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Abstract Recurrent outbreaks of the coronavirus

disease 2019 (COVID-19) have occurred in many

countries around the world. We developed a twofold

framework in this study, which is composed by one

novel descriptive model to depict the recurrent global

outbreaks of COVID-19 and one dynamic model to

understand the intrinsic mechanisms of recurrent

outbreaks. We used publicly available data of cumu-

lative infected cases from 1 January 2020 to 2 January

2021 in 30 provinces in China and 43 other countries

around the world for model validation and further

analyses. These time series data could be well fitted by

the new descriptive model. Through this quantitative

approach, we discovered two main mechanisms that

strongly correlate with the extent of the recurrent

outbreak: the sudden increase in cases imported from

overseas and the relaxation of local government

epidemic prevention policies. The compartmental

dynamical model (Susceptible, Exposed, Infectious,

Dead and Recovered (SEIDR) Model) could
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reproduce the obvious recurrent outbreak of the

epidemics and showed that both imported infected

cases and the relaxation of government policies have a

causal effect on the emergence of a new wave of

outbreak, along with variations in the temperature

index. Meanwhile, recurrent outbreaks affect con-

sumer confidence and have a significant influence on

GDP. These results support the necessity of policies

such as travel bans, testing of people upon entry, and

consistency of government prevention and control

policies in avoiding future waves of epidemics and

protecting economy.

Keywords COVID-19 � Recurrent outbreak �
Logistic model � Government policy � SEIDR model

1 Introduction

Atypical pneumonia cases were first reported in

Wuhan, Hubei Province of China since December

2019 [1–4]. These cases were later found to be caused

by a coronavirus, which became officially known as

‘‘SARS-Cov-2’’, with the World Health Organization

(WHO) naming the disease ‘‘COVID-19’’ on February

2020. This novel coronavirus, which is assumed to

have originated from certain bats [5], was subse-

quently confirmed to be transmitted from human-to-

human in China [2, 6–10] and around the world

[11–16]. Based on available data on numbers of

infected cases, COVID-19 seems to be more conta-

gious than other coronaviruses such as SARS or

MERS [17–20]. According to the WHO, as of 2

January 2021, there have been a global total of

82,594,195 confirmed cases of COVID-19 of which

1,819,107 resulted in death. The COVID-19 pandemic

has had a significant impact on all aspects of people’s

life. Individually, it has affected people’s scope of

activities [21] and their mental health [22]. At national

levels, it has affected countries� economies and

development [23].

In many provinces of China’s mainland, and most

countries worldwide, multiple waves of the epidemic

have been observed [24–34]. Consequently, the WHO

declared COVID-19 a pandemic on 11 March 2020.

With this, it has been suggested that along with the

wide spatial distribution of the virus, efficient global

transportation has contributed to the recurrent nature

of COVID-19. Additionally, government decisions on

the stringency of epidemic control policies and its

social and economic support have had important

consequences, particularly in the face of the recurrent

outbreaks [35]. All this considered, to have a better

understanding of mechanisms underlying multiple

waves of an epidemic outbreak.

Previous modeling studies have shown that the

early phase of the epidemic outbreak inside or outside

of China can be depicted by descriptive models (e.g.,

logistic models) [36], dynamical models such as SIR

(Susceptible Infected Recovered Model), SEIR (Sus-

ceptible Exposed Infected Recovered Model) or

SEIDR (Susceptible Exposed Infected Dead Recov-

ered Model) [3, 4, 37–42] or using deep learning

techniques [43–45]. However, these previous works

only depicted one epidemic process and none of these

models can be reliably used to predict whether the

outbreak will be recurrent in the future. The main

reason could be that it is not yet clear what exactly

causes the recurrent outbreaks of COVID-19. Under-

standing the mechanisms underlying recurrent out-

breaks allows us to directly predict whether the

outbreak will happen again in the future. The current

available data does include multiple waves, making it

possible to develop a model addressing the limitations

of previous studies.

