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Abstract A homogeneous continuous viscoelastic
beam, describing the dynamics of a base-isolated tower,
exposed to a uniformly distributed turbulent wind flow,
is studied. The beam is constrained at the bottom end by
a nonlinear viscoelastic device, and it is free at the top
end.Aeroelastic forces are computedby thequasi-static
theory. The steady component of wind is responsible
for a Hopf bifurcation, and the turbulent component
induces parametric excitation. The interaction between
the two bifurcations is investigated. Critical and post-
critical behavior is analyzed by perturbation methods.
The mechanical performances of the structure are dis-
cussed to assess the effectiveness of the viscoelastic
isolation system.
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1 Introduction

Slender structures are very sensitive to dynamic actions
induced by wind, which causes a variety of insta-
bility phenomena [1–6]. The instability and bifurca-
tion events can be related to different kinds of exci-
tation. Structures subjected to steady wind are mod-
eled as self-excited autonomous systems, prone toHopf
bifurcations; structures subjected to turbulent wind are
described by parametrically excited non-autonomous
systems, therefore potentially suffering divergence, flip
or Neimark–Sacker bifurcations. Depending on the
nature of the loads, the different kinds of excitation
can interact. Some attention has been devoted in liter-
ature to various interactive aeroelastic phenomena [7–
11]. Other papers are specifically devoted to analyze
galloping versus parametric excitation [12–15], with
particular attention to tall buildings [16–21].

In [12,14], the principal resonance of a single-
degree-of-freedom system with two-frequency para-
metric and self-excitation is investigated via themethod
ofmultiple scales; qualitative analyses are carried out to
determine limit cycles and tori. In [13], analytical inves-
tigations of the system under parametric, self-excited
and inertial excitation are carried out. In [15] the aeroe-
lastic behavior of a planar prismatic viscoelastic struc-
ture, subject to a turbulent wind, is studied. There, a
particular class of cross sections is considered, suffer-
ing sub-critical bifurcation followed by regain of stabil-
ity hard loss of stability phenomenon [22–24]). Among
the slender structures, the galloping-parametric excita-
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tion of tall buildings is an interesting topic. In [16], the
galloping of tall prismatic cantilevered structures, due
to unsteady wind, is analytically studied. The structure
is subjected to multi-harmonic external and parametric
excitation. The multiple-scale method is used to study
the effect of primary and secondary resonances on the
galloping response of the structure. In [17,18,21] and
in [19,20], the parametric, external and self-excitation
of one/two towers under turbulent wind flow are inves-
tigated, with focus on the periodic and quasi-periodic
motions. It is shown that: (i) the unsteady component
of wind can cause a significant decrease of the steady
critical value; (ii) periodic and quasi-periodic motions
exist, according to suitable combinations of the steady
and unsteady wind parameters.

To mitigate the dangerous effects of wind, the pos-
sibility to add control devices to the structure has been
investigated. The aeroelastic control is applied to differ-
ent kinds of structure, as wind turbines [25,26], bridges
[27–30], and, sometimes, tall buildings [31–33]. With
reference to these latter, in [33] the aeroelastic behavior
of base-isolated tall buildings, exposed to a uniformly
distributed steady wind flow, is studied. The passive
control is realized by a viscoelastic base isolation sys-
tem, whose effectiveness is analytically investigated by
parametric analyses.

Here, the effect of a turbulent wind flow acting on
a tower, of square cross section, is analyzed. A passive
control system is introduced, consisting of a viscoelas-
tic device applied to the base of the tower. The interac-
tion between self- andparametrically excited vibrations
is studied, both for the uncontrolled and controlled sys-
tems. A linear stability analysis is carried out to deter-
mine the loci of periodic and quasi-periodic bifurca-
tions. Limit cycles and tori are computed by asymp-
totic and numerical solutions of the bifurcation equa-
tions. The control device is suitably calibrated, aimed
to increase the galloping velocity and to reduce the
amplitudes of the limit cycle and tori. This paper is an
extension of the researches carried out in [15], regard-
ing the interaction between self- and parametric exci-
tation, and developed in [33], concerning the passive
control system. The novelties of the current paper con-
sist of: (a) the base isolation is proposed as a passive
control system of tall buildings, to mitigate the effects
of a turbulent wind, so far developed in [33] against
steady wind only; (b) a new class of cross sections is
studied, with respect to those analyzed in [15], now
manifesting a different scenario triggered by a super-

critical bifurcation. By comparing the present analysis
with that carried out in the literature on the aeroelas-
tic behavior of (uncontrolled) towers under turbulent
wind flow (e.g., [17–21]), other novelties emerge: (a)
the MSM is directly applied to PDE, instead of pro-
jecting them on a selected mode; (b) the bifurcation
scenario is described in a more exhaustive way, by con-
sidering the effects of all the bifurcation parameters in
a large range.

The paper is organized as follows. In Sect. 2, a base-
isolated tower is modeled as a continuous viscoelas-
tic beam under uniformly distributed turbulent wind
flow, for which the equations of motion are formu-
lated. In Sect. 3, the bifurcation equations, ruling the
slow-flow of the amplitude and phase of the involved
mode, are derived via the multiple-scale method. In
Sect. 4, the linear stability analysis is carried out, and
a three-dimensional stability domain is described. In
Sect. 5, a nonlinear analysis of the bifurcation equation
is performed, including derivation of the equations rul-
ing the slow-slow-flow and leading to the birth of a
torus. In Sect. 6, numerical results are reported for a
sample tower, for which an effective base isolation is
designed. In Sect. 7, some conclusions are drawn. Two
appendixes, supplying details, close the paper.

2 Aeroelastic model

The aeroelastic behavior of a tower, of square cross sec-
tion, dimensions D × D, subjected to a turbulent wind
flow of velocity U (t), uniformly distributed along its
height, is investigated.Aviscoelastic continuousmodel
is formulated. The structural model is assumed to be
linear (since, as it is well known, geometric nonlinear-
ities just affect the phase, and not the amplitude, of the
response), while the aerodynamic model is nonlinear.
An aeroelastic passive control is introduced, by isolat-
ing the tower to the base via a nonlinear viscoelastic
device.

