of social distancing are signif-
icantly reducing the growth rate, even can be reduced
to zero in lockdown regime.

2 Social Distancing Mediated Growth Model.

The phenomenological models mainly consist of gen-
eralized growth (GG) model Ṅc(t) = r Nc(t)p, which
at p = 1 yields into simple exponential growth
(EG)model, generalized Richard growth (GRG)model
Ṅc(t) = r Nc(t)p(1 − Nc(t)α/K α), which at α = 1
converts to generalized logistic growth (GLG) model
and further at p = 1 yields in classical logistic growth
(CLM) model [42,43]. Here, (̇) corresponds to the time
derivative and Nc(t) is the cumulative number of con-
firmed cases in any network at time t . p ∈ [0, 1]
accounts for the exponential profile for growth trajec-
tory, which will be constant at p = 0, sub-exponential
at 0 < p < 1 and exponential at p = 1. K accounts
for the total asymptotic capacity, or total number of
nodes in any social network. α is a scaling parameter
and accounts for any asymmetric deviation of logistic
trajectories. In all thesemodels, themost crucial param-
eter is r , which defines the growth rate or the number
of infections per day.

Thegrowth rate r , or the quantity of spread (flow)per
unit time, is the main ingredient to measure the cumu-
lative amount of spread in any network, irrespective of
mechanistic approach or phenomenological methods.
In all of the previous models that are designed to mea-
sure the collective magnitude of the spread, the growth
rate is used as a constant parameter. But, in actual,
growth rate is the factor that varies with time depend-
ing upon the underlying microscopic network param-
eters, especially for meta-populated contagious net-
work where epidemic spread is needed to be measured
with respect to social distancing. Further, in accordance
with the empirical data, daily growth rate r mostly fol-
lows time dependent nonlinear trends rather than lin-
ear trajectories. Therefore, in order to incorporate time
(daily) fluctuation in growth rate, we consider r as a
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Table 1 Social distancing parameter LD categorization

Stages Parametric domains for LD Subdomains Policy description

Self-induced social distancing +1 ≥ LD ≥ 0 LD = +1 Zero distance between network nodes leading to max-
imum spread scenario.

+1 > LD ≥ 0 Self-induced social distancing protocols exist but
there is no force confinement. The level of adapta-
tion of protocols by individuals corresponds to LD
variation between +1 and 0.

Forced confinement (Lockdown) 0 > LD ≥ −1 0 > LD > −1 Forced Confinement (lockdown) scenario where the
social interactions are prohibited. The strength of
forced confinement corresponds to the variation of LD
from 0 and −1.

LD = −1 Extreme lockdown (quarantine) scenario where the
network nodes are so distant from one another that
infection cannot spread.

The categorization of LD is based on the potential social distancing and forced confinement factors, like social gatherings, social
interactions in transportation and educational institutes. It will be based on the policies adopted by the governments

time dependent harmonic function, which is damped
or perturbed over the distance between any node and
its neighboring node(s),

d2r(t)

dt2
= l21r1(t) + l22r2(t) + l23r3(t)....l

2
KrK (t)

=
K∑

i=1

l2i ri (t) = L2
Dr(t) (1)

where, K is the total number of nodes (entities) in the
network. r(t) is total growth rate of the system defined
over the transmission rate of each entity of network
to its neighboring entities ri (r), i → [1, 2, 3, ..., K ].
Similarly, LD is the effective distance between the
network nodes, which is defined over the distance
(or the strength of social interactions) of each entity
in the network with its surrounding entities li , i →
[1, 2, 3, ..., K ].

Wenamed LD ∈ [−1, 1] as social distancing param-
eter, the value of which can be ranged from −1 to 1,
as described in Table 1. Here LD = 1 corresponds
to the zero distance between nodes leading to maxi-
mum spread scenario. 1 > LD > 0 means that there
is social distancing but still the infection can be trans-
ferred. It can be related to a situation where protocols
for social distancing are present but there is no lock-
down. 0 > LD > −1 represents a scenario of lock-
down, means there is a considerable distance between
each entity. In this case, the spread rate, instead of
increasing, will decrease to zero from the initial infec-
tions state Nc(0) = N0. Finally, LD = −1 corresponds
to the quarantine situation and there is no chance of

social interaction. Both LD = ±1 are ideal scenarios
and in analogy, one can consider that there is a video
which is going to be viral on internet and we want to
stop it. Here LD = 1 means, we by ourselves share to
all end-users and for LD = −1means, we immediately
shutdown the whole internet.

