Skip to main content
Log in

Desynchronization of stochastically synchronized neural populations through phase distribution control: a numerical simulation approach

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Stochastic synchrony, also known as noise-induced synchronization that leads to phase coherence, arises when a set of uncoupled neurons synchronizes to a common white noise input or other types of non-Gaussian noise. Evidence of abnormally high noise-induced synchronization, or impairment in synchronous activity, has been found in several pathologies such as epilepsy. Therefore, controlling the stochastic synchronization of neurons can have a significant effect on preventing seizures in epilepsy. The main aim of this study is to develop a fast and reliable numerical method to simulate controlling synchronization in a population of noisy and uncoupled neural oscillators. The control algorithm is based on phase reduction and uses the probability phase distribution partial differential equation to change the distribution of oscillators to the desired one. The accuracy and power consumption are two main issues that should be considered in the simulations. In this paper, a new numerical method called the generalized Lagrange Jacobi Gauss–Lobatto collocation method in space and backward-Euler scheme in time is applied to overcome the difficulties of the problem effectively. The resulting full-discrete scheme of the partial differential equation is a linear system of algebraic equations per time step which is solved via QR algorithm. Finally, the proposed algorithm is applied to various neural dynamical models with different phase response curves and investigates them in different factors such as computing time, energy consumption, and accuracy to confirm the applicability of the developed numerical method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Supplementary material and videos of all simulation related to this article can be found in the online version of the article.

References

  1. Shorvon, S.: Handbook of Epilepsy Treatment. Wiley-Blachwell, Hoboken (2011)

    Google Scholar 

  2. Aarabi, A., He, B.: A rule-based seizure prediction method for focal neocortical epilepsy. Clin. Neurophysiol. 123, 1111–1122 (2012)

    Google Scholar 

  3. Lytton, W.W.: Computer modelling of epilepsy. Nat. Rev. Neurosci. 9, 626–637 (2008)

    Google Scholar 

  4. Berg, A.T., Cross, J.H.: Handbook of Clinical Neurology: Chapter 5 - Classification of Epilepsies and Seizures: Historical Perspective and Future Directions, vol. 107. Elsevier, Amsterdam (2012)

    Google Scholar 

  5. Good, L.B., Sabesan, S., Marsh, S.T., Tsakalis, K., Treiman, D., Iasemidis, L.: Control of synchronization of brain dynamics leads to control of epileptic seizures in rodents. Int. J. Neural Syst. 19, 173–196 (2009)

    Google Scholar 

  6. Kwan, P., Brodie, M.J.: Early identification of refractory epilepsy. N. Engl. J. Med. 342, 314–319 (2000)

    Google Scholar 

  7. Mohseni, A., Gharibzadeh, S., Bakouie, F.: The role of driver nodes in managing epileptic seizures: application of Kuramoto model. J. Theor. Biol. 419, 108–115 (2017)

    Google Scholar 

  8. Wilson, D., Moehlis, J.: A Hamilton–Jacobi–Bellman approach for termination of seizure-like bursting. J. Comput. Neurosci. 37, 345–355 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Grossman, N., Bonon, D., Dedic, N., Kodandaramaiah, S., Rudenko, A., Suk, H., Cassara, A., Neufeld, E., Kuster, N., Tsai, L., Pascual-Leone, A., Boyden, E.: Noninvasive deep brain stimulation via temporally interfering electric fields. Cell 169, 1029–1041 (2017)

    Google Scholar 

  10. Aarabi, A., He, B.: Seizure prediction in hippocampal and neocortical epilepsy using a model-based approach. Clin. Neurophysiol. 125, 930–940 (2013)

    Google Scholar 

  11. Aarabi, A., He, B.: Seizure prediction in patients with focal hippocampal epilepsy. Clin. Neurophysiol. 128, 1299–1307 (2017)

    Google Scholar 

  12. Yang, Y., Zhou, M., Niu, Y., Li, C., Cao, R., Wang, B., Yan, P., Ma, Y., Xiang, J.: Epileptic seizure prediction based on permutation entropy. Front. Comput. Neurosci. 12, 12–55 (2018)

    Google Scholar 

  13. Olmi, S., Petkoski, S., Guye, M., Bartolomei, F., Jirsa, V.: Controlling seizure propagation in large-scale brain networks. PLoS Comput. Biol. 15, e1006805 (2019)

    Google Scholar 

  14. Zhang, B.J., Chamanzar, M., Alam, M.R.: Suppression of epileptic seizures via Anderson localization. J. R. Soc. Interface 14, 20160872 (2017)

    Google Scholar 

  15. Lehnertz, K.: Epilepsy and nonlinear dynamics. J. Biol. Phys. 34, 253–266 (2008)

    Google Scholar 

  16. Lehnertz, K., Mormann, F., Osterhage, H., Muller, A., Prusseit, J., amd, A.C., Staniek, M., Krug, D., Bialonski, S., Elger, C.E.: State-of-the-art of seizure prediction. J. Clin. Neurophysiol. 24, 147–153 (2007)

    Google Scholar 

  17. Usman, S.M., Usman, M., Fong, S.: Epileptic seizures prediction using machine learning methods. Comput. Math. Methods Med. 2017, 1–10 (2017)

    MathSciNet  Google Scholar 

  18. Kuhlmann, L., Lehnertz, K., Richardson, M.P., Schelter, B., Zaveri, H.P.: Seizure prediction—ready for a new era. Nat. Rev. Neurol. 14, 618–630 (2018)

    Google Scholar 

  19. Lehnertz, K., Bialonski, S., Horstmann, M., Krug, D., Rothkegel, A., Staniek, M., Wagner, T.: Synchronization phenomena in human epileptic brain networks. J. Neurosci. Methods 2009, 42–48 (2009)

    Google Scholar 

  20. Jirsa, V.K., Stacey, W.C., Quilichini, P.P., Ivanov, A.I., Bernard, C.: On the nature of seizure dynamics. Brain 137, 2210–2230 (2014)

    Google Scholar 

  21. da Silva, F.H.L., Blanes, W., Kalitzin, S.N., Parra, J., Suffczynski, P., Velis, D.N.: Dynamical diseases of brain systems: different routes to epileptic seizures. IEEE Trans. Bio-med. Eng. 50, 540–548 (2003)

    Google Scholar 

  22. Monga, B., Froyland, G., Moehlis, J.: Synchronizing and desynchronizing neural populations through phase distribution control. In: 2018 Annual American Control Conference (ACC) 2808–2813 (2018)

  23. Warren, C.P., Hu, S., Stead, M., Brinkmann, B.H., Bower, M.R., Worrell, G.A.: Synchrony in normal and focal epileptic brain: the seizure onset zone is functionally disconnected. J. Neurophysiol. 104, 3530–3539 (2010)