2.1 Viscoelastic isolated beam

The tower is modeled by an equivalent homoge-
neous beam, consisting of a planar viscoelastic Euler–
Bernoulli beam, obeying to the Kelvin–Voigt constitu-
tive law. The beam is free at the top, and constrained
at ground by a viscoelastic isolation system, idealized
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Nonlinear dynamics of a base-isolated beam under turbulent wind flow 1531

Fig. 1 Base-isolated beam model under transverse uniform tur-
bulent wind flow

as a rheological model made of a linear elastic spring
of stiffness k in-parallel with a nonlinear dashpot. This
latter is characterized by a linear viscosity coefficient
C1 and a nonlinear van der Pol-like viscosity coefficient
C3 (see [33] for details). A model scheme is shown in
Fig. 1. The relevant equations of motion and boundary
conditions are:

E I (1 + η∂t ) v′′′′ + mv̈ + cev̇ − pa = 0

v′
A = 0

E I (1 + η∂t) v′′′
A + kvA + C1v̇A + C3v̇Av2A = 0

E I (1 + η∂t) v′′′
B = 0

E I (1 + η∂t) v′′
B = 0 (1)

Here: v (s, t) is the transverse displacement at the
abscissa s ∈ (0, l) and time t ∈ (0,∞), with l the
length of the tower; E I is the flexural stiffness of the
beam; m is the mass per unit length; η is the internal
viscous damping coefficient; ce is the external damp-
ing coefficient, accounting for dissipation of the beam
in motionless air; pa (s, t) are aerodynamic loads; a
dash denotes spatial partial differentiation and ∂t or
a dot indicate time partial differentiation. The inter-
nal damping is aimed to model internal dissipation via
an equivalent viscosity. When it is combined with the
external damping, it is able to supply in a consistent (not
empirical) basis, the damping factor ratios (see [24]).
The internal damping plays an essential role in evalu-
ating the critical wind speed of continuous structures
(see [34]).

2.2 Aerodynamic model

The aerodynamic forces are determined according to
the quasi-steady theory, in which data obtained in wind
tunnel static tests are exploited. These experimental
tests are related to rigid cylinders, elastically con-
strained. However, the results are usually considered
valid also for flexible cylinders, representative of real
structures, by assuming that the aerodynamic forces at
the generic abscissa of the cylinder depend exclusively
on the speed of the cylinder at that abscissa (i.e., the
constitutive law of the forces is assumed to be of local
type). In spite this approximation is rather rough and
unrealistic, it is usually accepted to formulate analytical
models of complex structures [1,22,35,36], in civil as
well aeronautical engineering.Moreover, experimental
results relevant to towers [37,38] validate the approach.

By assuming the wind velocity is uniform in space,
the quasi-static theory [39] supplies the forces as non-
linearly depending on the structural velocity v̇ (s, t).

Accounting for
v̇

U
� 1, and considering the cross sec-

tion is symmetric with respect to the wind direction,
forces are given by the odd-power series:

pa = −1

2
�aDU

2

[
A1

(
v̇

U

)
+ A3

(
v̇

U

)3
]

(2)

where �a is the air mass density and Ai are dimension-
less aerodynamic coefficients, depending on the cross
section shape, ofwhich D is a characteristic length. The
aerodynamic forces include all the nonlinearities of the
problem. Equation (2) is usually accepted for steady
wind flow U = Ū = const; if U = U (t) is a time
function, it is still considered valid. This assumption
is consistent with the spirit of the quasi-steady theory,
which, by considering thefluid–structure system frozen
at the generic instant t , calls for taking both v̇ = v̇ (t)
and U = U (t) (see, e.g., [16–21]).

By letting:

U (t) = Ū + u(t) (3)

in which Ū is the (leading) steady-state wind veloc-
ity, and u(t) the (small) turbulent component, and by

linearizing Eq. (2) in the ratio
u

Ū
� 1, it follows:

pa = −Ū 2
[
b1

(
1 + u(t)

Ū

)(
v̇

Ū

)

+b3

(
1 − u(t)

Ū

)(
v̇

Ū

)3
]

(4)
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where bi := 1

2
�aDAi (for i = 1, 3) has been intro-

duced to simplify the notation.
In the following, the turbulence is expressed as

a combination of harmonics of multiple frequencies,
namely:

u(t) =
∞∑
k=1

ûk cos k�t (5)

with ûk � Ū the amplitudes and k� the frequencies
of the turbulent component.

2.3 Non-dimensional equations

The equations of motion and boundary conditions (1),
by accounting for the aerodynamic forces (4) and the
turbulence law (5), are recast in the non-dimensional
form:(

1 + η∗∂∗
t

)
v′′′′∗ + v̈∗ + (c∗

e + b∗
1Ū

∗) v̇∗+ b∗
3

Ū∗ v̇∗3

+
(
b∗
1 v̇

∗ − b∗
3

Ū∗2 v̇∗3
) ∞∑

k=1

û∗
k cos k�

∗t∗ = 0

v′∗
A = 0(
1 + η∗∂∗

t

)
v′′′∗
A + κv∗

A + ζ1v̇
∗
A + ζ3v̇

∗
Av∗2

A = 0(
1 + η∗∂∗

t

)
v′′′∗
B = 0(

1 + η∗∂∗
t

)
v′′∗
B = 0 (6)

where the following positions have been introduced:

v∗ := v

l
, s∗ := s

l
,

t∗ := tωr , �∗ := �

ωr
, ωr := 1

l2

√
E I

m
,

η∗ = ηωr , c∗
e = ce

ωr l4

E I
, b∗

i = bi
ω2
r l

5

E I

Ū∗ = Ū

ωr l
, û∗

k = ûk
ωr l

κ:= k
l3

E I
, ζ1 := C1

l3ωr

E I
, ζ3 := C3

l5ωr

E I
(7)

and the star successively dropped. Here, ωr is a refer-
ence frequency, and dash and dot denote differentiation
with respect to the non-dimensional space and time,
respectively.