In this study, we proposed a new two-fold frame-

work, composed by a descriptive model and a dynamic

analytical model. Based on the public data on COVID-

19 dynamics and its recurrent outbreaks within

China’s mainland from 1 January 2020 to 2 January

2021, we fitted them by the new descriptive model and

analyze the relationship between the extent of
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recurrent outbreaks and the index for cases imported

from overseas. We then applied the descriptive model

to available global public data on COVID-19 in 43

other countries and analyzed the relationship between

the extent of recurrent outbreaks and governmental

control measures in order to provide evidence for

policymaking and clinical practice. According to the

assumption that the extent of recurrent outbreaks may

be related to the index for cases imported from

overseas and relaxation of the governmental control

measures. The dynamic SEIDR model was con-

structed to simulate the phenomenon of recurrent

outbreaks and trace the development of the epidemic

further shows its implication in policy making.

Finally, to emphasize the significance of studying

recurrent outbreak of the COVID-19, we also analyzed

the relationship between the extent of recurrent

outbreaks and the consumer confidence index.

2 Method

2.1 Data sources

2.1.1 Epidemic data

The cumulative number of confirmed COVID-19

cases in China’s mainland, from 1 January to 30 July

2020, was obtained from the National Health Com-

mission of China and the provincial health commis-

sions of 30 provincial administrative regions

(excluding Tibet, because the only confirmed infected

COVID-19 case in Tibet was declared as having

recovered on 12 February). The data for the number of

imported infected cases from abroad in each province

are available from the Chinese website of Sina. All

data are publicly available. All cases were laboratory-

confirmed, following the standards published by the

National Health Commission of China. The basic

testing procedure has been described in detail in

previous works [1, 5]. The first wave of acquired

dataset was analyzed in an initial study [36]. The data

may involve systematic estimation errors since

asymptomatic infections are not included in the data.

With this in mind, the available data is representative

of the current state of the epidemic.

We selected 43 countries outside China with severe

coronavirus epidemic outbreaks where data were

available for the period from 1 January 2020 to 2

January 2021. The population data included in this

study amounts to 46.4% of the world population

(64.8% with China included) and 83.8% of the

infected cases documented globally (84.0% with

China included). The data for COVID-19 cases in

these countries were obtained from situation reports

on the official website of the World Health Organi-

zation, which is publicly available. The data used in

this study include the cumulative number of reported

laboratory-confirmed COVID-19 cases globally. The

43 countries are Australia, Japan, Malaysia, Philip-

pines, Republic of Korea, and Singapore in the

western Pacific region; Austria, Belgium, Bulgaria,

Czech Republic, Denmark, Finland, France, Hungary,

Germany, Italy, Lithuania, Norway, Poland, Portugal,

Russian Federation, Serbia, Slovakia, Slovenia, Spain,

Sweden, Switzerland, the Netherlands, the United

Kingdom, and Ukraine in Europe; India and Thailand

in Southeast Asia; the Islamic Republic of Iran and

Lebanon in the eastern Mediterranean region; Argen-

tina, Brazil, Canada, Mexico, Panama, Peru, and the

United States of America, in the Americas; and

Ethiopia and South Africa in Africa. All the labora-

tory-confirmed cases are determined using the WHO

standards.

2.1.2 The indices of government policy

Indicators of government response were taken from

The Oxford Covid-19 Government Response Tracker

[46]. This dataset tracks individual policy measures

across 17 indicators, and miscellaneous notes are

organized into four groups: containment and closure

policies, economic policies, health system policies and

miscellaneous policies. According to these indicators,

we can produce three indices to provide an overall

impression of government activities. Each of these

indices illustrates a number between 0 and 100 that

reflects the level of government responses. In this way,

we can quantify which policies a government has

implemented, and to what degree. The Stringency

index is mainly used in this work (all closure

indicators, plus health system policies that record

public information campaigns), records the strictness

of ‘‘lockdown style’’ policies that primarily regulate

people’s behavior. Overall, the higher the score is, the

more government interventions were implemented.
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2.1.3 The consumer confidence index

To include well-being indicators relating to economic

impact within the epidemic based on government

policies, we included the Consumer Confidence Index

(CCI) as a measurable indicator. Positive changes in

consumer confidence will lead to economic growth,

while negative changes impede the economic devel-

opment of a country [47].

