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Abstract In this paper, we discuss three different
response strategies to a disease outbreak and their
economic implications in an age-structured popula-
tion. We have utilized the classical age structured SIR-
model, thus assuming that recovered people will not
be infected again. Available resource dynamics is gov-
erned by the well-known logistic growth model, in
which the reproduction coefficient depends on the dis-
ease outbreak spreading dynamics. We further inves-
tigate the feedback interaction of the disease spread
dynamics and resource growth dynamics with the
premise that the quality of treatment depends on the
current economic situation. The very inclusion of mor-
tality rates and economic considerations in the same
model may be incongruous under certain positions,
but in this model, we take a “realpolitik” approach by
exploring all of these factors together as it is done in
reality.
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Introduction

The novel coronavirus (COVID-19) disease outbreak
has been widespread among different countries causing
more than 25 million cases of infection and more than
800,000 deaths as of writing this paper. In the absence
of the vaccine, different countries have imposed vari-
ous mitigation measures to either prevent the spread of
COVID-19 or slow down the spread of the virus until
the vaccine arrives.

The proposed mitigation measures are based on
reducing the physical activities of the population
[1-10]. The classical susceptible-infectious-recovered
(SIR) model [11-15] and several extensions of it have
been used for modeling the virus spread and for under-
standing the impacts of different mitigation measures
on the virus spreading. The possible economic impacts
caused by mitigation measures and the optimal strate-
gies for dealing with the disease outbreak have been
suggested in various contexts [16-25]. A recent study
has also shown the paradoxical result of switching
between two losing strategies to lower the “cost” of
an epidemic via Parrondo’s games [26-28]. Here, we
investigate the feedback interaction of disease trans-
mission and resource availability in the worst-case sce-
nario: unavailability of the vaccine. We assume that
neither a vaccine nor effective antiviral drugs become
available. We also discuss disease outbreak transmis-
sion in an age-structured population: young and old
group. The latter group is assumed to be more vulner-
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able to the infection: The death rate is higher for this
group [1].

We discuss on one side the economic effects on the
resources caused by a disease outbreak and the response
strategies to it, and on the other side the impact of eco-
nomic situation on the consequences of disease out-
break. The former effect is straightforward since the
response strategies will have a direct impact on wealth
growth. The latter effect illustrates the quality of treat-
ment inside the hospitals. We model this phenomenon
by assuming wealth-dependent death rates inside the
hospitals, that is, depleting the resources will cause an
increase in deaths.

We assume that in the absence of disease outbreak,
the wealth growth is given by the logistic growth model
known from the population dynamics with constant
reproduction coefficient and carrying capacity. The
reproduction coefficient consists of two parts: wealth
generation and consumption. Wealth generation is due
to the intragroup interactions in the first group. Dur-
ing the disease outbreak, only the agents from the sus-
pected and recovered subgroups from the young group
of population are contributing to the wealth growth.
The consumption part has a negative impact on the
reproduction coefficient of wealth growth dynamics.
We assume that the consumption rate is the same
throughout the population. Furthermore, we assume
that infected people inside the hospitals will lead to
additional treatment costs drawn from public resources.
The impact of the mitigation measures is incorpo-
rated via the reproduction coefficient of available
resources.

In this paper, we discuss three different response
strategies for the disease outbreak: total lockdown,
partial lockdown, and aiming toward achieving herd
immunity as part of the SIR epidemic model. These
strategies differ by their goals and their implementa-
tion methods. We then present results for the evolv-
ing COVID-19 pandemic under our theoretical model
and assumptions. In the next section, we introduce
the age-structured SIRD (suspected, infected, recov-
ered, and dead) compartment model, the resource
growth dynamics, feedback mechanism, and the cal-
ibration of various parameters. We will then discuss
the mitigation strategies and their results in the last
section.
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Model
SIR model and wealth dynamics

Consider two population of agents G, k = 1,2. In
each group, there are subgroups Sj (susceptible), I
(infected), R; (recovered) and Dy (deaths), with tran-
sitions

Sk — Iy = (Rk, Dy). (D

A single agent does not change its group (hence we
denote this agent as Ay), but it can change its sub-
groups. Denote by p(Si) the probability of Ay to be
in Sk. For each Gy, the probabilities obey the Markov
equation:

P(Sk) = —w k| Sk) p(Sk), )
PUk) = w(lk|Sk) p(Sk) — w(Dk| k) p(Ix)

— wW(Rk|1k) p(Ii), (3)
P(Dr) = w(D|Ix) p(Ix),
P(Ri) = w(Rk| 1) p(Ix), 4
where k = 1,2

w(Ix|Sx) = Pr{for A to be infected in unit of time}
= w1 Ik Sk) + wa Ik |Sk), (5)

w; (Ix|Si) = Pr{for Ay, to be infected in unit of time
due to interaction with group G;}. (6)