3 Bifurcation equation

Attention is focused on the interaction between two
different instability mechanisms, potentially exhibited

by system (6), namely: (a) galloping (or Hopf bifurca-
tion), which occurs for aerodynamically unstable cross
sections (b1 < 0) when the steady part Ū of the wind
velocity attains a threshold value Ūc, and (b) paramet-
ric excitation, which occurs for suitable combinations
of the turbulence intensity û and frequency�. In partic-
ular, each component of the turbulence, Eq. (5), para-
metrically excites the system. However, only some of
these, which fall within the unstable areas of Strutt’s
plane (see, e.g., [40]), are of interest, as the remain-
ingones generate responseswhich exponentially decay.
Since the higher-order resonance regions become van-
ishingly small, here themost important case of primary
parametric resonance is considered, for which:

� = 2ω + σ (8)

ω being a natural frequency and σ a small detun-
ing. Accordingly, the turbulence is represented by its
fundamental harmonic alone, assumed to be in pri-
mary parametric resonance with the structure, that is
u(t) = û cos ((2ω + σ) t). Therefore, interaction is
described in terms of the three bifurcation parameters
Ū , û, σ , the first of which is always different from
zero, while the remaining ones can vanish.

The multiple-scale method (MSM) is applied (see
[41]), to get bifurcation equations (see also [42] for
several applications to bifurcation problems). Internal
resonances are excluded in this paper and left to future
investigations. According to the MSM:

v (s, t) = A (t) φ (s) eiωt + c.c. + h.o.t. (9)

where φ (s) is an eigenvector of the undamped and
unloaded linearized system; ω is its associated fre-
quency; A (t) is an unknown, slowly variable, com-
plex amplitude; c.c. denotes the complex conjugate of
the preceding terms and h.o.t. higher-order terms. The
method yields the following complex bifurcation equa-
tion (see Appendix A for details):

Ȧ = (d10 + d11Ū
)
A − d11

2
ûeiσ t Ā

+
(
d30 + d31

Ū

)
A2 Ā

+d31
2

û

Ū 2
eiσ t A Ā2 + d31

6

û

Ū 2
e−iσ t A3 (10)

where

d10 := −ce
2

− 1

Im

(∫ 1

0
ηφ (s) φ′′′′ (s) ds

+ηφ (0)φ′′′(0) + ζ1φ (0)2
)

,
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d11 := −b1
2

,

d30 := −ζ3φ (0)4

Im
,

d31 := −3b3ω2

Im

∫ 1

0
φ (s)4 ds (11)

with Im = ∫ 1
0 2φ (s)2 ds. Equation (10) generalizes

to the turbulent case the equation already derived in
[33] for steady wind. The two cases, however, deeply
differ each other, since turbulence introduces a stronger
coupling between amplitude and phase. The control
device enters as follows in the bifurcation equation: (i)
the elastic constant κ acts on all the d’s coefficients,
by the way of the frequency ω and the shape φ (s) of
the natural mode; (ii) the viscosity coefficients, instead,
explicitly appear in the coefficients, namely ζ1 in d10
and ζ3 in d30. For further analyses, Cartesian and polar
real forms of Eq. (10) are derived ahead.

3.1 Cartesian form

To recast the complex bifurcation Eq. (10) in real form,
A (t) = Z (t) ei

σ
2 t is introduced, with the new vari-

able Z (t) = X (t) + iY (t) transforming the non-
autonomous into autonomous equations. By separating
real and imaginary parts, a two-dimensional dynamical
system follows:(

Ẋ
Ẏ

)
= J0

(
X
Y

)
+ n (X,Y ) (12)

where

J0 :=
⎡
⎢⎣d10 + Ūd11− ûd11

2

σ

2

−σ

2
d10 + Ūd11+ ûd11

2

⎤
⎥⎦ (13)

is the Jacobian matrix at the origin, and n = (nx , ny)T
the nonlinear terms vector, of components:

nx =
(
d30 + d31

Ū

)
XY 2+X3

(
d30+ d31

Ū
+ 2d31û

3Ū 2

)

ny =
(
d30 + d31

Ū

)
X2Y+Y 3

(
d30+ d31

Ū
− 2d31û

3Ū 2

)
(14)

In the new variables, the leading part of motion law
(9) reads:

v (s, t)=2

[
X (t) cos

(
�

2
t

)
−Y (t) sin

(
�

2
t

)]
φ (s)

(15)

where Eq. (8) has been used.

3.2 Polar form

To recast the complex Eq. (10) in polar form, A (t) =
1
2a (t) eiϕ(t) is posed,which leads to two real equations:

ȧ =
(
d10 + d11Ū − 1

2
d11û cos γ

)
a

+
(
d30
4

+ d31
4Ū

+ d31
6

û

Ū 2
cos γ

)
a3

aγ̇ = (d11û sin γ − σ
)
a

−d31
6

û

Ū 2
sin γ a3 (16)

where the phase difference γ := 2ϕ (t) − σ t has been
introduced. The law of motion (9), at the leading order,
becomes:

v (s, t) = a (t) φ (s) cos

(
�

2
t + γ (t)

2

)
(17)

The two representations are relatedbya = 2
√
X2 + Y 2

and γ = 2 arg (X + iY ).

4 Linear stability analysis

Stability of the equilibrium position A = 0 is stud-
ied by the Cartesian form (12). It is governed by the
eigenvalues of the Jacobian matrix J0:

λ± = d10 + d11Ū ± 1

2

√
� (û, σ

)
(18)

where:

�
(
û, σ

) := d211û
2 − σ 2 (19)

Right and left eigenvectors, solving (J0 − λ±I) x = 0
and

(
J0 − λ̄±I

)
y = 0, respectively, are:

x± =
(
d11û∓

√
� (û, σ

)
σ

)
,

y± =
(

−d11û±
√

� (û, σ
)

σ

)
(20)

When turbulence is absent (û = 0 , σ = 0), λ± are
real and coincident. When λ+ = λ− = 0, a Hopf
bifurcation occurs, at the critical galloping velocity

Ūc := −d10
d11

.