We consider the particular solution for second-order
harmonic differential equation for r(t), which yield
in a hyperbolic function r(t) = r0sinh(LDt), where
r(0) = r0 is the initial growth rate at t = 0. With per-
turbed r(t), the modified generalized growth (MGG)
model will be read as Nc(t) = r0sinh(LDt)Nc(t)p,
which, similarly at p = 1 yields in modified expo-
nential growth (MEG) model. The modified Richard
growth (MRG) model can be expressed as,

dNc(t)

dt
= r0sinh(LDt)Nc(t)

p
(
1 −

(
Nc(t)

K

)α )
, (2)

which again at α = 1 yields inmodified logistic growth
(MLG) model.

3 Conventional phenomenological models and
modified growth model

The comparison between EG, GG, GLG, GRG and
MRG models is illustrated in Fig. 1a and compar-
ison between modified models (MEG, MGG, MLG
and MRG) is presented in Fig. 1b, by using data of
cumulative COVID-19 growth in China as an example.
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(a) (b)

Fig. 1 Conventional models in comparison with modified
Richard model. a The simulated of cumulative growth Nc(t)
versus time for comparison between EG (magenta), GG (green),
GLG (purple), GRG (orange) and MRG (blue) models with
respect to the data of real confirmed COVID-19 cases in China
(CN), red curve. It can be seen that the MRG model shows more
accurate fit to the real data at given parameters. b The compar-
ison between cumulative growth Nc(t) modified models (MEG
(magenta), MGG (green), MLG (brown) and MRG (blue)) with
respect to the real COVID-19 data of China, red curve. Here
LD = 0.12 and = 0.08 are for solid and dashed curves, respec-
tively. It is illustrated that, even with modified daily growth rate
r(t), theMRGmodel showsmore compelling resultswith respect
to COVID-19 growth of China. The remaining parameters are
r0 = 18/day with Nc(0) = N0 = 500, p = 0.48, α = 0.22 and
K = 81000 (with respect of COVID-19 data of China)

(Note: The real COVID-19 data used in the manuscript
was adopted from Refs. [1–5], till August 8, 2020.)
It can be clearly seen that EG model follows a rapid
exponential growth (magenta curve), as expected, and
GG model follows a (sort-of) sub-exponential growth
(green curve) because of p, see Fig. 1a. On the other
hand, both GLG (purple curve) and GRG (orange
curve) models follow delayed cumulative growth pat-
terns, but still they are incomparable with the actual
growth in China at given parameters. However, MRG
model (blue curve), at LD = 0.12 shows almost perfect
regressive growth patterns with respect to COVID-19
data of China, which, at slightly higher social distanc-
ing parameter LD = 0.08 (blue dashed curve), shows
notably delayed growth to the saturated state.

Similarly, in the comparison betweenmodifiedmod-
els (MEG, MGG, MLG and MRG), one can clearly
note that the MRG model still provides a more reli-
able fit to the real data at given parameters, see Fig.
1b. The interesting thing is that LD not only delays the
growth of MRGmodel, but it also reduces the speed of
aggression in all modified models, which further sup-
ports our concept of social distancing induced delay in
phenomenological model.

The both LD and r0 are crucial for the calibration of
modified growth models, as illustrated in Fig. 2, where
the detailed dynamics of MRG, as a function of LD

(a) (b)

(c) (d)