In addition to probabilities, we introduce the number
of agents N (Sy) in subgroup Si; hence,

p(Sk) = N(Sk)/ Nk, )

where N is the total number of agents in Gy.. We stress
that NV is conserved in time.
We also introduce

Pkl = Pik ®)
= Pr{for agents A; and 4; to contact each other
per unit of time}. )

Hence, we have in (5):
wi(Ix|Sk) = prix N (1p),

e.g., the probability for A to getinfected due to interac-
tion with G, amounts to probability (per unit of time)
p12 for contacting A; with Ay, times the number of
cases N (/) that can lead to infection, « is the proba-
bility of infection transmission.

k,1=1,2, (10)
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Starting from (8) we can calculate the average num-
ber of contacts (per unit of time) between agents from
within subgroups S1 U Ry:

%(N(Sl) + N(R1))(N(S1) + N(Ry) — 1)

~ SLN ) + N(R))Y (1

This number is going to appear in the dynamics of the
state budget W since we assume that the public good
creation is based on the intragroup interaction of unin-
fected members of the first group:

W = W(ap11(N(S1) + N(R))> — nW —
=Y (Wi~ V(DY) +aN (D). (12)

where 7 is the limiting factor, the term o a stands for
products and services created through the interactions
in the first group, i.e., only the members of first group
create public good.

br, k = 1,2 are standing for the spending. While
the wealth growth is due to the interactions in the first
group, the spending of wealth is due to both of the
groups. We assume that the consumption rate is the
same for both groups, by = b.

ck, k = 1,2 represent the additional cost of treat-
ment of the infected people inside the hospitals, which
will be elaborated later.

We assume that in the absence of infection, the
wealth growth dynamics is governed by the logistic
growth. The proposed growth model is known from
population dynamics, and has also been used for mod-
eling economic problems [29-33]. In the absence of
any infection, the wealth growth dynamics have the
following form:

. W
W= @puNi —bN1 + Vo) W(l — =—), (13)

max

where we have used the following relation
ok = Vi _ B
TOTTNNG NG
Here, B are average inter-/intragroup contact num-
bers.

Equation (13) is obtained from (12) by assuming
that the limiting factor has the following form:

(14)

15)

apiiNy — bW\ + Na)
n= — s
WmaX

where Wy is the carrying capacity of wealth growth.
Therefore, we assume that before the infection outbreak
the wealth growth dynamics is given by logistic growth
with constant reproduction rate af N1 — b(N +N2)
and capacity Way. The quantities a, b and W,y are
free parameters, and they have to be estimated from the
economic situations of countries.

Hereafter, the frequencies of each subgroup will be
denoted by the corresponding letter, i.e.,

{p(SK), p(k), p(Ri), p(Di)} = {sk, ik, ric. 8k}, k =
1,2.

Let us denote the fraction of the first population over
the total population by ¢ = N%Z-

In the case of a disease outbreak, the reproduction
rate and the carrying capacity of wealth growth dynam-
ics become time-dependent.

From (12) for the wealth growth dynamics, we
obtain the following equation:

W= W(aﬁn(S1 +r)?N =W — (V] + A2) x
x(c(tit + (1 = 0)ia)
+b(1 = (¢81 + (1 — 4)52>)>. (16)

Note that here we assume that 7 is a constant, since
factors that limit the economic growth are likely (at
best) to stay constant after infection starts. Therefore,
the change of the maximum possible value of wealth
growth dynamics due to the disease outbreak may be
found by considering the wealth growth dynamics in
the long-run time scales.

In the long-run time scale, it is assumed that the
infected fraction of the populations tend to zero, due
to the recovery and/or death process ixoo — 0, k =
1, 2. From (16) by assuming vanishing fractions of an
infected population, we find the possible non-trivial
rest point of the wealth growth dynamics, and obvi-
ously, W = 0 is also a rest point for wealth growth
dynamics. The nonzero rest point is found from (16)
by nullifying the expression on the right-hand side and
using the definition (15). We obtain

W*
Wmax B
aP11 (100 + 100)2¢ — b(1 = (8100t + 8200 (1 — £)))
apii¢ —b ’
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Here, Wnax stands for the wealth growth capacity
in the absence of infection outbreak. Note that in the
cases where W* < 0, wealth tends to zero. Therefore,
using the normalization of frequencies Sxco + koo +
Skoo = 1, k = 1,2, for the W* > 0 case, this quantity
reveals the maximum possible value of wealth growth
dynamics Wy,x = W*. The fraction of the maximum
values of wealth growth dynamics with and without
disease outbreak, respectively, Wiax and W max, will be

Winax _ aB11£(1 = 8100)> = b(1 = (£8100 + (1 = {)8200))

W max api¢ —>b
(17)

Thus, the disease outbreak may have different
impacts on the wealth growth dynamics in the long
term. The fraction (17) can be both % < 1. The
expected impact depends on the structure of the total
population, production and consumption rates, and the
total size of the deaths in each population. For the
COVID-19 disease outbreak, the fraction (17) is less
than one.