    Google Scholar 

  24. Schnitzler, A., Gross, J.: Normal and pathological oscillatory communication in the brain. Nat. Rev. Neurosci. 6, 285–296 (2005)

    Google Scholar 

  25. Yu, W., Cao, J., Lu, W.: Synchronization control of switched linearly coupled neural networks with delay. Neurocomputing 73, 858–866 (2010)

    Google Scholar 

  26. Bao, H., Park, J.H., Cao, J.: Matrix measure strategies for exponential synchronization and anti-synchronization of memristor-based neural networks with time-varying delays. Appl. Math. Comput. 270, 543–556 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Rakkiyappan, R., Latha, V.P., Zhu, Q., Yao, Z.: Exponential synchronization of Markovian jumping chaotic neural networks with sampled-data and saturating actuators. Nonlinear Anal. Hybrid 24, 28–44 (2017)

    MathSciNet  MATH  Google Scholar 

  28. Yang, X., Cao, J., Long, Y., Rui, W.: Adaptive lag synchronization for competive neural networks with mixed delays and uncertain hybrid perturbations. IEEE Trans. Neural Netw. Learn. 21, 1656–1667 (2010)

    Google Scholar 

  29. Wang, B., Zhu, Q.X.: Stability analysis of Markov switched stochastic differential equations with both stable and unstable subsystems. Syst. Control Lett. 105, 55–61 (2017)

    MathSciNet  MATH  Google Scholar 

  30. Zhu, Q.X., Zhang, Q.Y.: Pth moment exponential stabilisation of hybrid stochastic differential equations by feedback controls based on discrete-time state observations with a time delay. IET Control Theory A 11, 1992–2003 (2017)

    Google Scholar 

  31. Liu, X., Zhang, K., Xie, W.C.: Pinning impulsive synchronization of reaction-diffusion neural networks with timevarying delays. IEEE Trans. Neural Netw. Learn. 28, 1055–1067 (2016)

    Google Scholar 

  32. He, W., Qian, F., Cao, J.: Pinning-controlled synchronization of delayed neural networks with distributed-delay coupling via impulsive control. Neural Netw. 85, 1–9 (2017)

    MATH  Google Scholar 

  33. Li, N., Sun, H., Zhang, Q.: The controller design of the epilepsy therapy apparatus. Math. Probl. Eng. 2017, 1–8 (2017)

    MathSciNet  MATH  Google Scholar 

  34. Ahmed, M.A.A., Liu, Y., Zhang, W., Alsaadi, F.E.: Exponential synchronization via pinning adaptive control for complex networks of networks with time delays. Neurocomputing 225, 198–204 (2017)

    Google Scholar 

  35. Ma, Y., Zheng, Y.: Projective lag synchronization of Markovian jumping neural networks with mode-dependent mixed time-delays based on an integral sliding mode controller. Neurocomputing 168, 626–636 (2015)

    Google Scholar 

  36. Velmurugan, G., Rakkiyappan, R., Cao, J.: Finite-time synchronization of fractional-order memristor-based neural networks with time delays. Neural Netw. 73, 36–46 (2016)

    MATH  Google Scholar 

  37. Wu, Y., Cao, J., Li, Q., Alsaedi, A., Alsaadi, F.E.: Finite-time synchronization of uncertain coupled switched neural networks under asynchronous switching. Neural Netw. 85, 128–139 (2017)

    MATH  Google Scholar 

  38. Wang, H., Zhu, Q.: Finite-time stabilization of high-order stochastic nonlinear systems in strict-feedback form. Automatica 54, 284–291 (2015)

    MathSciNet  MATH  Google Scholar 

  39. Khanzadeh, A., Pourgholi, M.: Fixed-time sliding mode controller design for synchronization of complex dynamical networks. Nonlinear Dyn. 88, 2637–2649 (2017)

    MathSciNet  MATH  Google Scholar 

  40. Zhang, L., Yang, Y., wang, F.: Lag synchronization for fractional-order memristive neural networks via period intermittent control. ET Control Theory A 7, 1725–1736 (2013)

    Google Scholar 

  41. Li, N., Sun, H., Jing, X., Zhang, Q.: Exponential synchronisation of united complex dynamical networks with multi-links via adaptive periodically intermittent control. Nonlinear Dyn. 89, 367–381 (2017)

    Google Scholar 

  42. Chakravarthy, N., Sabesan, S., Iasemidis, L., Tsakalis, K.: Controlling synchronization in a neuron-level population model. Int. J. Neural Syst. 17, 123–138 (2007)

    MATH  Google Scholar 

  43. Ruths, J., Taylor, P.N., Dauwels, J.: Optimal control of an epileptic neural population model. IFAC Proc. Vol. 47, 3116–3121 (2014)

    Google Scholar 

  44. Lameu, E.L., Borges, F.S., Borges, R.R., Iarosz, K.C., Caldas, I.L., Batista, A.M., Viana, R.L., Kurths, J.: Suppression of phase synchronisation in network based on cat’s brain. Chaos 26, 043107 (2016)

    MathSciNet  Google Scholar 

  45. Levy, R., Hutchison, W.D., Lozano, A.M., Dostrovsky, J.O.: High-frequency synchronization of neuronal activity in the subthalamic nucleus of Parkinsonian patients with limb tremor. J. Neurosci. 20(20), 7766–7775 (2000)

    Google Scholar 

  46. Kuelbs, D.D., Dunefsky, J., Monga, B., Moehlis, J.: Analysis of neural clusters due to deep brain stimulation pulses. Biol. Cybern. 114, 589–607 (2020)

    MATH  Google Scholar 

  47. Wlison, D., Moehlis, J.: Optimal chaotic desynchronization for neural populations. SIAM J. Appl. Dyn. Syst. 13(1), 276–305 (2014)

    MathSciNet  MATH  Google Scholar 

  48. Huptmann, C., Popovych, O., Tass, P.A.: Desynchronizing the abnormally synchronized neural activity in the subthalamic nucleus: a modeling study. Expert Rev. Med. Devices 4(5), 633–6650 (2007)

    Google Scholar 

  49. Dasanayake, I., Li, J.S.: Optimal design of minimum-power stimuli for phase models of neuron oscillators. Phys. Rev. E 83(6), 061916 (2011)

    Google Scholar 

  50. Tass, P.A.: A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations. Biol. Cybern. 89, 81–88 (2003)

    MATH  Google Scholar 

  51. Wilson, D.: Optimal open-loop desynchronization of neural oscillator populations. J. Math. Biol. 81, 25–64 (2020)

    MathSciNet  MATH  Google Scholar 

  52. Bagheri, N., Stelling, J., Doyle, F.: Circadian phase entrainment via nonlinear model predictive control. Int. J. Robust Nonlinear Control 17(17), 1555–1571 (2007)