The turbulent component modifies the bifurca-
tion conditions, which must be described in a three-
dimensional

(
σ, û, Ū

)
parameter space, in which Ū

is the distinguished parameter, and, û and σ are the
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splitting parameters. The linear stability diagram will
be shown later in discussing the numerical results (see
Fig. 2). There, flip bifurcations and Neimark–Sacker
bifurcations occur, respectively, on the conic and the
planar branches of the domain, according to the fol-
lowing discussion.

– When � (û, σ
)

> 0, the eigenvalues are real and
distinct. When Ū is such that λ± = 0 (defining a
cone in the parameter space), two successive flip
bifurcations occur, at which a periodic response, of
period double of that of excitation, is triggered. The
lowest bifurcation (λ+ = 0) manifests at a steady
wind velocity Ū

(
û, σ

)
< Ūc, so that turbulence

reduces the galloping velocity.
– When � (û, σ

)
< 0, the eigenvalues are complex

conjugates. Here, when Ū is such that Re[λ+] =
Re[λ−] = 0, aNeimark–Sacker bifurcation occurs,
at which a quasi-periodic response is triggered.
This happens at Ū = Ūc ∀ (û, σ

)
. The peri-

odic motion experienced by the system under non-
turbulent wind ismodified by the turbulence, which
introduces a second frequency, Im[λ±], into the
response, thus transforming the limit cycle in a
torus.

– When � (û, σ
) = 0, the eigenvalues are real and

coincident. They vanish at Ū = Ūc, where the
Neimark–Sacker bifurcation degenerates in a flip
bifurcation. The splitting parameters decide about
the coalescence.

It is worth noticing that, referring to the slow-flow
ruled by the bifurcation Eq. (10), the flip bifurcation
appears as a divergence (simple zero eigenvalue) and
the Neimark–Sacker as a Hopf bifurcation.

Concerning the base isolation, it produces a shift
of the eigenvalues Eqs. (18) via the coefficient d10,
depending of the elastic spring κ and of the linear dash-
pot ζ1. This entails a translation along the Ū -axis of the
bifurcation locus. Therefore, the linear part of the con-
trol device, whose parameters have to be opportunely
calibrated, can enlarge the stability domain.

5 Nonlinear analysis

A nonlinear bifurcation analysis is carried out, aimed
at determining limit cycles (periodic solutions) and tori
(quasi-periodic solutions). The former are generated by
flip bifurcations, and the latter by the Neimark–Sacker
bifurcations.

5.1 Limit cycles

By letting a = const, γ = const in Eqs. (16) and elim-
inating the circular functions, the following equation is
drawn:

9Ū 2
(
a2d30Ū + a2d31 + 4d10Ū + 4d11Ū 2

)2
4û2

(
3d11Ū 2 − a2d31

)2
+ 36σ 2Ū 4

û2
(
6d11Ū 2 − a2d31

)2 = 1 (21)

whose solution calls for numerical methods. However,
a closed-form solution is obtained at the perfect reso-
nance (σ = 0):

a1± = ±
√
6Ū
√

−2d10 − 2d11Ū + d11û√
3d30Ū 2 + 3d31Ū + 2d31û

, γ1 = 0

a2± = ±
√
6Ū
√

−2d10 − 2d11Ū − d11û√
3d30Ū 2 + 3d31Ū − 2d31û

, γ2 = π

(22)

These are multi-valued functions, whose domain of
existence depends by the bifurcation parameters and
aerodynamics coefficients.

Stability of the periodic solution (ae, γe) is governed
by the variational equation:(

δȧ
δγ̇

)
= Je

(
δa
δγ

)
(23)

where Je := [Ji j (ae, γe)] is the 2× 2 Jacobian matrix
at the equilibrium, whose coefficients are:

J11 (ae, γe) = d10 + Ūd11

+
(
d30 + d31

Ū

)
3a2e
4

+
(

−1

2
ûd11 + ûd31a2e

2Ū 2

)
cos γe

J12 (ae, γe) =
(
1

2
ûd11ae − ûd31a3e

6Ū 2

)
sin γe

J21 (ae, γe) = − ûd31ae
3Ū 2

sinγe

J22 (ae, γe) =
(
ûd11 − ûd31a2e

6Ū 2

)
cos γe (24)

The periodic solution is stable if the real part of both
the eigenvalues of Je is negative.

5.2 Tori

To analytically investigate tori, the MSM is applied
again to the Cartesian bifurcation Eq. (12), to evalu-
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Nonlinear dynamics of a base-isolated beam under turbulent wind flow 1535

ate the branches of limit cycles emanating from the
Neimark–Sacker points. Here, the Jacobian matrix J0
admits purely imaginary eigenvalues λ± = ±i� , with

� := 1

2

√−�, while Ū = Ūc. Close to these points:(
X
Y

)
= R (t)

(
d11û − 2i�

σ

)
ei� t + c.c. + h.o.t.

(25)

where R (t) = 1

2
r (t) eiθ(t) is a complex amplitude, and

where use has been made of Eq. (20). By letting Ū =
Ūc + ε�U , the MSM yields the bifurcation equation
that rules the slow-slow-motion (see Appendix B for
details):

Ṙ = d11�UR +
(
c30r + c31r + i c31i û

2
)

σ 2R2 R̄

(26)

where

c30r := 4d30, c31r := 4d31
Ūc

, c31i := d31d11
Ū 2
c �

(27)

are real coefficients. In real form, Eq. (26) reads:

ṙ = rd11�U +
(
c30r + c31r

4

)
σ 2r3

r θ̇ = c31i
4

σ 2û2r3
(28)

whose fixed points r = const are:

r = 2

σ

√
− d11�U

(c30r + c31r )
θ (t) = β t + θ0

(29)

in which θ0 is an initial phase and β :=
(c31i

4
σ 2û2

)
r2

is a frequency correction.
Stability is governed by the variation equation:

δṙ =
(
d11�U + 3

4
(c30r + c31r ) σ 2r2

)
δr (30)