Feedback arising from economic growth and disease
dynamics

Above we have described the impact of the infec-
tion transmission on the wealth growth dynamics. We
assume that the wealth growth dynamics itself affects
the infection dynamics due to the wealth dependency
of death rates. The wealth dependency of death rates
means that in the absence of possible resources, the
treatment quality in the health care system will suf-
fer. For the recovery rate Ay = w(Rk|lx) k = 1,2,
we assume that it remains constant, i.e., after the con-
stant recovery period, the infected people either die or
recover. We assume that the death rates ux = w(Dy|Ix)
k = 1,2 are negatively correlated with the wealth
growth inside the hospitals.

he
. — M =
i (iy, in, W) MOk( ax [ Cit+ (1 =0)id)’ O]

1 h
+ Mi < ), 18
o m[@il+<1—c>iz> ]) (e
where uox, k = 1,2 represent the natural death

rates for each group outside the hospitals, and « rep-
resents the economic state of the population. Since we
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are going to describe the dynamics of the dimension-
less quantity W/ W pax, the difference between rich and
poor countries will be lost.

In (18), the health system capacity is denoted by &,.
Due to the health system capacity, only a certain por-
tion of the infected population from each group will be
treated in the hospitals. Indeed, when the total infected
population does not exceed the health system capacity
level A, then the deaths in total population per unit of
time will be given by the following relation:

wigit + pa(l = &)iz
1
= ———— (worgit + po2(1 = &)iz). (19)
1 +a

max

Otherwise, when the total fraction of infected pop-
ulation exceeds the health system capacity level, the
latter quantity will be

mi1gin + pa(l —8)iz
= MOk(L(C]iI + iz — he)

=12 Qi1 + &2z
1 iche
L ) (20)
I +ae— it + QB

Here, ¢ = ¢ and {, = 1 — ¢. Similar relations hold
for the total deaths per unit of time.

Treatment cost in the hospitals is governed by the
rate ¢ in (12). Here, again we assume that outside the
hospitals the treatment cost is nullified. This means
that people who are infected but cannot be treated in
the hospitals (due to the capacity), will not “produce”
additional costs. Hence, we have:

A, 1:|7 (21)
cir+ (1= 9in

where ¢y, is the rate of the cost of the treatment in hos-
pitals.

c(i1, i2) = cpMin |:

Calibration of parameters: economic part

In order to determine relevant values for the parameters
involving the economic part, we consider the wealth
growth dynamics as a budget generating process in
countries. Budget generation is based on the revenues
and expenditures of a government. Though revenues
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are not solely based on the interaction of economic
agents, it is reasonable to use the budget to obtain reli-
able estimates for parameters a, b and W max-

As an example, we choose the budget dynamics
of Germany. In 2017, the budget balance (difference
of revenues and expenditures) of Germany was equal
to 1.25%GDPyg17 of that year [34]. The revenues
Rerg17 = 45%GDPyg17 [35]. We use the real GDP
of Germany in constant 2010 USS$. According to the
World Bank data, GDP2g;7 = 3.878 x 10'2 US$ [36].
In 2018, the above-mentioned quantities are 1.75%
GDonlg, GDP2018 = 3.937 x 1012 US$, Rez()]g =
45.5%GDP»g;g. The relevant value for parameter a is
obtained by assuming that revenue generation is given
by the logistic growth:
dRe N Re
T apniNiRe(l — E)’ (22)
where G is the carrying capacity value and reproduc-
tion coefficient is a1 Ni. We assume that the rev-
enue Repopg is close to the carrying capacity G =
45.7%G D Prg13 =~ Reaor1g. This choice assumes that
the revenues are collected as much as possible. From
(22), it follows that the choice of time units is governed
by the constant a, i.e., a change in the unit of times will
cause a to change. Therefore, we choose the day as the
unit of time, since the parameters of the SIR model are
defined in terms of days. The solution of (22) has the
following form:

G * Reoo17
Rexg17 + (G — Reggr7)e—BuMT

= Reyrs, (23)

where T = 365 days. Total population of Germany in
2018 is equal to A" = N} + N> = 83 million people
according to the World Bank data [37]. The age distri-
bution was N, = 0.2N, where N, is the population
size of those who are 65 and above. The contact num-
ber 811 = 10. (This choice will be explained below
alongside with the other contact numbers 81, and $5,.)
Hence, from (23), we estimate that the value of axN| =
5.35%10~%. For the consumption rate, we introduce an
equation similar to (23). We assume that the carrying
capacity for expenditures is the same as for revenues.
For expenditures (going through the reasoning above),
we estimate the value of b(N] + N>) = 8.35 % 1074,
Thus, we obtain aB ;N7 —b(N] +N>) = 4.51 %1073
as the overall budget reproduction coefficient.