    MathSciNet  MATH  Google Scholar 

  53. Monga, B., Moehlis, J.: Optimal phase control of biological oscillators using augmented phase reduction. Biol. Cybern. 113(1), 161–178 (2019)

    MathSciNet  MATH  Google Scholar 

  54. Monga, B., Moehlis, J.: Phase distribution control of a population of oscillators. Phys. D 398, 115–129 (2019)

    MathSciNet  MATH  Google Scholar 

  55. Petrov, V., Gaspar, V., Masere, J., Showalter, K.: Controlling chaos in the Belousov–Zhabotinsky reaction. Nature 361, 240–243 (1993)

    Google Scholar 

  56. Davies, M., Halford-Maw, P., Hill, J., Tinsley, M., Johnson, B., Scott, S., Kiss, I.Z., Gaspar, V.: Control of chaos in combustion reactions. J. Phys. Chem. A 104, 9944–9952 (2000)

    Google Scholar 

  57. Nabi, A., Mirzadeh, M., Gibou, F., Moehlis, J.: Minimum energy desynchronizing control for coupled neurons. J. Comput. Neurosci. 34(2), 259–271 (2013)

    MathSciNet  MATH  Google Scholar 

  58. Wilson, D., Moehlis, J.: Clustered desynchronization from high-frequency deep brain stimulation. PLoS Comput. Biol. 11(12), e1004673 (2015)

    Google Scholar 

  59. Wilson, D., Faramarzi, S., Moehlis, J., Tinsley, M.R., Showalter, K.: Synchronization of heterogeneous oscillator populations in response to weak and strong coupling. Chaos 28(12), 123114 (2018)

    MathSciNet  Google Scholar 

  60. Wilson, D., Moehlis, J.: Isostable reduction with applications to time-dependent partial differential equations. Phys. Rev. E 94, 012211 (2016)

    Google Scholar 

  61. Monga, B., Moehlis, J.: Supervised learning algorithms for controlling underactuated dynamical systems. Phys. D 412, 132621 (2020)

    MathSciNet  Google Scholar 

  62. Mohammadi, V., Dehghan, M.: Generalized moving least squares approximation for the solution of local and non-local models of cancer cell invasion of tissue under the effect of adhesion in one- and two-dimensional spaces. Comput. Biol. Med. (2020). https://doi.org/10.1016/j.compbiomed.2020.103803

    Article  Google Scholar 

  63. Kumar, S., Ahmadian, A., Kumar, R., Kumar, D., Singh, J., Baleanu, D., Salimi, M.: An efficient numerical method for fractional SIR epidemic model of infectious disease by using Bernstein wavelets. Mathematics 8(4), 558 (2020)

    Google Scholar 

  64. Singh, J., Kilicman, A., Kumar, D., Swroop, R.: Numerical study for fractional model of nonlinear predator–prey biological population dynamical system. Therm. Sci. 23(6), S2017–S2025 (2019)

    Google Scholar 

  65. Abbaszadeh, M., Dehghan, M., Zhou, Y.: Crank-Nicolson/Galerkin spectral method for solving two-dimensional time-space distributed-order weakly singular integro-partial differential equation. J. Comput. Appl. Math. 374, 112739 (2020)

    MathSciNet  MATH  Google Scholar 

  66. Chen, F.: A new framework of GPU-accelerated spectral solvers: collocation and Galerkin methods for systems of coupled elliptic equations. J. Sci. Comput. 62(2), 575–600 (2015)

    MathSciNet  MATH  Google Scholar 

  67. Grag, D., Patterson, M., Hager, W.W., Rao, A.V., Benson, D.A., Huntington, G.T.: A unified framework for the numerical solution of optimal control problems using pseudospectral methods. Automatica 46(11), 1843–1851 (2010)

    MathSciNet  MATH  Google Scholar 

  68. Parand, K., Moayeri, M.M., Latifi, S., Rad, J.A.: Numerical study of a multidimensional dynamic quantum model arising in cognitive psychology especially in decision making. Eur. Phys. J. Plus. 134, 109 (2019)

    Google Scholar 

  69. Olmos, D., Shizgal, B.D.: Pseudospectral method of solution of the Fitzhugh–Nagumo equation. Math. Comput. Simul. 79, 2258–2278 (2009)

    MathSciNet  MATH  Google Scholar 

  70. Doha, E.H., Abdelkawy, M.A., Amin, A., Lopes, A.M.: Shifted Jacobi–Gauss-collocation with convergence analysis for fractional integro-differential equations. Commun. Nonlinear Sci. Numer. Simul. 72, 342–359 (2019)

    MathSciNet  MATH  Google Scholar 

  71. Erfani, S., Babolian, E., Javadi, S., Shamsi, M.: Stable evaluations of fractional derivative of the Muntz–Legendre polynomials and application to fractional differential equations. J. Comput. Appl. Math. 348, 70–88 (2019)

    MathSciNet  MATH  Google Scholar 

  72. Abbasbandy, S., Kazem, S., Alhuthali, M.S., Alsulami, H.H.: Stable evaluations of fractional derivative of the Muntz–Legendre polynomials and application to fractional differential equations. J. Comput. Appl. Math. 266, 31–40 (2015)

    MATH  Google Scholar 

  73. Zayernouri, M., Karniadakis, G.E.: Fractional spectral collocation method. SIAM J. Sci. Comput. 36(1), A40–A62 (2014)

    MathSciNet  MATH  Google Scholar 

  74. Sabermahani, S., Ordokhani, Y., Yousefi, S.: Numerical approach based on fractional-order Lagrange polynomials for solving a class of fractional differential equations. Comput. Appl. Math. 37, 3846–3868 (2018)

    MathSciNet  MATH  Google Scholar 

  75. Sabermahani, S., Ordokhani, Y., Yousefi, S.: Fractional-order general Lagrange scaling functions and their applications. BIT Numer. Math. 60, 101–128 (2020)

    MathSciNet  MATH  Google Scholar 

  76. Sabermahani, S., Ordokhani, Y., Yousefi, S.: Fractional-order Lagrange polynomials: an application for solving delay fractional optimal control problems. Trans. Inst. Meas. Control 41(11), 2997–3009 (2019)

    Google Scholar 

  77. Delkhosh, M., Parand, K.: Generalized pseudospectral method: theory and applications. J. Comput. Sci. 34, 11–32 (2019)

    MathSciNet  MATH  Google Scholar 

  78. Hadian-Rasanan, A., Bajelan, N., Parand, K., Rad, J.A.: Simulation of nonlinear fractional dynamics arising in the modeling of cognitive decision making using a new fractional neural network. Math. Methods Appl. Sci. 43(3), 1437–1466 (2019)