According to Eqs. (9), A (t) = (X (t) + i Y (t)) ei
σ
2 t

and Eq. (25), the quasi-periodic motion, at the leading
order, is:

v (s, t) = 2rσ

(
cos

(
�

2
t

)
cos
(
�β t + θ0 + α

)
− sin

(
�

2
t

)
cos
(
�β t + θ0

))
φ (s) (31)

in which two frequencies exist, the driving one,
�

2
,

and the amplitude-dependent modulating one, �β :=

� +β. Moreover, α := arctan

(
2�

σM
(
û
)
)
, with σM :=

d11û. The modulating amplitude:

a (t) =
⎛
⎝2rσ

√
1 − σM

(
û
)

σ
cos
(
2�β t+2θ0+α

)⎞⎠
(32)

exists only when σ > σM
(
û
)
(minimum detuning); it

spans the range:

a (t) ∈
⎡
⎣2rσ

√
1 − σM

(
û
)

σ
, 2rσ

√
1 + σM

(
û
)

σ

⎤
⎦ (33)

whose end values are the lengths of the axes of an ellip-
tical trajectory traveled in the (X ,Y ) state space (see
Fig. 10). Note that the ratio between the maximum and
minimum amplitudes is predicted to be independent of
the steadywind velocity; this aspectwill be commented
ahead.

6 Numerical results

The (uncontrolled) sample system consists of a super-
tall tower, inspired by [43], having height l = 300 m
and square cross section, b = 12 m wide. The total
stiffness is E I = 2.95 × 1013 Nm2, mass density
m = 45000 kg/m, damping parameters η = 0.00091 s,
and ce = 320 Ns/m2 (corresponding to the damp-
ing ratio ξ = 0.4% in the first mode). The air mass
density is � = 1.25 kg/m3 and the dimensionless
aerodynamic coefficients for the squared cross sec-
tion are A1 = −0.9298, A3 = 7.677 (provided by
[1,22] and confirmed via wind tunnel tests in [16,44]).
This example is representative of a class of towers,
whose non-dimensional parameters are:η∗ = 0.00026,
c∗
e = 0.025 and b∗

1 = −0.04649, b∗
3 = 0.38385. The

numerical values are consistent with the ordering per-
formed in the perturbation analyses. The parameters of
the control system are opportunely designed below.

6.1 Linear analysis

The linear stability domain is shown in Fig. 2, by (a) a
3D plot and (b–d) planar contour plots, for both uncon-
trolled (U) and linearly controlled (LC) systems. Plots
are extended beyond the limits of validity of the theory,
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Fig. 2 Linear instability
domain: a 3D plots of the U
(orange) and LC (yellow)
systems; contour plots of
the U (gray) and LC (black)
systems in the planes: b(
û, Ū

)
when σ = 0.005; c(

σ, Ū
)
when û = 0.2; (d)(

σ, û
)
when Ū = 0.49. The

isolation device parameters
are κ = 8 and ζ1 = 0.02

(a) (b)

(c) (d)

which requires û � Ū . It is observed that the critical
wind velocity decreases when the turbulence increases
and/or the detuning decreases. The isolation devices
are calibrated in order to produce an upward (benefi-
cial) translation of the domain, according the procedure
illustrated ahead.

By referring to the uncontrolled system, the (non-
dimensional) first natural frequency and the corre-
sponding galloping velocity, in the absence of turbu-
lence, are, respectively, ω = 3.5 (i.e., 1 rad/s in dimen-
sional form) and Ūc = 0.61 (i.e., 51 m/s in dimen-
sional form). More dangerous instability conditions
occur when the turbulent wind component is consid-
ered. For example, a turbulent wind having amplitude
û = 0.25 and detuning σ = 0 (resonant case) reduces
the galloping velocity of 20% (Ū = 0.48). Under
these wind conditions, the effect of the control sys-
tem on the critical velocity is investigated. The influ-
ence of the linear damping ζ1 is shown in Fig. 3 for a

set of selected spring stiffness κ . It is seen that the
purely elastic base isolation produces a detrimental
lowering of the critical wind velocity, making essen-
tial to add a dashpot. Although this is more efficient
when the spring stiffness is low, very soft springs can
cause undesired large base displacements. By taking
into account these aspects and in order to increase the
critical velocity by 1.25-times that of the uncontrolled
system (denoted in figure as Ūu), the linear isolation
parameters κ = 8 and ζ1 = 0.02 are identified. As
a consequence, the non-dimensional frequency of the
first natural mode becomes ω = 2.3, and the galloping
velocity is Ū = 0.61.

6.2 Limit cycle analysis

The nonlinear periodic motions of the system are ana-
lyzed at the perfect resonance (σ = 0) and in a quasi-
resonant case (σ = 0.005). The relevant bifurcation
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Fig. 3 Critical wind velocity vs the linear viscosity coefficient
ζ1, for assigned values of spring stiffness κ = 8, 16, 24. Black
dashed line denotes the critical wind velocity of the uncontrolled
system. Turbulence parameters are û = 0.25 and σ = 0

analysis calls for determining limit cycles and analyz-
ing their stability. The influence of the nonlinear viscos-
ity coefficient ζ3 in the nonlinearly controlled (NLC)
system is also investigated.

The existence domains of each solution branch (of
Eq. (21)) in the parameter plane is shown in Fig. 4 for
the LC system (ζ3 = 0). In the same figures, the bifur-
cation loci are marked in black. The plot displays the
existence of one (light gray regions) or two (coexisting)
limit cycles (dark gray regions).

Bifurcation diagrams
(
a, Ū

)
are built up and shown

ahead, both in the resonant (Fig. 5) and quasi-resonant
(Fig. 6) cases, for selected values of û. These latter
(denoted by the ticks in Fig. 4a for the resonant case
and in Fig. 4b for the quasi-resonant case) are chosen
with the aim to study all the possible bifurcation scenar-
ios. Accordingly, plots are extended beyond the limits

of validity of the theory, which requires both a small
turbulent component and small motion amplitudes. A
comparison between U (gray lines), LC (black lines)
and NLC (red lines) systems is made.