Here, we use the above estimation of budget param-
eters for (13). Note that (13) does not govern the real

budget dynamics now, since the real budget dynam-
ics will be given by the difference of two logistic
equations—revenues and expenditures. However, we
use the parameters for (13) and try to find the carrying
capacity level in order to provide the correct values for
budget balance in 2017 and 2018. Indeed, using (13),
we obtain an equation for W pax

W nax Wao17
W2017 + (Wmax — Wagi17)e= 2T
We have taken into account the fact that Wpg7 is
defined through GDP517. Solving the last equation, we

find the value of the capacity of wealth growth dynam-
ics Wnax = 1.945%GDPg3.

= Waos. (24)

Calibration of parameters: infection and health system
part

In the classical SIR models, the disease outbreak
dynamics is described by the reproduction number of
disease R [12—14]. This quantity describes the num-
ber of secondary infectious cases caused by an infected
individual when whole population is in suspected sub-
groups. The reproduction number varies during the
spread of disease outbreak, since more people will
be infected and hence less suspected population will
remain. For the present model, the reproduction num-
ber can be found by expressing the equations of infected
populations i1, i in matrix form [38,39]:

d
_' — D M _ I .7 25
' ( i (25)
. .. A+ 0
T 1+

=00, D= : 26
' (ll 12) |: 0 )\.2 + M2:| ( )

10 fllKSI fmcs.
! Z[o 1] M= | GG B |- @7

Atu2 Axtupn

The reproduction number Ry is defined as the max-
imum eigenvalue of matrix M, when s1, 52 & 1:

R = max, M (28)

where o, k = 1, 2 are the eigenvalues of matrix M.
During the infection spread, the reproduction num-
ber R is decreasing. Let us now introduce the values of
parameters involved in the matrix M describing Covid-
19 disease outbreak. These parameters may vary due to
further insights about the outbreak as time progresses.
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However, the scope of the present paper is to compare
the different response strategies in relation to the given
infection outbreak.

The recovery rates are assumed to be A = Ay =
1/18,i.e., a period of 18 days is required for the transi-
tion from infected to recovered subgroup [1, 18,21,40].
During the recovery period, people may die, which is
described by the death rates. For the death rates out-
side the hospitals, we assume o1 = 2% 0.0025 % 1 /X1
and po2 = 2 % 0.06 x 1/X,. In the current literature,
the death rates are assumed to be 0.0025 % 1/A; and
0.06:1/1,, respectively, for the first and second groups
[18,40]. These rates describe the deaths in the hospitals,
i.e., when infected patients receive medical treatment.
That is why we assume that outside the hospitals, these
parameters will increase. For illustration purpose, we
assume that these parameters will increase by at least
twice.

For the contact numbers, we use {811, B12, B2} =
{10, 6, 8}. According to the research undertaken to
investigate the daily contacts (either skin-to-skin con-
tact or two-side conversations) in different European
countries [41], the average number of contacts in Ger-
many was 7.95, so we assumed an average of 8. Mean-
while, the contacts follow an age-dependent pattern,
i.e., people within the same age group contact one
another more often than people from outside their age
ground.

It is worth noting that in the classical SIR-model,
the fraction of deaths is not explicitly included. Hence,
the reproduction number may vary depending on the
way the deaths are accounted for in the model. For the
Covid-19, the reproduction number Ry is assumed to be
Ry =~ 2.4 [1]. However, the deaths caused by infection
have not been explicitly included in this estimation.
We choose k = 0.009 as to match this value without
deaths, viz. Ry &~ 2.44. In the presence of deaths, the
reproduction number is Ry ~ 2.38.