The CCI used in this study is a composite monthly

index, covering consumer expectation and consumer

satisfaction extracted from an open dataset, thus

measuring the consumers’ degree of optimism and

pessimism about the current economic situation and

expected future economic trends. This scale ranges

between 0 and 200 (or - 100 and 100, depending on

country), where 200 indicate extreme optimism, 0 is

extreme pessimism, and 100 is neutrality. We adopted

a transformed index to represent the change of the

consumer confidence when confronting the recurrent

outbreaks of the COVID-19, which is named the

Recurrent Consumer Confidence Index. This index is

calculated from the time of lowest point of consumer

confidence since the outbreak of the epidemic. We

assume that government policy strictness impacts

consumer confidence. Additionally, from trends

observed in this data, we expect, that once consumer

confidence rebounds when polies relax and declines

again when another wave emerges and policies

become stricter again. Hence, we calculated this index

by subtracting the current value from the highest value

during this time period. The higher the index values,

the greater the policy change, and the less optimistic

consumers are. The CCIs from 26 countries (the

United States, Mexico, Canada, Argentina, the United

Kingdom, Spain, Italy, Germany, France, Belgium,

Sweden, the Netherland, Portugal, Ukraine, Poland,

Austria, Denmark, Czech Republic, Finland, Hungary,

Lithuania, Slovakia, Slovenia, Thailand, China, Aus-

tralia) were employed in our analysis.

2.1.4 The GDP index

We assume that any country’s gross domestic product

(GDP) can be a sign of consumer’s confidence to some

extent. To this end, we adopted the quarterly GDP

index of the first two quarters of 2020, which is the

percentage change from the previous quarter. We

adopted this data from the public website of the

Organization for Economic Co-operation and Devel-

opment (OECD) and explored its relationship with

Consumer Confidence Index (CCI). ‘‘GDP index’’ of

22 countries (the United States, Canada, Argentina,

the UK, Spain, Italy, Germany, France, Belgium,

Sweden, Netherland, Portugal, Poland, Austria, Den-

mark, Czech Republic, Finland, Hungary, Slovakia,

Slovenia, China, Australia) were employed in our

analysis.

2.2 Models

2.2.1 Descriptive model of epidemics: multiple waves

sigmoid model

By 2 January 2021, we had observed the recurrent

outbreaks of COVID-19 in many countries. Thus, the

previous single wave logistic model can no longer

appropriately depict the whole picture of the current

dynamics of the epidemic outbreak. For this reason,

we have developed a revised version of the previous

possible solutions to this dilemma. A logistic function

has been used in previous studies to depict the

cumulative daily number of COVID-19 cases in the

early phase of the epidemic outbreak [36]. Here, we

used the logistic model of multiple waves sigmoid

model to solve this problem. We reasoned that the

entire time series data could be divided into multiple

waves, which is denoted with a sigmoid function.

Using the multiple waves sigmoid model, the cumu-

lative number of the infected cases in any given region

I(t) can be calculated by:

IðtÞ ¼
XN

i¼1

Ai

1þ eki t�tið Þ ð1Þ

where t denotes time, Ai denotes the maximum

infected cases in the ith wave of the epidemic

outbreak, ki denotes the logistic growth rate in the

ith wave of the epidemic outbreak, ti denotes the semi-

saturation period in the ith wave of the epidemic

outbreak, andNmeans the total waves of the outbreaks

of COVID-19 in one region.