The perfect resonant case is studied first (Fig. 5).
Bifurcation diagrams are shown there, in which the
amplitude of the limit cycles, as defined in Eq. (22),
is reported for nonlinear viscosity coefficient ζ3 = 50.
Concerning the LC system, it is observed what follows.
The path I (in Fig. 5a) is characterized by three fami-
lies of limit cycles, all branching from the trivial path;
two of them (one stable and the other unstable) are
generated when Ū is increased, while a third (unsta-
ble) family bifurcates from Ū = 0 (at which, however,
the theory loses validity). By increasing the turbulence
amplitude, the two lowest curves come closer in path II
(see Fig. 5b), until they merge in path III (see Fig. 5c).
Here, once the trivial path loses stability, the system
jumps to a higher-amplitude limit cycle. The dangerous
effect of the turbulence is thus highlighted. The effec-
tiveness of the control system in nonlinear field is then
evaluated. First, by comparing the bifurcation diagrams
for the U and LC system, it is seen the isolation pro-
duces an increasing of the limit cycle amplitudes. This
(undesired) phenomenon is mainly due to the purely
elastic isolation, and it is more evident for very soft
springs. On the other hand, it is possible to reduce the
oscillation amplitude by adequately designing the non-
linear viscosity coefficient ζ3 of the NLC system. In
particular, the value ζ3 = 50 is found to significantly
reduce the amplitudes, with respect both to the U and
LC cases.

The quasi-resonant case is then studied (Fig. 6).
First, the influence of detuning on the bifurcation

Fig. 4 Existence domains,
in according to the wind
parameters (Ū ,û), of the
steady solution of the LC
system: a in the resonant
case (σ = 0); b in a
quasi-resonant case
(σ = 0.005). In the light
and dark gray regions one
and two limit cycles exist,
respectively. The black lines
are the bifurcation loci. The
isolation device parameters
are κ = 8 and ζ1 = 0.02

(a) (b)

123



1538 S. Di Nino, A. Luongo

(a) (b) (c)

Fig. 5 Bifurcation diagrams in the resonant case. Steady ampli-
tude of the limit cycle vs the steady wind velocity, for assigned
turbulence amplitudes: a û = 0.15 (path I); b û = 0.625 (path
II); (c) û = 0.85 (path III). U (gray lines), LC (black lines)

and NLC (red lines) system. Unstable and stable solutions are
denoted by dashed and solid lines, respectively. The isolation
device parameters are κ = 8, ζ1 = 0.02 and ζ3 = 50

(a) (b) (c)

Fig. 6 Bifurcation diagrams in the quasi-resonant case σ =
0.005. Steady amplitude of the limit cycle vs the steady wind
velocity, for assigned turbulence amplitudes: a û = 0.15 (path
I); b û = 0.3 (path II); c û = 0.85 (path III). U (gray lines),

LC (black lines) and NLC (red lines) system. Unstable and sta-
ble solutions are denoted by dashed and solid lines, respectively.
The red markers are the numerical results. The isolation device
parameters are κ = 8, ζ1 = 0.02 and ζ3 = 50

paths is highlighted. In particular, the detuning changes
the bifurcation scenario with respect to the resonant
case, mainly for small values of turbulence amplitude.
Indeed, in Fig. 6a, the only (unstable) limit cycle fam-
ily, bifurcating from Ū = 0, remains undisturbed. The
disappearing of the other two limit cycles is due to the
occurrence of aNeimark–Sacker bifurcation (insteadof
a flip bifurcations) on the trivial path; this aspect will be
explored further on. The phenomenology of the paths
in Fig. 6b, c is the same of those in Fig. 5a and c for
the resonant case. Concerning the isolation influence

on the nonlinear behavior, all the observations made
for the resonant case still apply.

It should be noticed that a such post-critical behavior
depends on the sign of nonlinear aerodynamic coeffi-
cient A3 in Eq. (2), according to the shape of the cylin-
der cross section. Here, it is assumed squared (A3 > 0),
entailing a supercritical bifurcation (see Fig. 5a and
Fig. 6b). When A3 < 0, as in the case of rectangu-
lar cross sections with a 2:1 side ratio, a subcritical
Hopf bifurcationmanifests itself, however, followed by
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Fig. 7 a Trajectories in the
state space for different
initial conditions (black
markers); stable steady
solution is denoted by red
marker. b Comparison
between exact response
(gray region) and
asymptotic a(t) (black line)
time histories. Wind
parameters Ū = 0.7,
û = 0.3, σ = 0.005. The
isolation device parameters
are κ = 8, ζ1 = 0.02 and
ζ3 = 50

(a) (b)

a regain of stability (hard loss of stability phenomenon,
as discussed in Ref. [15,22,24]).

To sketch the evolution of the system in the state
spaceduring the transient regime, the solutions obtained
by direct numerical integrations of the bifurcation
Eq. (16), for different the initial conditions, are dis-
played in Fig. 7a. Here, the (a, γ ) trajectories are
shown for the NLC system and the steady wind veloc-
ity Ū = 0.7, at which only one stable steady solution
exists. It is seen that there exists a trajectory, leading to
the stable solution, which attracts all the surrounding
ones.

Finally, the steady-state and transient asymptotic
solutions, are validated against exact finite-difference
solutions of the partial differential equations. In partic-
ular, for given initial conditions (a = 0.023, γ = 1.57
in Fig. 7a), the exact response and the asymptotic a (t)
time histories are compared in Fig. 7b. After a transient
has been exhausted, the motion stabilizes on a limit
cycle of amplitude a, depending on the wind param-
eters. When the limit cycle amplitudes are extracted
by the recorded responses, relevant to different wind
parameters, the (red) bullets reported in Fig. 6b are
found. The agreement between exact and asymptotic
solutions is excellent.

6.3 Torus analysis

The nonlinear quasi-periodicmotions, occurring on tori
in the state space, are studied. These solutions are gen-
erated by Neimark–Sacker bifurcations, at Ū = Ūc.
The study is carried out via: (i) finite-difference solu-
tion of the partial differential equations Eq. (6), referred

ahead as FD solution; (ii) integration of the bifurca-
tion Eq. (12), referred as “numerical solution”; and (iii)
asymptotic solution of the slow-slow-flow equation, as
described in Sect. 5.2.