For the health system capacity level, we assume
he. = 0.01, i.e., the health system is capable of pro-
viding treatment to the 1% of the population. Indeed,
this value seems much greater than the exact capac-
ities of health system in most countries. Therefore,
we have also taken into account the fact that not all
of the infected people need hospitalization [1]. Treat-
ment cost has a temporal effect on the wealth dynam-
ics, viz. changing the treatment cost varies the depth of
economic recession. We choose a representative value

@ Springer

Table 1 .
N 83 % 10° A,Aa 1718
M 0.8 x N ot 2 %0.0025 % 1/18
N> 0.2x N 02 2%0.06%1/18
GDPy;5 3.937 % 10'2 K 0.009
Wo 1.75%GDPag13  he 0.01
W max 1.945%GDPyy3 ¢ 105
ax N 5.35% 1074 Bii 10
BN +N2) 8.35%1074 B2, 1 6
B2 8

¢ = 10b. All the parameters and their values are pre-
sented in the table below.

Results
Mitigation scenarios
Total lockdown strategy

We now discuss three different responses to the dis-
ease outbreak. We assume that neither a vaccine nor
effective antiviral drugs become available. We will also
assume that the contact numbers can be reduced by dis-
crete values. We assume that the response to the dis-
ease started at the point in time when the fraction of
the infected population exceeded some threshold value
Ci1+ (1 —¢)ip > i. Response strategies are defined as
follows:

1. Total lockdown: Here, we assume that all the contact
numbers are reduced by a discrete value: Specifi-
cally, they reduce by five times.

2. Partial lockdown: Here, we assume that the contact
numbers B> and B> will be reduced, while B
remains constant.

3. Toward herd immunity: In this scenario, again, 1]
remains constant. However, 812 and f2; are chosen
such that enough of the population has been infected
during the mitigation, and that the infection will not
grow again when measures are relaxed.

The results arising from the above strategies will be
compared against the “do-nothing” scenario, i.e., no
mitigation measures are being imposed.

We now discuss the total lockdown scenario as a
mitigation measure, where the goal is to reduce the
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Fig. 1 Total lockdown and “do-nothing” scenarios. The
contact numbers during the total lockdown strategy are

{,@1 1 B, ﬁzz} = {0.2% 10, 0.2 % 6, 0.2 % 8}. Dynamics of the

fraction of wealth and its capacity level (a), infection spread (b)
and the dynamics of deaths (c). In the left panel (a), the dashed

reproduction number of the disease (28) to below one.
In the context of our model, the end-point of the total
lockdown scenario is not clear in the absence of a vac-
cine. As an end-point of the mitigation measures, we
choose the moment in time when the total fraction of
the infected population is reduced to the initial value of
the infection (starting point of disease dynamics). We
assume that all contact numbers are reduced by five
times: { i1, Biz. A | = (0.2710,0276,0.278).

The wealth growth dynamics, infection spread and
the fraction of deaths are represented in Fig. 1. In the
left panel (Fig. 1a), the wealth growth dynamics is rep-
resented under the mitigation measures (full line), “do
nothing” scenario (dashed line) and in the absence of
disease outbreak (dotted line). Under the “do nothing”
scenario, the wealth is decreasing due to the infection
of the first population and due to the treatment cost of
the infected population, as it follows from (13). Further-
more, the maximum possible value of wealth defined by
the relation (17) is decreased Winax /Wmax = 0.9939.

The first red point on the full line in (Fig. 1a) illus-
trates the start point of the lockdown measures—when
the total infection ¢i; 4+ (1 — ¢)i» = i. The second
red point in (Fig. 1a) shows the moment of lifting the
measures—when the total infection becomes equal to
the starting value of infection ¢i1(0) 4 (1 — ¢)i2(0) =
107> The wealth growth comes down drastically dur-
ing the lockdown period, since the growth is reliant on
the intragroup contact number of the first group B
(which is reduced by five times during the lockdown
becoming equal to Bi1).

0.10 .
0.00020 e
0.00015 1 0.08
0.00010 /
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0.00000 4§ 000 i
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1 Q 004 !
|
0.02f .
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(b) (c)

(dotted) blue line represents the wealth dynamics in the “do-
nothing” (in the absence of infection) scenario. The full blue line
represents wealth growth dynamics under total lockdown and
after that. Red points represent the start and the end of lockdown.
The full (dashed) black line on the middle panel (b) represents
infection spread under total

During the lockdown period, the fraction of the
infected population is decreasing. After the lifting of
the lockdown measures, the disease outbreak does not
go extinct (there is no such a mechanism as part of our
model), and it starts to spread again after some time.
During this interval, wealth will start growing. Then,
it starts decreasing again, however, this time due to
the infection spread. In this case, the minimum value
of wealth dynamics is smaller than in the “do noth-
ing” scenario. This means that the death rates become
greater (i.e., the quality of treatment decreased) in
the hospitals compared to the worse situation in “do
nothing” scenario. The fraction of deaths is illustrated
in Fig. 1c. As can be seen, the fraction of deaths is
increased, since the quality of treatment is worsened.
In our context, the discrepancy is negligible. Thus, the
resource depletion can cause more deaths, and this
phenomenon is observed for the general susceptible-
infected-susceptible (SIS) model that has been dis-
cussed in [42]. The fraction of deaths in the two popula-
tions §200/8100 18 approximately the same for both sce-
narios, butis larger in the “do nothing” scenario. Due to
this and the greater fraction of deaths of the first popula-
tion in the total lockdown strategy, the maximum value
of wealth in the total lockdown strategy is smaller than
in the “do nothing” scenario Wax /Wmax = 0.9935.