    MathSciNet  MATH  Google Scholar 

  79. Zaky, M.A., Ameen, I.G.: A novel Jacobi spectral method for multi-dimensional weakly singular nonlinear Volterra integral equations with nonsmooth solutions. Eng. Comput. (2020). https://doi.org/10.1007/s00366-020-00953-9

    Article  MATH  Google Scholar 

  80. Zaky, M.A., Ameen, I.G.: A priori error estimates of a Jacobi spectral method for nonlinear systems of fractional boundary value problems and related Volterra-Fredholm integral equations with smooth solutions. Numer. Algorithms 84, 63–89 (2020)

    MathSciNet  MATH  Google Scholar 

  81. Parand, K., Latifi, S., Delkhosh, M., Moayeri, M.M.: Generalized Lagrangian Jacobi Gauss collocation method for solving unsteady isothermal gas through a micro–nano porous medium. Eur. Phys. J. Plus. 133, 28 (2018)

    MATH  Google Scholar 

  82. Shen, J., Tang, T.: Spectral and High-Order Methods with Applications. Science Press of China, Beijing (2006)

    MATH  Google Scholar 

  83. Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.: A new Jacobi operational matrix: an application for solving fractional differential equations. Appl. Math. Model. 36(10), 4931–4943 (2012)

    MathSciNet  MATH  Google Scholar 

  84. Parand, K., Latifi, S., Moayeri, M.M., Delkhosh, M.: Generalized Lagrange Jacobi Gauss-Lobatto (GLJGL) collocation method for solving linear and nonlinear Fokker-Planck equations. Commun. Theor. Phys. 69, 519–531 (2018)

    MathSciNet  MATH  Google Scholar 

  85. Brown, E., Mohelis, J., Holmes, P.: On the phase reduction and response dynamics of neural oscillator populations. Neural Comput. 16(4), 673–715 (2004)

    Google Scholar 

  86. Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Courier Corporation, North Chelmsford (2003)

    MATH  Google Scholar 

  87. Latifi, S., Delkhosh, M.: Spsmat: GNU octave software package for spectral and pseudospectral methods. arXiv:1906.09964

  88. Latifi, S., Delkhosh, M.: Generalized Lagrange Jacobi-Gauss-Lobatto vs Jacobi-Gauss-Lobatto collocation approximations for solving (2 + 1)-dimensional Sine-Gordon equations. Math. Methods Appl. Sci. 43(4), 2001–2019 (2020)

    MathSciNet  MATH  Google Scholar 

  89. Rose, R., Hindmarsh, J.: The assembly of ionic currents in a thalamic neuron I. The three-dimensional model. Proc. R. Soc. Lond. B 237, 267–288 (1989)

  90. Keener, J., Sneyd, J.: Mathematical Physiology. Springer, New York (1998)

    MATH  Google Scholar 

  91. Kuramoto, Y.: Phase- and center-manifold reductions for large populations of coupled oscillators with application to non-locally coupled systems. Int. J. Bifurc. Chaos 7, 789–805 (1997)

  92. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis, Springer, New York (2013)

  93. Moayeri, M.M., Hadian-Rasanan, A., Latifi, S., Parand, K., Rad, J.A.: An efficient space-splitting method for simulating brain neurons by neuronal synchronization to control epileptic activity. Eng. Comput. (2020). https://doi.org/10.1007/s00366-020-01086-9

    Article  Google Scholar 

  94. Bhrawy, A.H.: A Jacobi spectral collocation method for solving multi-dimensional nonlinear fractional sub-diffusion equations. Numer. Algorithms 73(1), 91–113 (2016)

    MathSciNet  MATH  Google Scholar 

  95. Bavinck, H.: On absolute convergence of Jacobi series. J. Appr. Theory 4, 387–400 (1971)

    MathSciNet  MATH  Google Scholar 

  96. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer, New York (1987)

    MATH  Google Scholar 

  97. Delkhosh, M., Parand, K.: A new computational method based on fractional Lagrange functions to solve multi-term fractional differential equations. Numer. Algorithms (2021). https://doi.org/10.1007/s11075-020-01055-9

    Article  Google Scholar 

  98. Solomonoff, A., Turkel, E.: Global properties of pseudospectral methods. J. Comput. Phys. 81, 239–276 (1989)

    MATH  Google Scholar 

  99. Gottlieb, D.: The stability of pseudospectral-Chebyshev methods. Math. Comput. 36(153), 107–118 (1981)

    MathSciNet  MATH  Google Scholar 

  100. Gottlieb, D., Orszag, S.A., Turkel, E.: Stability of pseudospectral and finite-difference methods for variable coefficient problems. Math. Comput. 37(156), 293–305 (1981)

    MathSciNet  MATH  Google Scholar 

  101. Hadian-Rasanan, A.H., Rahmati, D., Gorgin, S., Parand, K.: A single layer fractional orthogonal neural network for solving various types of Lane–Emden equation. New Astron. 75, 101307 (2019)

    Google Scholar 

  102. Rad, J.A., Kazem, S., Parand, K.: A numerical solution of the nonlinear controlled Duffing oscillator by radial basis functions. Comput. Math. Appl. 64, 2049–2065 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to three anonymous referees for carefully reading this paper and their comments and suggestions, which have improved the quality of the paper. The corresponding author’s work was supported by a partial grant from the Center of Excellence in Cognitive Neuropsychology (CECN). He sincerely thanks CECN for their supports.

Funding

The corresponding author’s work was supported by a partial grant from the Center of Excellence in Cognitive Neuropsychology (CECN). He sincerely thanks CECN for their supports.

Author information

Authors and Affiliations

Authors

Contributions

M.M. Moayeri involved in software, validation, formal analysis, and writing–original draft. J.A. Rad involved in investigation, conceptualization, methodology, writing–review & editing, and supervision. K. Parand involved in writing–review & editing.