The influence of nonlinear viscosity coefficient ζ3 in
the NLC system is investigated. A comparison between
the asymptotic bifurcation diagramsof theLCandNLC
systems is shown in Fig. 8a. At Ū = Ūc, a torus bifur-
cates from the trivial solution. This is represented as
an interval [amin, amax] visited by the system during
the motion (gray region for the LC system and red
region for NLC system). Here, in addition to the quasi-
periodic solution, also the periodic solutions are plotted
(gray and red dashed lines bifurcating from Ū = 0).
It is observed that the addition to the isolation system
of a nonlinear damping reduces the amplitude of the
tori, but does not change the amax/amin ratio, as already
observed in Sect. 5.2 (see Eq. 33).

A comparison between FD- (red markers), numeri-
cal (black segments) and asymptotic (red region) solu-
tions, for the NLC system, is shown in Fig. 8b. It is
observed that: (i) the numerical results of the amplitude
modulation equations Eq. (12) are in excellent agree-
ment with the FD results; (ii) the asymptotic solution
captures well the maximum amplitude, but it fails in
predicting the minimum amplitude; (iii) the amax/amin

ratio does, indeed, depend on the wind speed, in con-
trast with the analytical prediction. The inadequacy of
the analytical model mainly emerges at high steady
wind velocities (far from the critical value), while the
accuracy is satisfactory close to the bifurcation. A care-
ful inspection of the order of magnitude of the linear
and nonlinear terms in Eqs. (42) and (43) reveals that
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Fig. 8 Bifurcation
diagrams: a vs Ū when
û = 0.15 and σ = 0.005. a
Comparison between
asymptotic solutions of the
LC (gray regions) and NLC
(red region) systems. b
Comparison between FD
(red markers), numerical
(black segments) and
asymptotic (red region)
periodic solutions in the
NLC system. Unstable and
stable solutions are denoted
by dashed and solid lines,
respectively. The isolation
device parameters are
κ = 8, ζ1 = 0.02 and
ζ3 = 50

(a) (b)

these latter become of the same order of the former for
amplitudes a = 0.05 and incremental wind velocity
�U = 0.1. This denotes a strong nonlinearity of the
system, which restricts the validity of the perturbative
analysis to a small neighborhood of the critical speed.

For a fixed value of the steady wind velocity (quite
far from the bifurcation point), comparisons between
numerical and asymptotic solutions for theNLCsystem
are also carried out for: (i) the X and Y time histories,
for given initial conditions X = 0.015, Y = 0.022
(Fig. 9a, b); (ii) the periodic orbits in the (X,Y ) state
space (Fig. 9c); and (iii) the a time histories, for given
initial conditions a = 0.054 (Fig. 9d), together with the
FD response (gray region). It is seen that the asymptotic
solutions, when compared with the numerical ones,
are not very accurate. This is more evident when the
periodic solutions are represented in the (X,Y ) state
space; here they appear as ellipsis, whose axis lengths
correspond to the maximum and minimum values of
the amplitude a. It is observed that the asymptotic
and numerical orbits differ in shape and slope. In this
regard, it is interesting to observe how this latter evolves
with the steady wind velocity (see Fig. 10a, b, referred
to asymptotic and numerical solutions, respectively). It
turns out that, as the wind velocity increases, the orbits
also increase: (a) in isotropic way, i.e., without chang-
ing their shape and, therefore, by keeping constant the
axis ratio; (b) by passing (to the limit) from an elliptical
shape to a circular one, with a consequent decreasing
of the axis ratio (that tends to one). Plots are extended
up to high motion amplitudes to better show the limit
behavior. Indeed, the asymptotic model is not able to
capture the evolution of the amplitude ratio. This is due

to the fact that the first-order solution (Eq. 25) that just
includes the eigenvectors does not account for modifi-
cation of modal shape with the bifurcation parameter
(needed to describe nonlinear normal modes). How-
ever, here, the first-order approximation is considered
acceptable at realistic low wind speeds.

7 Conclusions

The aeroelastic stability of a continuous, homogeneous
viscoelastic beam, isolated at the base, under uniform
turbulent wind flow, has been studied. The isolation
system has been modeled as a nonlinear viscoelastic
device; aeroelastic forces computed by the quasi-static
theory. The steady component of wind is responsible
for a Hopf bifurcation; the turbulent component for
parametric excitation. Critical and post-critical behav-
iors have been analyzed by the multiple-scale method.
An efficient control system has been identified, and
the mechanical performance of the isolated structure
investigated. The asymptotic solutions have validated
against nearly exact numerical results, provided by the
finite-difference method.

The following main results, concerning linear sta-
bility, have been found.

1. The turbulent component modifies the bifurca-
tion scenario, which calls for referring to a three-
dimensional

(
σ, û, Ū

)
parameter space. Here, both

flip and Neimark–Sacker bifurcations are likely to
occur. Linear instability domains have been deter-
mined, for both uncontrolled (U) and linearly con-
trolled (LC) systems.
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Fig. 9 Time histories of: a
X ; b Y . c Trajectories in the
state space. d Time histories
of a and the FD- response v

(gray region). Numerical
(black lines) and asymptotic
(blue lines) results. Wind
parameters û = 0.15,
σ = 0.005, �U = 0.1. The
isolation device parameters
κ = 8, ζ1 = 0.02 and
ζ3 = 50

(a) (b)

(c) (d)

Fig. 10 Stable periodic
solutions in the state space
for the steady wind
velocities
�U = 0.1, 0.3, 0.5, 0.7
(according the gray-scale):
a asymptotic and b exact.
Turbulence parameters
û = 0.15, σ = 0.005. The
isolation device parameters
κ = 8, ζ1 = 0.02 and
ζ3 = 50

(a) (b)

2. The wind turbulence reduces the galloping velocity
via a flip bifurcation.

3. The base isolation entails a translation of the sta-
bility boundary along the Ū -axis. The purely elastic
base isolation, however, produces a detrimental low-
ering of the critical wind velocity, making essential
the addition of a (linear) dashpot. When stiffness

and linear damping are opportunely calibrated, the
critical galloping velocity is pushed forward.