Partial lockdown

The consequences of the total lockdown strategy can
be more unfavorable for the population than in the

@ Springer



2860 S. G. Babajanyan, K. H. Cheong
025 0.10
5 6 o
LA 008~ — ~
020 ;".| ;
fos 2 ousk 1 2 006f 1
S s i S i
; 0.7 “E\ 0.10 |" 1 Q 0.041 i
I 1
0.6 0.05 i /\ 0.02 ,',,
: ! 1/
A o
i 000. Joaz, T T T 1 n n
05 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0.00 mas !
200 400 600 800 1000 1200 1400 0 200 400 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
time time time
(a) (b) (c)

Fig.2 Partial lockdown {31 1, ﬁlz, ,322} = {1%10,0.2%6,0.2 * 8} and “do-nothing” scenarios. Description of the figures is the same

as in Fig. 1

“do-nothing” scenario, as we have seen above. The
major reason for this phenomenon is the depletion of
the resources during the total lockdown. In the par-
tial lockdown strategy, the goals differ from the above-
discussed case in two aspects. Here, in the partial lock-
down, the public health goal is to preserve the total
fraction of the infected population to be as low as pos-
sible. Meanwhile, we have to prevent the large reces-
sion in wealth dynamics, which occurs in total lock-
down strategy. As can be seen from (12), the wealth
growing process is based on the contacts in the first
group B11. Thus, for keeping up the wealth situation
we assume that the mitigation measures do not affect
B11. We choose the value of contact numbers as fol-
lows: {B“, Bia, 322} — {1%10,02%6,02%8}. In
the partial lockdown case, the starting and ending times
of mitigation are defined in the same way as in the total
lockdown scenario.

The behavior of the wealth dynamics, infection
spread and the fraction of deaths is presented in Fig. 2.
The first period of infection does not induce as great a
damage to the economy as in the “do nothing” scenario.
Meanwhile, at the start of the second wave—which
occurs because there is no vaccine and not enough peo-
ple have been infected in the mitigation phase—the
wealth of the population is in a better situation than at
the start of the infection.

This means that the treatment quality is at least as
good as at the start of the epidemic. Furthermore, dur-
ing the second wave of the infection spreading, wealth
dynamics do not decrease as much as in the “do noth-
ing” scenario. Due to the fact that at the start of the
second wave, part of the population has been infected
already and the quality of treatment in the hospitals
become better than at the start of the infection. The
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behavior of the fraction of the total infected popula-
tion under partial lockdown and “do nothing” scenarios
are presented in Fig. 2b. It is seen that more people are
treated inside the hospitals in partial lockdown strategy
than in “do nothing scenario”. Due to these situations,
the fraction of deaths is drastically reduced under the
partial lockdown strategy as shown in Fig. 2c. The total
number of deaths is almost twice as small under the
partial mitigation measures than in the “do nothing”
scenario.

The maximum possible value of wealth under the
partial lockdown is approximately the same as in the
absence of disease Wpax /Wmax = 0.9941. Thus, for
both public health and economy parts, the partial lock-
down strategy minimizes the losses.

It is necessary to mention that we are discussing
the one-round lockdown strategies, i.e., the mitigation
measures are imposed at once. For example, under
the partial lockdown strategy, the second wave of the
disease can be suppressed by increasing health sys-
tem capacity. However, these questions are beyond the
scope of the current paper.

Toward herd immunity

The next strategy of response to the disease outbreak
is a mitigation of the spread dynamics to ensure the
occurrence of herd immunity in the population. In the
classical SIR model, the occurrence of herd immunity
(here it has to be mentioned that occurrence of herd
immunity is based on, and a consequence of the epi-
demic model, in our case it is the SIR model) is associ-
ated with the peak of the infection curve, i.e., the point
after which infection goes to extinction. Thus, the “do
nothing” scenario is also providing the herd immunity
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in the population. However, the “do-nothing” scenario
is not the optimal strategy for achieving our goal for at
least two reasons: health system capacity and wealth
dynamics.