Corresponding author

Correspondence to Jamal Amani Rad.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Code availability

Implementation of the algorithms in this article is available at https://gitlab.com/mahdi.myr/gljglc-method-for-controlling-the-synchronization-of-neural-oscillators.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Implementation of the algorithms in this article is available at https://gitlab.com/mahdi.myr/gljglc-method-for-controlling-the-synchronization-of-neural-oscillators

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 8501 KB)

Supplementary material 2 (mp4 10353 KB)

Supplementary material 3 (mp4 11854 KB)

Supplementary material 4 (mp4 11230 KB)

Supplementary material 5 (mp4 7984 KB)

Appendices

Useful mathematical definitions and theorems

1.1 Roots of Jacobi polynomials

The Jacobi polynomial \(J_n^{\alpha ,\beta }(x)\) has exactly n real roots on \([-1,1]\), and they can be obtained by computing the eigenvalues of the following three-diagonal matrix [92]

$$\begin{aligned} {\mathcal {K}}_n= \begin{bmatrix} \lambda _1 &{} \gamma _2 &{} &{} &{} &{} &{} \\ \gamma _1&{} \lambda _2 &{} \gamma _3 &{} &{} &{} &{}\\ &{} \gamma _3 &{} \lambda _3 &{} \gamma _4 &{} &{} &{}\\ &{} ~~\ddots &{} ~~\ddots &{} ~~\ddots &{} &{} &{}\\ &{} &{} &{} &{} \gamma _{n-1} &{} \lambda _{n-1}&{} \gamma _{n}\\ &{} &{} &{} &{} &{} \gamma _n &{} \lambda _{n} \end{bmatrix}, \end{aligned}$$
(A.1)

where

$$\begin{aligned} \lambda _{i+1}=\frac{(xJ_i^{\alpha ,\beta }(x),J_{i}^{\alpha ,\beta }(x))_{\omega ^{\alpha ,\beta }}}{(J_i^{\alpha ,\beta }(x),J_i^{\alpha ,\beta }(x))_{\omega ^{\alpha ,\beta }}},\nonumber \\ \gamma ^2_{i+1}={\left\{ \begin{array}{ll} 1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i=0,\\ \frac{(J_i^{\alpha ,\beta }(x),J_i^{\alpha ,\beta }(x))_{\omega ^{\alpha ,\beta }}}{(J_{i-1}^{\alpha ,\beta }(x),J_{i-1}^{\alpha ,\beta }(x))_{\omega ^{\alpha ,\beta }}}~~~~~~~~~~~i\ge 1 \end{array}\right. }. \end{aligned}$$
(A.2)

1.2 Derivatives of generalized Lagrange Gauss–Lobatto functions

Theorem A.1

[93] Consider generalized Lagrange functions \(L^{\phi }_j(x)\), the first-order derivative matrix of generalized Lagrange functions as

$$\begin{aligned} {\mathbf {D}}^{(1)}=\begin{bmatrix} d_{kj} \end{bmatrix}_{0\le j,k\le n}\in \mathrm I\!R ^{(n+1)\times (n+1)}, \end{aligned}$$
(A.3)

where

$$\begin{aligned} d_{kj}=\frac{dL^{\phi }_j(x)}{\mathrm{d}x}\bigg |_{x=x_k}={\left\{ \begin{array}{ll} \nu _j\frac{w'(x)|_{x=x_j}}{p_k-p_j}~~~~~~~~~~~~~~~~~~~~~~~j\ne k\\ \nu _j\frac{p'(x)w''(x)-p''(x)w'(x)}{2(p'(x))^2}|_{x=x_j}~~~j=k \end{array}\right. }.\nonumber \\ \end{aligned}$$
(A.4)

Moreover, if we consider \({\mathbf {J}}^{(k)}=\mathrm{Diag}(\frac{d^k\phi _i(x)}{\mathrm{d}x^k})_{0\le i\le n}\), the second-order derivative matrix of generalized Lagrange functions can be computed as

$$\begin{aligned} {\mathbf {D}}^{(2)}=({\mathbf {J}}^{(2)}+{\mathbf {J}}^{(1)}{\mathbf {D}}^{(1)}) {\mathbf {J}}^{{(1)}^{-1}}{\mathbf {D}}^{(1)}. \end{aligned}$$
(A.5)

Theorem A.2

[93] The derivative matrix of generalized Lagrange Jacobi Gauss–Lobatto functions is expressed as follows

$$\begin{aligned} { {\mathbf {D}}^{(1)}=\begin{bmatrix} d_{kj}^{\alpha ,\beta }\end{bmatrix}_{0\le k,j\le n},} \end{aligned}$$
(A.6)

where

$$\begin{aligned} { d_{kj}^{\alpha ,\beta }= {\left\{ \begin{array}{ll} \frac{(-1)^{1-n}\phi '(x_k)J_{n-2}^{\alpha +2,\beta +2}(\phi (x_k)) \vartheta _{k,n}(n-1)!(\alpha +\beta + n+2)\Gamma (\beta +2)}{2\vartheta _{0,n} \Gamma (\beta +1+n)}~~~~~~~~j=0,~~~~~1\le k\le n-1,\\ \\ \frac{(-1)^{1-n}\phi '(x_n)\Gamma (\alpha +n+1)\Gamma (\beta +2)}{\vartheta _{0,n} \Gamma (\beta +n+1)\Gamma (\alpha +2)}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~j=0, ~~~~~ k=n,\\ \\ \frac{2(-1)^{n-1}\phi '(x_0)\vartheta _{0,n}\Gamma (\beta +n+1)}{\Gamma (\beta +2)(n-1)!(\alpha +\beta +n+2)J_{n-2}^{\alpha +2,\beta +2} (\phi (x_j))\vartheta _{0,n}^2\vartheta _{j,n}}~~~~~~~~~~~~~~~~~k=0,~~~~~~~~~1 \le j\le n-1,\\ \\ \frac{\phi '(x_0)\Gamma (\beta +n+1)\Gamma (\alpha +2)(-1)^{n-1}}{\vartheta _{n,0} \Gamma (\alpha +n+1)\Gamma (\beta +2)},~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~k=0, ~~~~~j=n,\\ \\ \frac{\phi '(x_k)J_{n-2}^{\alpha +2,\beta +2}(\phi (x_k))\vartheta _{k,n}(n-1)! (\alpha +\beta +n+2)\Gamma (\alpha +2)}{2\vartheta _{n,0} \Gamma (\alpha +1+n)}~~~~~~~~~~~~~j=n,~~~~~1\le k\le n-1,\\ \\ \frac{\vartheta _{k,0}\vartheta _{k,n}\phi '(x_k)J_{N-2}^{\alpha +2,\beta +2}\phi (x_k)}{\vartheta _{j,0}\vartheta _{j,n} \vartheta _{k,j}J_{N-2}^{\alpha +2,\beta +2}(\phi (x_j))},~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~1\le j\ne k\le n-1,\\ \\ \frac{2\phi '(x_n)\vartheta _{n,0}\Gamma (\alpha +n+1)}{\vartheta _{0,j} \vartheta _{j,n}^2J_{n-2}^{\alpha +2,\beta +2}(\phi (x_j))(n+\alpha +\beta +2) (n-1)!\Gamma (\alpha +2)}~~~~~~~~~~~~~~~~1\le j\le n-1,~~~~~~~~ k=n,\\ \\ \frac{\phi '(x_j)}{\vartheta _{j,0}}+\frac{\phi '(x_j)}{\vartheta _{j,n}} +\phi '(x_j)(\alpha +\beta +n+3)\frac{J_{n-3}^{\alpha +3,\beta +3}(\phi (x_j))}{4 J_{n-2}^{\alpha +2,\beta +2}(\phi (x_j))},~~~~~~~~1\le k=j\le n-1,\\ \\ \frac{\phi ''(x_j)}{2\phi (x_j)}-\frac{\phi '(x_j)}{\vartheta _{n,0}} +\frac{\phi '(x_j)(n+\alpha +\beta +2)J_{n-2}^{\alpha +2,\beta +2}(\phi (x_j))}{2J_{n-1}^{\alpha +1,\beta +1}(\phi (x_j))},~~~~~~~~~~~~~~~~~~~~~~~k=j=0,\\ \\ \frac{\phi ''(x_j)}{2\phi (x_j)}+\frac{\phi '(x_j)}{\vartheta _{n,0}}+\frac{\phi '(x_j)(n+\alpha +\beta +2)J_{n-2}^{\alpha +2,\beta +2}(\phi (x_j))}{2J_{n-1}^{\alpha +1,\beta +1}(\phi (x_j))},~~~~~~~~~~~~~~~~~~~~~~~k=j=n, \end{array}\right. } } \end{aligned}$$
(A.7)