The following main results, concerning nonlinear
behavior, have been found.

1. Limit cycles (periodic motions) and tori (quasi-
periodic motions) manifest themselves. Several
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limit cycle branches (just one of which is stable) are
generated by flip bifurcations, while tori are gener-
ated by Neimark–Sacker bifurcations.

2. Depending on turbulence amplitude and detuning,
different bifurcation paths have been found, and
some mechanisms of merging and detaching of
branches have been analyzed when the bifurcation
parameters are varied.

3. A nonlinear dashpot included in the device, when
opportunely designed, significantly reduces the
oscillation amplitudes, both of the limit cycles and
tori.

Finally, an excellent agreement between exact and
asymptotic periodic solutions has been found. On the
contrary, the asymptotic quasi-periodic solution, when
compared with the exact one, captures well the depen-
dence of the maximum amplitude of the motion with
the wind speed; however, it is unable to accurately
describe the true amplitude interval, especially at high
wind velocities.
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A Bifurcation equation

The transverse displacement in Eq. (6) is rescaled
as v (s, t) → εv (s, t), with ε � 1 a perturbation
parameter. Physical parameters are also rescaled as:
η → εη, ce → εce, ζ1 → εζ1, ζ3 → ε−1ζ3,
b1 → εb1, b3 → ε−1b3 . Independent timescales

t0 := t , t1 := εt , ..., are introduced, so that ∂t =
∂0 + ε∂1 + ..., ∂2t = (∂0 + ε∂1 + ...)2, where ∂ j :=
∂/∂t j ( j = 0, 1, . . .). Finally, by letting v (s, t) =
v0 (s, t0, t1, . . .) +εv1 (s, t0, t1, . . .)+..., the following
perturbation equations are derived.

Order ε0 :
v′′′′
0 + ∂20v0 = 0

v′
0A = 0

v′′′
0A + κv0A = 0

v′′′
0B = 0

v′′
0B = 0

(34)

Order ε1 :
v′′′′
1 + ∂20v1 = − (η∂0v

′′′′
0 + 2∂0∂1v0

+(ce + b1Ū
)
∂0v0+b3

Ū
(∂0v0)

3

+
(
b1∂0v0 − b3

Ū 2
(∂0v0)

3
)
û cos�t

)
v′
1A = 0

v′′′
1A + κv1A = −

(
η∂0v

′′′
0A + ζ1∂0v0A + ζ3∂0v0Av20A

)
v′′′
1B = −η∂0v

′′′
0B

v′′
1B = −η∂0v

′′
0B (35)

ThegeneratingproblemEqs. (34) admit themonomodal
solution:

v0 (s, t) = A (t1) φ (s) eiωt0 + c.c. (36)

in which A (t1) is an unknown complex modulat-
ing function, c.c. stands for complex conjugate, and
(ω, φ (s)) is the first real eigenpair of the undamped
and unloaded beam, constrained at ground by the elas-
tic spring κ; in particular, φ (s), normalized according
to φ (1) = 1, satisfies the following boundary value
problem:

φ′′′′ − ω2φ = 0
φ′
A = 0

φ′′′
A + κφA = 0

φ′′′
B = 0

φ′′
B = 0

(37)

andω is a root of the transcendental characteristic equa-
tion:

α3 tan(α)

κ
+ α3 tanh(α)

κ
= sec(α)sech(α) + 1 (38)

where α = √
ω .
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By substituting the solution Eq. (36) in Eqs. (35),
this latter reads:

v′′′′
1 + ∂20v1= q1 (s, t0, t1)eiωt0 + N.R.T. + c.c.

v′
1A = 0

v′′′
1A + κv1A = Q1 (t0, t1)eiωt0 + N.R.T. + c.c.

v′′′
1B = 0

v′′
1B = 0

(39)

whereN.R.T.stands for non-resonant terms. Finally, the
compatibility (or solvability) condition is enforced on
the known term:
1∫

0

q1 (s, t0, t1) φ (s) ds + Q1 (t0, t1) φ (0) = 0 (40)

From Eq. (40), by coming back to the true time t ,
an ordinary differential equation for the amplitude
Eq. (10) is obtained.

B Torus asymptotic analysis

Periodic solutions of the bifurcation Eqs. (12), arising
at a Neimark–Sacker bifurcation point, are sought for.
The following series expansions are introduced:(

X
Y

)
=
(
X0

Y0

)
+ ε

(
X1

Y1

)
+ ..... (41)

and the distinguished bifurcation parameter is split as
Ū = Ūc + ε�U . A rescaling is performed for the new
coefficients: d30 → ε−1d30, d31 → ε−1d31. By intro-
ducing the time scales t0 = t, t1 = εt , the following
perturbation equations are drawn.

Order ε0 :
∂0X0 − σY0

2
+ 1

2
d11û X0 = 0

∂0Y0 + σ X0

2
− 1

2
d11ûY0 = 0

(42)

Order ε1 :
∂0X1 − σY1

2
+ 1

2
d11û X1 = −∂1X0 + �Ud11X0

+
(
d30 + d31

Ūc
+ 2ûd31

3Ūc
2

)
X0

3

+
⎛
⎝d30 + d31

−
U c

⎞
⎠ X0Y0

2

∂0Y1 + σ X1

2
− 1

2
d11ûY1 = − ∂1Y0 + �Ud11Y0

+
(
d30 + d31

Ūc
− 2ûd31

3Ūc
2

)
Y0

3

+
⎛
⎝d30 + d31

−
U c

⎞
⎠ X0

2Y0 (43)

The generating problem admits the periodic solution:(
X0

Y0

)
= R (t1)

(
d11û − 2i�

σ

)
ei� t0 + c.c. (44)

where R (t1) = 1

2
r (t1) eiθ(t1) is a complex amplitude.

With this solution, in order for the ε1-equations admit
not diverging solutions, resonant terms on the right
hand member, of type qe±i� t0 , must be made orthog-
onal to the left eigenvectors y±, i.e., ȳT±q = 0. From
this condition, by coming back to the true time and
unrescaled quantities, the bifurcation equation Eq. (26)
is drawn.
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