2.2.2 Dynamical model on epidemics: SEIDR model

With the result analyses of the descriptive model

(detailed explanation as in Sect. 3), we assume that the

extent of recurrent outbreaks may be related to the
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index for cases imported from overseas, relaxation of

the governmental control measures and the tempera-

ture in a region. Then we simulated the COVID-19

outbreak using the SEIDR model, which is an

infectious disease dynamics model developed from

previous SIR or SEIR model [3, 4, 37–42]. This model

has five classes; (susceptible (S), exposed (E), infected

(I), dead (D) and recovered (R) population), which are

shown in Eqs. (2)–(6).

dS tð Þ
dt

¼ �b1C tð Þ � Temp tð Þ � S tð Þ � E tð Þ � b2C tð Þ
� Temp tð Þ � S tð Þ � I tð Þ

ð2Þ

dE tð Þ
dt

¼ b1C tð Þ � Temp tð Þ � S tð Þ � E tð Þ þ b2C tð Þ
� Temp tð Þ � S tð Þ � I tð Þ � c1E tð Þ � aE tð Þ
þ T tð Þ ð3Þ

dI tð Þ
dt

¼ c1E tð Þ � c2I tð Þ � mI tð Þ ð4Þ

dD tð Þ
dt

¼ mI tð Þ ð5Þ

dR tð Þ
dt

¼ aE tð Þ þ c2I tð Þ ð6Þ

In the equations above, S(t), E(t), I(t), D(t) and R(t)

were the number of susceptible, exposed, infected, and

recovered individuals at time t; b1 denotes the

transmission rate between susceptible and exposed

population. b2 is the transmission rate between

susceptible and infectious population. Since exposed

people are initially asymptomatic, they may easily

blend in with the uninfected population, b1 should be

larger than b2. c1 is the transmission rate between

exposed and infectious population. c2 is the transmis-

sion rate between infectious and recovered population.

a is the transmission rate between exposed and

recovered population. m is the death rate. C tð Þ is a

variable that shows the strictness of government

policy on prevention and control [48, 49] (Eq. 7)

which is modeled as the summation of an exponential

decay function and a Gaussian function. If it

approaches 0, it means the government has very strict

policies to control the epidemic and vice versa. T tð Þ is
a variable that shows the number of imported exposed

cases from other regions [48] (Eq. 8) which is

modeled as a Gaussian function. Temp tð Þ is a variable

that shows the extent of the change of temperature that

affects the infectious ability of the virus [50, 51]

(Eq. 9).

C tð Þ ¼ e�t2=r2
0 þWC � e� t�tCð Þ2=r2C ð7Þ

T tð Þ ¼ WT � e� t�tTð Þ2=r2T ð8Þ

Temp tð Þ ¼ ½WTemp � cosð2pf0tÞ þ 1�=2 ð9Þ

In these equations, r0 denotes the rate at which a

government policy reaches peak strictness. tC denotes

the time point at which government policies were most

relaxed. rC denotes how long the relaxation of the

government policy will last. WC denotes the extent of

the relaxation of the government policy. tT denotes

time point of the peak of imported cases. rT denotes

the duration of the peak of imported cases.WT denotes

the weight number of imported cases. WTemp denotes

the weight of the change of temperature that affects the

infectious ability of the virus. f0 denotes the change

frequency of the temperature.

All simulations and data analyses were imple-

mented with custom software written in custom scripts

with MATLAB (version R2020a). We solved the

equations numerically, with a time resolution of 1 day

using the Euler method. We set the summation of S, E,

I, D and R is 10000, b1 is 0.25, b2 is 0.2, c1 is 0.1, a is

0.01, c2 is 0.05,m is 0.0001, r0 is 45, rC is 45, rT is 20,
tC is 160, tT is 140. These parameters are fixed

throughout all the simulations. We manipulated the

WC in the range of 0 to 0.3,WT in the range of 0 to 20

and WTemp in the range of 0 to 1 to explore the effects

of government policy and imported infected cases,

respectively.

3 Results

Based on the cumulative number of confirmed cases in

30 provinces of China’s mainland, as well as in 43

countries worldwide, all data were fitted with the our

descriptive model (Figs. 1a, 2, 3a, 4).
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3.1 Recurrent outbreaks of COVID-19 strongly

correlated to the imported infected cases

from overseas in China’s mainland

As of 2 January, 2021, laboratory-confirmed COVID-

19 infections have been reported in each of the

Chinese provincial administrative regions and a total

of 87,485 confirmed cases in China’s mainland by 2

January 2021, including 4634 deaths and 82,085 cases

recovered. We first took Anhui and Fujian provinces

as examples. In Anhui province, the number of the

imported cases is small, and there has only been one

wave of the epidemic (Black dots in the top panel of

Fig. 1a), which could be explained by the model (Blue

curve in the top panel of Fig. 1a). In Fujian province,

the number of the imported cases is relatively large.