in which

$$\begin{aligned} \vartheta _{i,j}=\phi (x_i)-\phi (x_j). \end{aligned}$$

1.3 Convergence and stability analysis

In this part, we raise some theorems for convergence and stability analysis.

Theorem A.3

[77](Error analysis) Let u(x) be analytic in a region \(\Omega \) containing distinct points \(\phi (x_0), \ldots , \phi (x_n)\) where \(x_j\)s are also distinct points. Moreover, let \(\Gamma \) be a contour in \(\Omega \) enclosing these points in the positive direction. The interpolation function of \(u_n(x)\) to u(x) at \(x_i\) is

$$\begin{aligned} u_n(x)=\frac{1}{2\pi i}\int _{\Gamma }\frac{\phi '(s)u(s)(w_{\phi }(s)-w_{\phi }(x))}{w_{\phi }(s)(\phi (s)-\phi (x))}ds. \end{aligned}$$
(A.8)

If x is enclosed by \(\Gamma \), the error in the interpolant is

$$\begin{aligned} u(x)-u_n(x)=\frac{1}{2\pi i}\int _{\Gamma }\frac{\phi '(s)w_{\phi }(x)u(s)}{w_{\phi }(s)(\phi (x)-\phi (s))}ds.\nonumber \\ \end{aligned}$$
(A.9)

Theorem A.4

Let \({\hat{\rho }}^i(\theta )\) be the best approximation of \(\rho ^i(\theta ) \in [0,2\pi ]\) using the generalized Lagrange Jacobi polynomials. So, there is an upper bound of the absolute error \(\Vert \rho ^i(\theta )-{\hat{\rho }}^i(\theta )\Vert _{\infty }\).

Proof

Consider the following space of generalized Lagrange Jacobi polynomials

$$\begin{aligned} {\mathcal {L}}_{\phi }^{\alpha ,\beta ,n}=span\lbrace L^{\phi }_j:~~0 \le j\le n\rbrace . \end{aligned}$$
(A.10)

Assume that \({\hat{\rho }}^i(\theta ) \in {\mathcal {L}}_{\phi }^{\alpha ,\beta ,n}\) be the best approximation of \(\rho ^i(\theta )\). Afterward, by the definition of the best approximation, we have

$$\begin{aligned} \forall v \in {\mathcal {L}}_{\phi }^{\alpha ,\beta ,n}~~\Vert \rho ^i(\theta )-{\hat{\rho }}^i(\theta ) \Vert _{\infty } \le \Vert \rho ^i(\theta )-v \Vert _{\infty }.\nonumber \\ \end{aligned}$$
(A.11)

It is also true if v be an approximation for the interpolating polynomial for \(\rho ^i(\theta )\) at points \(x_i\), where \(x_i(0 \le i \le n)\) are the roots of \(J_{n+1}^{\alpha ,\beta }(\phi (x))\). So, we can write that [94]:

$$\begin{aligned}&\rho ^i(\theta )-v=\frac{\partial ^{n+1}\rho ^i({\hat{\theta }})}{\partial x^{n+1}(n+1)!}\prod _{j=0}^n(x-x_j)\nonumber \\&\quad -\frac{\partial ^{n+1} \rho ^i({\tilde{\theta }})}{\partial x^{n+1}(n+1)!}\prod _{j=0}^n(x-x_j), \end{aligned}$$
(A.12)

where \({\hat{\theta }}, {\tilde{\theta }} \in \Lambda =[0,2\pi ]\). As a result, it is obtained that

$$\begin{aligned}&\Vert \rho ^i(\theta )-v\Vert _{\infty }\le \max _{x \in \Lambda }\bigg \vert \frac{\partial ^{n+1}\rho ^i({\hat{\theta }})}{\partial x^{n+1}}\bigg \vert \frac{\bigg \Vert \prod _{j=0}^n(x-x_j)\bigg \Vert _{\infty }}{(n+1)!}\nonumber \\&\quad +\max _{x \in \Lambda }\bigg \vert \frac{\partial ^{n+1}\rho ^i({\tilde{\theta }})}{\partial x^{n+1}}\bigg \vert \frac{\bigg \Vert \prod _{j=0}^n(x-x_j)\bigg \Vert _{\infty }}{(n+1)!}. \end{aligned}$$
(A.13)

Since \(\rho ^i(\theta )\) is a smooth function on \(\Lambda \), there exists constant \({\mathcal {C}}\) such that [88]

$$\begin{aligned} \max _{x \in \Lambda }\bigg \vert \frac{\partial ^{n+1}\rho ^i({\tilde{\theta }})}{\partial x^{n+1}}\bigg \vert \le {\mathcal {C}}. \end{aligned}$$

In order to minimize \(\bigg \Vert \prod _{j=0}^n(x-x_j)\bigg \Vert _{\infty }\), we use \(x=\pi (\eta +1)\) to shift interval \([-1,1]\) to \([0,2\pi ]\). Therefore

$$\begin{aligned}&\min _{x_j \in \Lambda }\max _{x \in \Lambda }\bigg \vert \prod _{j=0}^n(x-x_j)\bigg \vert \nonumber \\&=\min _{\eta _j \in [-1,1]}\max _{\eta \in [-1,1]}\bigg \vert \prod _{j=0}^n\pi (\eta -\eta _j)\bigg \vert \nonumber \\&\quad =\pi ^{n+1}\min _{\eta _j \in [-1,1]}\max _{\eta \in [-1,1]}\bigg \vert \frac{J^{\alpha ,\beta }_{n+1}(\eta )}{\kappa _n^{\alpha ,\beta }} \bigg \vert , \end{aligned}$$
(A.14)

in which \(\kappa _n^{\alpha ,\beta }=\frac{\Gamma (2n+\alpha +\beta +1)}{2^nn!\Gamma (n+\alpha +\beta +1)}\) and \(\eta _j\) are the leading coefficients and the roots of \(J_{n+1}^{\alpha ,\beta }(\eta )\), respectively. There exists a positive constant K such that Jacobi polynomials satisfy the following equation [95]

$$\begin{aligned} \max _{\eta \in [-1,1]}\vert J_{n+1}^{\alpha ,\beta }(\eta )\vert \le K(1+n)^\mu , \end{aligned}$$
(A.15)

where \(\mu =\max (\alpha , \beta , -0.5)\), and reach the maximum of their absolute value on the interval \([-1, 1]\), at \(\eta = -1\) provided that \(\beta \le \alpha \) and \(-0.5 \le \alpha \) [94].