Fig. 2 The dynamics of MRG model with respect to social dis-
tancing parameter LD and initial daily growth rate r0. a and
b are Nc(t) versus time for various r0 (from 1 to 200), at
LD = 0.01 and = −0.001, respectively, where the total net-
work size K = 5000 and initial number of confirmed patients
N0 = 500. It is illustrated that the cumulative growth Nc(t), in
both social distancing LD > 0 and forced confinement domain
LD < 0, crucially depends on the initial daily rate r0. The higher
initial rate r0 causes faster growth (decay) of Nc(t) in LD > 0
(LD < 0) regimes. c) and (d are Nc(t) versus time for LD rang-
ing from −1 to 1, at r0 = 20 and r0 = −60, respectively, where
K = 10000 and N0 = 5000. It further strengthens the argument
of (a) and (b), regarding the effects of initial rate r0 on Nc(t) in
presence of LD . Remaining parameters used in numerical calcu-
lations are same as in Fig. 1

and r0, versus time are shown. In a high social distanc-
ing scenario (i.e. LD = 0.01), the cumulative number
Nc(t) (or total infections) moves from rapid growth to
delayed, or slow, growth trends with higher to lower
initial growth rate 1 ≤ r0 ≤ 200, respectively (see Fig.
2a), which is obvious. However, in lockdown regime
(i.e. LD = −0.001), the Nc(t) will decrease from ini-
tial state, which is N0 = 500, to the zero infection sce-
nario, as can be seen in Fig. 2b. The interesting thing
is that it will decay faster at higher r0 as compared to
low values of r0. It is because the Nc(t) will follow
same initial rate to decay as it is following in growth
scenario. It can be understood through an example that
if we are driving a car at high speed and we suddenly
apply breaks, then we will feel more deceleration as
compared to the case when we apply breaks at a lower
speed.Moredetailed behavior of Nc(t), under influence
of LD , can be seen in Fig. 2c and d, with r0 = 20 and
r0 = 60, respectively. The Nc(t) transforms from fast
growth regime to fast decay regime by changing LD

from +1 to −1, which get more rapid with increase
in r0, see Fig. 2d. It reveals that in growth regime (i.e.
1 ≥ LD > 0), Nc(t) will reach sooner to the maxi-
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mum network capacity K at higher values of LD and
in decay regime (i.e. 0 > LD ≥ −1), Nc(t) will decay
sooner to zero infection state from the initial number
of infections, at lower values of LD . At LD = 0, Nc(t)
will not be modified and will remain equivalent to the
initial number of infections N0.

4 Robust influence of social distancing on
cumulative growth of COVID-19.

The influence of social distancing LD is illustrated
in Fig. 3, where the multiple outcomes of Nc(t) and
r(t) are predicted with various calibrations for LD ,
with respect to the real COVID-19 data of China,
USA and India. With a small increase in LD , Nc(t)
grows rapidly and by strengthening LD the ratio of
growth Nc(t) decreases, as illustrated in Fig. reffig3a,
b and c. The blue curves (at LD = 0.12 for China,
LD = 0.61 × 10−3 for USA, and LD = 0.022 for
India) indicate the growth of cumulative number of
infections matching with the real data. But when we
slightly increase or decrease social distancing parame-
ter LD , the cumulative growth Nc(t) gets significantly
enhanced (rapid) or damped (delayed), respectively, at
a fixed arbitrary network size K . Thesemodifications in
Nc(t) can also be validated from the spectrum of r(t),
shown in Figs. 3d, e and f, where blue curves provide
almost a perfect fit to the real growth rate of infections.
By changing conditions for social distancing, the r(t)
will either reach rapidly or slowly to the maximum net-
work size with increase or decrease in LD , providing
the evidence for the reliability of our model.

It should be noted that the narrow and wide time
spans, or the so-called standard deviation, correspond
to the faster and slower approach to the maximum
network size, which we considered fix and arbitrary
(except for China because we have the state of total
infections) in order to discuss rapid growth patterns.
But it can be changed with the real social/sub-social
network sizes. Further, one can question the notable
variations in the quantitative values of LD for network
of China, USA, and India. It is not only because of
the different network sizes K , but it is also because
of crucial role of r0. With higher r0 and K , a small
change in LD will notably affect the growth trajec-
tory, but for smaller r0 and K , a strong change in
LD will be needed in order to produce similar influ-
ences. In this way, our model provides more flexibil-

ity to map and predict real-time trajectories, see sup-
plementary materials [44] for details. Not only this,
but also by observing different trends for Nc(t), with
respect to LD , one can predict the future growth pat-
ternswith change in current social distancing scenarios.
For example, a slight increase in LD = 0.61 × 10−3

to 1.5 × 10−3 and LD = 0.022 to 0.031, will increase
the daily rate r(t) ≈ 80 × 103/day to 120 × 103/day
and r(t) ≈ 100× 103/day to 130× 103/day for USA
and India, respectively. Similarly, a small decrease in
LD yields in significant decrease in r(t), as illustrated
in Fig. 3d, e and f.