The reproduction number (28) has to be small
enough in order to slow down the spread of the infec-
tion. In this way, more infected people will be treated
in hospitals. Therefore, it has to be large enough so
as to ensure the disease transmission is in the popula-
tion. The difference between the present strategy and
partial lockdown is the absence of the second wave of
the infection after the relaxation of the mitigation mea-
sures. As in the previous cases, we assume here that
the start of the mitigation measures is at the instance
of time when the fraction of the total infected pop-
ulation exceeds the threshold value i. The endpoint
of the mitigation measures #* is defined from the fol-
lowing consideration: after relaxation of the mitigation
measures—when contact numbers become the same as
before the start of the mitigation process—the infection
spread has to decline. Thus, the mitigation measures are
lifted whenever the following condition is satisfied:
Max,, M

~ =<1, i,j,k=1,2. 29)
Aj+

ij

Here, oy are the eigenvalues. In (29), the con-
tact numbers are given by those in the pre-mitigation
period, while the dynamics of infection is controlled
by the contact numbers in the mitigation period

~

Bij. The contact numbers in the mitigation period
are {Bir. Bz, B2} = (1%10,0.5%6,058). We
assume that the contact numbers in the first group
remain the same as before the mitigation period.

Infection spread under the “toward herd immunity”
and “do nothing” strategies is illustrated in Fig.3b.
As can be seen from Fig.3b, the time at which the
fraction of infected people exceeds the health system
capacity level, is greater than in the “do nothing” sce-
nario. Indeed, when the fraction of infected population
exceeds health system capacity, the reproduction num-
ber of disease at that moment of time is greater in the
“do nothing” scenario. This is because at that moment
of time, fewer people remain suspected in the present
strategy than in the “do nothing” scenario. Meanwhile,
more people have been treated in hospitals in the miti-
gation regime.

The dynamics of wealth and the fraction of deaths
are represented in Fig.3a, c, respectively. The wealth

growth in the initial phase of the epidemic is seen
in Fig. 3a. The total fraction of deaths in the present
scenario is slightly greater than the total deaths under
the partial lockdown strategy. The maximum possible
value of wealth under the “toward herd immunity”’ strat-
egy is approximately the same as in the partial lock-
down strategy Wmax /Wmax = 0.994. Comparing the
results from partial lockdown and toward herd immu-
nity strategies, it becomes clear that the deaths caused
by infection spread are lesser in the partial lockdown
strategy. Meanwhile, we assume that the vaccination is
not yet available. If at some point in time during the
mitigation measures the vaccine is being made avail-
able, then the partial lockdown strategy is more favor-
able than the other strategies since more people will
be vaccinated. The point is that in the partial lockdown
strategy, the second wave of infection will occur, in con-
trast to the total lockdown and toward herd immunity
strategies. Thus, partial lockdown strategy divides the
expected wave of disease outbreak in two parts and by
this way ensures that more people will be treated inside
the hospitals with better treatment quality. Therefore, it
is necessary to mention that the duration (right and left
red points on the figures) of partial lockdown strategy
is greater than for the other strategies.

Discussion

We will now discuss the impact of the different strate-
gies in response to the disease outbreak with regard to
the wealth growth and disease transmission dynamics.
We assume that neither a vaccine nor effective antiviral
drugs become available. To this end, we discuss dis-
ease outbreak transmission in an age-structured popu-
lation: young and old groups. The latter group is con-
sidered more vulnerable to the infection: The death rate
is higher for this group. We have chosen the parame-
ters based on real-world data related to the COVID-
19 pandemic in this paper. We have discussed three
different response strategies to the pandemic in the
absence of vaccine and effective antiviral drugs: total
lockdown, partial lockdown, and toward herd immu-
nity. We assume that the mitigation measures are lifted
whenever the final goal of the strategies is obtained. We
compare the deaths in the population and the economic
impact of the mitigation strategies with a “do-nothing”
strategy, namely when there are no mitigation measures
at all.
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Fig. 3 Toward herd immunity by mitigation measures and without them, i.e., “do nothing” strategy. { Bi1, B2, ,522} =
{1*10, 0.5%6, 0.5*8}. Wealth growth (a), infection spread (b) and deaths (c). Description of the figure is the same as in Fig. 1

The total lockdown strategy tries to decrease the
reproduction number of disease below one, that is, to
suppress the further transmission of disease inside the
community. The contact numbers in each group and the
contact numbers of intergroup interactions are reduced
by the same value during the total lockdown period. The
number of infected people decreases during the mitiga-
tion period, so the overall treatment cost decreases. The
reason behind the economy worsening is the reduced
intragroup interactions in the first group.