$$\begin{aligned} \max _{\eta \in [-1,1]}\vert J_{n+1}^{\alpha ,\beta }(\eta )\vert =\frac{\Gamma (n+\alpha +2)}{(n+1)!\Gamma (\alpha +1)}\nonumber \\ ={\mathcal {O}}((n+1)^{\alpha }).\nonumber \\ \end{aligned}$$
(A.16)

Now, according to the aforementioned equations, we can conclude that

$$\begin{aligned} \Vert \rho ^i(\theta )-{\hat{\rho }}^i(\theta )\Vert _{\infty } \le {\mathfrak {C}}\frac{\pi ^{n+1}(n+1)^{\mu }}{\kappa _n^{\alpha ,\beta }(n+1)!} \end{aligned}$$
(A.17)

\(\square \)

Remark A.5

In chapter 10 of [96], Canuto et. al. discuss stability analysis of spectral methods in details. In section 4.10.3, they examine the stability analysis of collocation method, especially for basic functions that have the property of the Kronecker delta and the choice of the points of Gaussian type. Since we stated, GLFs have Kronecker delta property and the collocation points are Gauss–Lobatto nodes [97]; thus, the theorems discussed in [96] can be expressed for the proposed method. In order to avoid to express duplicate contents, for further interested readers be referred to chapter 10 in [96].

In addition Solomonoff and Turkel [98] and Gottlieb [99, 100] studied the impact of boundary conditions and collocation points on stability and convergence of pseudospectral method.

1.4 Numerical integration of 2.7 and 2.8

In order to compute I(t) and G(t) integrals in Eq.(2.7) and Eq.(2.8), we use shifted Legendre–Gauss–Lobatto integration formula.

Legendre polynomials are one of the special forms of Jacobi polynomials which are denoted by \(P_i(x)\). So, these polynomials are orthogonal with respect to weight function \(w(x)=1\) on the interval \([-1,1]\) and can be defined by the following recursive formula [101]

$$\begin{aligned} P_0(x)= & {} 1,~~~~~P_1(x)=x,\nonumber \\ P_{n+1}(x)= & {} \bigg (\frac{2n+1}{n+1}\bigg )xP_{n}(x)\nonumber \\&-\bigg (\frac{n}{n+1} \bigg )P_{n-1}(x)~~~n\ge 1. \end{aligned}$$
(A.18)

Let \({\mathcal {H}}_n[0,2\pi ]\) indicate the space of algebraic polynomials of degree \(\le n\); then, for every function \(f \in {\mathcal {H}}_{2n-1}[0,2\pi ]\) we have [102]

$$\begin{aligned} \int _0^{2\pi }f(x)\mathrm{d}x\simeq \sum _{j=0}^n\omega _jf(x_j), \end{aligned}$$
(A.19)

where \(\lbrace x_j\rbrace _{j=0}^n\) are the shifted Legendre–Gauss–Lobatto nodes, and \(\omega _j\) are the shifted Legendre–Gauss–Lobatto weights, given in

$$\begin{aligned} \omega _j=\frac{2}{n(n+1)\bigg (P^s_n(x_j)\bigg )^2}, \end{aligned}$$
(A.20)

in which \(P^s_n(x_j)\) is the \(n^{th}\) shifted Legendre polynomials on interval \([0,2\pi ]\). Therefore, for \(G(t_k)\) and \(I(t_k)\) in the \(k^{th}\) time step, we have

$$\begin{aligned}&I(t_k)\simeq 2\sum _{j=0}^n\bigg (\frac{\partial \rho (\theta ,t_k)}{\partial \theta }-\frac{\partial \rho _f(\theta ,t_k)}{\partial \theta }\bigg )\nonumber \\&\quad \bigg \vert _{\theta =x_j}{\mathcal {Z}}(x_k)\rho (x_k,t_k)\omega _j, \end{aligned}$$
(A.21)
$$\begin{aligned}&G(t_k)\simeq -{\mathcal {B}}\sum _{j=0}^n\Big (\frac{\partial \rho (\theta ,t_k)}{\partial \theta }-\frac{\partial \rho _f(\theta ,t_k)}{\partial \theta }\Big )\bigg \vert _{\theta =x_j}\nonumber \\&\quad \frac{\partial \rho (\theta ,t_k)}{\partial \theta }\bigg \vert _{\theta =x_j}\omega _j. \end{aligned}$$
(A.22)

Runge–Kutta scheme for stochastic ODEs

It is clear that Eq. (2.5) should be solved to find phase oscillators at each step. We utilize a well-known fourth-order Runge–Kutta approach to solve this stochastic ODE. We have

$$\begin{aligned} \mathrm{d}\theta _j^i=\delta \mathrm{d}t+{\mathcal {Z}}(\theta )\bigg [u^{i-1}+\sqrt{2D}dW_j(t)\bigg ],~~~\nonumber \\j=1, \cdots , M, \end{aligned}$$
(B.1)

in which \(W_j(t)\) is the standard Weiner process. We define functions f and g from Eq. B.1

$$\begin{aligned} f(\theta )=\delta +u{\mathcal {Z}}(\theta ), \end{aligned}$$
(B.2)
$$\begin{aligned} g(\theta )=\sqrt{2D}+{\mathcal {Z}}(\theta ) \end{aligned}$$
(B.3)

The main problem is discretized as follows (\(k=0, \cdots , r\) where r is the number of Runge–Kutta steps and \(h=\frac{\Delta t}{r}\)).