5 Predicting outcomes of COVID-19: Daily growth
rate in forced confinement scenarios

The rapid diffusion in the growth spectrum arrives
in lockdown regime, LD < 0, as illustrated in Fig.
4, where we used MRG model to predict spectrum
of outcomes for r(t) versus various LD ∈ [−1, 1],
by considering the peak value as an initial state. In
the case of China, peak value of r(t) (that we con-
sider) occurs around 5th February. At that peak rate,
which is around r(t) = 4000/day, the MRG model,
at LD = −0.007, exactly follows the decay trend of
COVID-19 in China, which illustrates the effective-
ness of strict lockdown policies of China. Although,
ideal scenarios, i.e. LD = ±1 are realistically impos-
sible, but it can be seen that the scenario for COVID-19
dynamics in China could have been worse (or better)
with relaxation (or increase) in lockdown and social
distancing policies. For example, if LD was varied from
−0.007 to −0.001, the COVID-19 growth tends could
have extended from ≈ 25th February to ≈ 5th April,
even in the lockdown domain. Further increase in LD ,
in LD > 0 regime, could have led the country to worse
scenarios, as illustrated in Fig. 4a.

In the case of USA, so-far, the maximum r(t) ≈
80000/day is occurring around ≈ 20th July, which
can decay to zero around 15th August if it follows
the decay trajectory at LD = −0.001. But it can be
extended to 1st November with an increase in LD to
−0.0001, or it can continue to increase in less social
distancing regime, i.e. LD > 0, as can be seen in Fig.
4b. Similarly, for India, where the growth rate r(t) is
still increasing, the maximum r(t) ≈ 650000/day till
8th August can tend to decay with LD < 0, and can
continue rapid increase with LD > 0, in spite imple-
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(a)

(d) (e) (f)

(b) (c)

Fig. 3 Social distancing induced robust decrease in COVID-
19 cumulative growth. The MRG model versus various LD ,
for growth Nc(t), (a), (b) and (c), and growth rate r(t), (d),
(e), and (f), with respect to the real COVID-19 data of con-
firmed cases in China (CN), USA and India (IND), respec-
tively. The real data of COVID-19 is represented by the red
curves. Magenta, brown, blue, orange, and purple curves cor-
respond to LD = 0.3, 0.2, 0.12, 0.08 and 0.02 in (a) and (d),
LD = 3.5 × 10−3, 1.5 × 10−3, 0.61 × 10−3, 0.38 × 10−3 and
0.13×10−3 in (b) and (e), and LD = 0.061, 0.031, 0.022, 0.014
and 0.009 in (c) and (f), respectively. r0 = 18 and K = 81000

for (a) and (d), r0 = 1300 and K = 25× 106 for (b) and (e), and
r0 = 12 and K = 10×106 for (c) and (f). It can be observed that
at LD = 0.12 MRG model almost exactly follows COVID-19
growth in China at particular initial rate r0. But in the case of
COVID-19 in India and USA, the MRG model, so-far, is show-
ing fit to real at lower values of LD but initial rates r0 are very
high, as compared to the case of China, yielding in rapid growth
of COVID-19. Thus to deal with the rapid growth of COVID-19,
especially in the case of USA, a more effective policies for social
distancing are needed. The other parameters used in calculations
are same as illustrated in Fig. 1

(a) (b) (C)

Fig. 4 Predicting the outcomes of COVID-19 daily growth rate
r0 in forced confinement domain. The growth rate r(t) versus
time with possible outcomes of MRG model from the state of
maximumdaily growth rate ofCOVID-19 confirmcases inChina
(a), USA (b), and India (c) in social distancing LD > 0 and
forced confinement domain LD < 0. Here N0 = 4000 with
K = 82000 for (a), N0 = 80000 with K = 25 × 106 for (b)
and N0 = 65000 with K = 10 × 106 for (c). The red curves
correspond to real COVID-19 data. Black, magenta, brown,
green, blue, orange, and purple curves correspond to LD =