The endpoint of the total lockdown strategy in the
absence of a vaccine is supposed to be the instance
when the fraction of infected people declines to below
the threshold value. After relaxing the mitigation mea-
sures, the disease outbreak continues to spread in the
society. However, in the context of our model, the
consequences can be more severe than in the “do-
nothing” scenario. Under the considered parameters
range, the difference between the total deaths at the
end of COVID-19 pandemic is small when these two
strategies are implemented. In the long run, the max-
imum possible value of wealth is changed because of
the deaths. Here, again, the total lockdown strategy is
not favored in the absence of a vaccine.

The next strategy of response to the disease outbreak
is a partial lockdown. The goals of the strategy differ
from total lockdown in two ways: on the one hand,
to slow down the disease transmission in the society
so that infected patients can obtain the required treat-
ment in the hospitals as much as possible, and on the
other hand, to keep the wealth growth dynamics to an
accepted level. For the latter purpose, the intragroup
contact number of the first group members remains
constant. The other two contact numbers: intergroup
contacts and intragroup contacts in the second group,
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will decrease by the same amount as in the total lock-
down strategy.

Under our considered parameters, the second wave
of disease outbreak will occur after lifting the mitiga-
tion measures. However, at this time, the peak of the
infection is smaller than in the first phase of infec-
tion. The total deaths in the second group popula-
tion are approximately twice smaller than in the “do-
nothing” scenario. This is because of three reasons:
Firstly, people from the vulnerable group are infected
less than in the “do-nothing” scenario, so the fraction
of deaths decreases. Secondly, infected people receive
relatively good treatment inside the hospitals. Lastly,
resources are increasing before the second wave; hence,
the quality of the treatment inside the hospitals can be
increased. The deaths of the first group are approxi-
mately the same for both the partial lockdown and “do
nothing” scenarios since the intragroup interactions in
the first group remain at the same level. Thus, the frac-
tion of total deaths in the whole population is approx-
imately twice smaller in the partial lockdown scenario
compared with the “do nothing” scenario. In this case,
the decline in wealth dynamics is caused by the infec-
tion spread only: Infected people do not contribute to
the wealth growth process, in contrast to the previous
scenario where the resource depletion occurs before the
peak of the epidemic. Therefore, the economic decline
in the partial lockdown strategy is not as severe as in the
“do nothing” scenario due to the slowdown in the dis-
ease transmission. The long-term impact of the infec-
tion outbreak is also milder for the partial lockdown
strategy.

The last scenario for the response of the infection
outbreak (in the absence of the vaccine) is a strat-
egy toward herd immunity. It should be noted that the
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occurrence of herd immunity is based on the dynami-
cal properties of SIR model, as we have assumed that
the recovered people will not be infected again. Here,
we emphasize that the “do nothing” strategy also guar-
antees the occurrence of herd immunity in the popu-
lation: a turnover point in the infection dynamics after
which infection declines and goes to extinction. How-
ever, this is not the favored way to build herd immu-
nity under the health system capacity levels and the
economic consequences of infection transmission. As
such, we discuss the following strategy for building
herd immunity in the population: The intragroup inter-
action between the members of the first group remains
at the same level, while the other two contact numbers
decrease by an amount such that the infection has to
continue spreading in the population, but in contrast to
the partial lockdown case, a second wave of the infec-
tion may not appear in the future. The endpoint of the
mitigation measures is defined by the threshold value
of the reproduction number: When relaxing the mit-
igation measures, this will not cause a growth in the
fraction of the infected population.

Due to the decrease in contact numbers, the deaths
caused by infection are smaller in this scenario than in
the “do nothing” case. The reason behind the decline in
deaths is the same as in the partial lockdown case, but
the total case of deaths in the partial lockdown is smaller
than in the herd immunity scenario. As in the partial
lockdown scenario, the economic situation during the
outbreak in the herd immunity scenario is better than in
the “do nothing” scenario in both short and long term.

Conclusion

In summary, we have taken a ’realpolitik’ approach by
exploring mortality rates and economic considerations
in the same model together as it is done in reality. In
our theoretical model, we have assumed that neither a
vaccine nor effective antiviral drugs become available.
Based on the context of our study, it is clear that the
partial lockdown strategy is a more preferable choice
compared to the other two strategies, in terms of pub-
lic health and economic considerations. Finally, a word
of caution: COVID-19 is a complex of medical condi-
tions, and not a cause. The ultimate causative agent is
not a virus in isolation, but a virus in complex with
particular social factors [43,44]. The fact is that we are
in an unsustainable geosocial situation. If these con-

ditions are not resolved, we should consider recurrent
catastrophe as an inevitable emergent phenomenon of
the dynamics that emerge from such complex systems.
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