$$\begin{aligned} {\hat{\theta }}^{k+1}_j= & {} {\hat{\theta }}^{k}_j+\frac{1}{6}\bigg (h({\mathcal {K}}_1 +2{\mathcal {K}}_2+2{\mathcal {K}}_3+{\mathcal {K}}_4)\nonumber \\&+W_j({\mathcal {S}}_1 +2{\mathcal {S}}_2+2{\mathcal {S}}_3+{\mathcal {S}}_4)\bigg ), \nonumber \\ {\mathcal {K}}_1= & {} f({\hat{\theta }}^{k}_j),~ {\mathcal {S}}_1=g({\hat{\theta }}^{k}_j),\nonumber \\ \sigma _1= & {} {\hat{\theta }}^{k}_j+0.5h{\mathcal {K}}_1+0.5W_j{\mathcal {S}}_1,\nonumber \\ {\mathcal {K}}_2= & {} f(\sigma _1),~ {\mathcal {S}}_2=g(\sigma _1),\nonumber \\ \sigma _2= & {} {\hat{\theta }}^{k}_j+0.5h{\mathcal {K}}_2+0.5W_j{\mathcal {S}}_2,\nonumber \\ {\mathcal {K}}_3= & {} f(\sigma _2),~ {\mathcal {S}}_3=g(\sigma _2),\nonumber \\ \sigma _3= & {} {\hat{\theta }}^{k}_j+h{\mathcal {K}}_3+W_j{\mathcal {S}}_3,\nonumber \\ {\mathcal {K}}_4= & {} f(\sigma _3),~ {\mathcal {S}}_4=g(\sigma _3). \end{aligned}$$
(B.4)

Note that \({\hat{\theta }}^0_j=\theta _j^i\) and \(\theta _j^{i+1}={\hat{\theta }}^{r}_j\).

Neuronal models

Here, the details of mathematical models used in the examples of this paper are explained.

1.1 Hindmarsh–Rose (HR) model

The HR model which is considered in Example 1 is as follows: [85]

$$\begin{aligned}&{\dot{v}}=(I-g_{Na}m_{\infty }^3(v)(0.85-3(q-\lambda \mu _{\infty }(v)))\\&\quad (v-v_{Na})-g_Kq(v-v_K)\\&\quad -g_L(v-v_L)c^{-1}+u(t), \\&{\dot{q}}=\frac{q_{\infty }(v)-q}{\eta _q(v)}, \\&q_{\infty }(v)=n_{\infty }^4(v)\lambda \mu _{\infty }(v), \\&\mu _{\infty }(v)=\Bigg (\frac{1}{1+\exp (\gamma (v+53.3))}\Bigg )^4, \\&m_{\infty }(v)=\frac{\alpha _m(v)}{\alpha _m(v)+\beta _m(v)}, \\&n_{\infty }(v)=\frac{\alpha _n(v)}{\alpha _n(v)+\beta _n(v)}, \\&\eta _q(v)=\frac{\eta _b(v)+\eta _n(v)}{2}, \\&\eta _b(v)=\theta _b\Bigg (1.24+\frac{2.678}{1+\frac{\exp (v+50)}{16.027}}\Bigg ), \\&\eta _n(v)=\frac{\theta _n}{\alpha _n(v)+\beta _n(v)}, \\&\alpha _n(v)=\frac{0.01(v+45.7)}{1-\frac{\exp (-(v+45.7))}{10}}, \\&\alpha _m(v)=\frac{0.1(v+29.7)}{1-\frac{\exp (-(v+29.7))}{10}}, \\&\beta _n(v)=0.125\exp \bigg (\frac{-(v+55.7)}{80}\bigg ), \\&\beta _m(v)=4\exp \bigg (\frac{-(v+54.7)}{18}\bigg ), \end{aligned}$$

where

$$\begin{aligned} v_{Na}= & {} 55 mV, v_K=-72 mV, v_L=-17 mV, \\ g_Na= & {} 120 mS/cm^2,g_K=20 mS/cm^2,\\ g_L= & {} 0.3 mS/cm^2, c=1 \mu F/cm^2, I=5 \mu A/cm^2, \\ \gamma= & {} 0.069 mV^{-1}, \theta _b=1 ms, \theta _n=0.52 ms,\\&\quad \lambda =0.21. \end{aligned}$$

1.2 Fitzhugh–Nagumo (FHN) model

Here, we represent FHN neural dynamical model [85].

$$\begin{aligned} {\dot{v}}= & {} (-w-v(v-1)(v-a)+I)c^{-1}+u(t), \\ {\dot{w}}= & {} \epsilon (v-g_aw), \end{aligned}$$

where

$$\begin{aligned} g_a=1, \epsilon =0.05, a=0.1 mV, c=1 \mu F/cm^2. \end{aligned}$$

1.3 Leaky itegrate-and-fire (LIF) model

The LIF mathematical model is defined as follows:

$$\begin{aligned} {\dot{v}}=I+g_L(v_L-v)c^{-1}, \end{aligned}$$

where

$$\begin{aligned} c=1\mu F/cm^2,~ g_L=0.11 mS/cm^2 \end{aligned}$$

1.4 Kuromoto model

The transformed Kuromoto model details are as follows:

$$\begin{aligned} {\dot{\theta }}_i=w_i+Kr\sin (\theta _i)+u(t), \end{aligned}$$

in which

$$\begin{aligned} w=2\pi , ~K=-30.4095. \end{aligned}$$

1.5 Hodgkin–Huxley (HH) model

In the last example of Sect. 4, we use reduced HH model with the following details [53]:

$$\begin{aligned} {\dot{v}}= & {} I-g_{Na}(m_{\infty }(v))^3(0.8-n)(v-v_{Na})\\&-g_Kn^4(v-v_K)-g_L(v-v_L) c^{-1}+u(t), \\ {\dot{n}}= & {} a_n(v)(1-n)-b_n(v)n, \\ {\dot{m}}= & {} a_m(v)(1-m)-b_m(v)m, \\ {\dot{h}}= & {} a_h(v)(1-h)-b_h(v)h, \\ a_n(v)= & {} \frac{0.01(v+55)}{1-\exp (\frac{-(v+55)}{10})}, \\ b_n(v)= & {} 0.125\exp (\frac{-(v+65)}{80}), \\ a_m(v)= & {} \frac{0.1(v+40)}{1-\exp (\frac{-(v+40)}{10})}, \\ b_m(v)= & {} 4\exp (\frac{-(v+65)}{18}), \\ a_h(v)= & {} 0.07\exp (\frac{-(v+65)}{20}), \\ b_h(v)= & {} \frac{1}{\exp (\frac{-(v+35)}{10})}, \end{aligned}$$

with the following parameters

$$\begin{aligned} v_{Na}= & {} 50 mV, v_K=-77 mV, v_L=-54.4 mV,\\ g_{Na}= & {} 120 mS/cm^2,\\ g_K= & {} 36 mS/cm^2, g_L=0.3 mS/cm^2, c=1 \mu F/cm^2. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moayeri, M.M., Rad, J.A. & Parand, K. Desynchronization of stochastically synchronized neural populations through phase distribution control: a numerical simulation approach. Nonlinear Dyn 104, 2363–2388 (2021). https://doi.org/10.1007/s11071-021-06408-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06408-0

Keywords

Mathematics Subject Classification

Navigation