1, 0.01, 0.005,−0.001,−0.007,−0.05 and −1 in (a), LD =
1, 0.1×10−3, 0.01×10−3,−0.1×10−3,−1×10−3,−5×10−3

and −1 in (b), and LD = 1, 0.1, 0.01,−0.001,−0.007,−0.05
and −1 in (c), respectively. It is observed that the increase in
LD towards zero, or decrease in forced confinement policies,
leads to the more rapid growth of daily COVID-19 cases, while
decrease in LD , or more strict force confinement, leads to the
robust decay in daily COVID-19 cases. Remaining parameters
used in numerical calculation are same as in Fig. 1
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mentation of social distancing. In lockdown regime, at
LD = −0.05, the infection growth rate can be zero
around 20th September, but with a slight relaxation in
lockdown with a small increase in LD = −0.007 can
prolong the spread till 22th December, see Fig. 4c. Fur-
ther increase in LD can yield in rapid and frightening
spread of COVID-19. Thus, to stop the spread, policies
with higher social distancing factor LD are needed.

6 Conclusion

To conclude, we propose a social distancing mediated
generalized model to predict the spread of COVID-19,
with respect to social distancing and lockdown regimes.
By considering growth rate as a time variant func-
tion of social distancing in generalized Richard model,
we illustrate different possible outcomes of cumula-
tive growth (total number of infections) and growth
rate (infection per day) in different social distancing
and lockdown scenarios. In weak distancing regime
(1 > LD > 0), the cumulative growth aswell as growth
rate appears to be delayed with LD > 0, but it will still
be increasing. However, in strong distancing or in lock-
down regime (0 > LD > −1), the infection spreadwill
not only stop but will also decay from its initial state
with time. Further, by using our model, we predict dif-
ferent future scenarios (especially for the COVID-19
spread in USA and India) with highest growth rate as
initial state and show that, in absence of strict lockdown
policies, the COVID-19 pandemic spread will be worst
and prolonged. Thus, in order to contain the spread, in
any contagion network, strong social distancing polices
are necessary. Furthermore, ourmodel is not only effec-
tive in predicting the influence of social distancing for
epidemic spreads, but it can also be validated for con-
trolling information flow in any network.
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10 programming application (https://www.wolfram.com /math-
ematica/) to solve equation (2) by considering given parameters
in the manuscript. After generating data, we use graphical appli-
cation OriginPro 9.0 (https://www.originlab. com/) to illustrate
and compare computed results with the empirical data.

Appendix: The influence of r0 on the cumulative
growth Nc(t) and growth rate r(t)

Figure 5 illustrates the cumulative growth Nc(t) and
growth rate r(t) trends for various network sizes K with

(a)

(b)

Fig. 5 (a) Nc(t) and (b) r(t) as function of time for various
initial growth rates r0 and total network size K , for fix social
distancing LD = 0.023. Red curves correspond to real COVID-
19 data of India (IND), and Magenta, brown, blue, orange, and
purple curves corresponds to r0 = 9with K = 80×106, r0 = 10
with K = 20 × 106, r0 = 12 with K = 10 × 106, r0 = 15 with
K = 6 × 106 and r0 = 16 with K = 4 × 106, respectively.
Remaining parameters are same as in Fig. 1 of main text
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different initial growth rates r0, at fixed social distanc-
ing scenario LD = 0.023, by considering COVID-19
data of India. It can be seen that, with higher initial
growth rate r0 = 16, the network size gets shrunk to
K = 4× 106, and for lower rate r0 = 16, the total net-
work size increases to K = 80×106, as can be seen in
Fig. 5a. It is because the growth trajectory is fixed by the
applied social distancing parameter LD , means social
distancing is using same rate to stop the spread as it
was initial state r0, as can also be seen in Fig. 2 of main
text. Therefore, higher r0 will be less effective as com-
pared to the lower rates. It can be interpreted that the
social distancing LD is more effective for higher initial
rates in comparison to lower rates. Similarly, growth
rate r(t) takes more time to grow and decay at lower r0
as compared to the higher initial rate r0, as can be seen
Fig. 5b.
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