The raw data show that there have been three waves in

the course of the COVID-19 outbreak, which our

model could capture precisely (Fig. 1a bottom). The

blue curve shows the first wave of the epidemic

(N = 1), the green curve shows the summation of the

first two waves (N = 2), and the red curve shows the

summation of the three waves (N = 3). We then

defined a ‘‘Goodness of fit’’ index to indicate how

much variance the model could account for including a

different number of waves. The model can well

a b

c

Fig. 1 Relationship between the recurrent outbreaks of

COVID-19 and imported infected cases. The top panel of

a shows the epidemic in Anhui province with a low ratio of

imported cases, which could be explained by one-wave model.

The bottom panel a shows the epidemic in Fujian province with

a high ratio of imported cases, which could be explained by a

three-wave model. The horizontal axis in this panel denotes the

xth day after 1 January 2020. The vertical axis in this panel is the
cumulative number of infected cases (black dots). The blue line

is the fitting curve by the one-wave sigmoid model; the green

line is the fitting curve by the two-wave sigmoid model; the red

line is the fitting curve by the three-wave sigmoid model.

b Illustrates the distribution of the goodness of fit in 30

provinces in China�s mainland. c Shows the scatter plot of the

index for multiple waves and the ratio of the cumulative number

of imported infected cases from abroad with all infected cases in

each province
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explain the data in all provinces of China’s mainland

(Goodness of fit[ 0.95) (Fig. 1b). The number of data

points (367 data points) is much more than that of

model parameters (e.g., nine parameters for a three-

wave logistic model), and each model parameter has

actual practical meaning, so the over-fitting phe-

nomenon will most likely not to be a factor in our

model as the number of waves increase.

We applied this model to 30 provinces in China’s

mainland (Fig. 2). Around half of the provinces

experienced recurrent outbreaks (e.g., Shanghai,

Gansu and Inner Mongolia). It has been reported

[52] that imported infected cases could dominate a

new wave of the epidemic outbreak. To investigate

this assumption and test whether our model can

reasonably explain the recurrence phenomenon, we

collected data on the number of imported infected

cases. We analyzed the correlation between the

number of imported infected cases and the extent of

recurrent outbreaks of COVID-19. The extent of

recurrent outbreaks of COVID-19 is indexed with

Eq. 10.

Recurrent Outbreak Index ¼ A1PN
i¼1 Ai

ð10Þ

where Ai denotes the maximum cumulative number of

infected cases in ith wave, and N denotes the number

of epidemic waves, which ranges from 0 to 1. The

Recurrent outbreak index depends on the proportion of

the maximum number of infected cases in the first

wave. We considered two extreme cases. The first is if

there is only one wave of epidemic in a region, in

which case we closer to 1. The other is if there are

multiple waves of epidemic in a region, and each wave

of epidemic situation causes a similar number of

confirmed cases, in this case the indicator would be

closer to 0.

We found a significant negative correlation

between the recurrent outbreak index and imported

infected cases (r = 0.67, p\ 0.0001) (Fig. 1c).

Fig. 2 Time series of COVID-19 infected cases in 28 selected

provinces of China. Each panel represents one provincial

administrative unit for the multiple waves of the epidemic. The

horizontal axis in each panel denotes the xth day after 1 January
2020. The content in each panel is the same as Fig. 1a
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Specifically, the more cases imported from abroad, the

stronger the extent of recurrent outbreaks. This

relationship indicates the practical importance of

controlling positive cases from abroad, since preven-

tion and control policies are not similar across

countries. Hence, the increase in imported infected

cases could be one important contributing factor to

new COVID-19 outbreaks.

The influence of the government policy, may also

be important in the recurrence of epidemic outbreaks.

Because of the strict stringency policy coherence

across provinces and the clear definition of local and

imported cases in China, China is a good example to

study the influence of imported infected cases to the

extent of recurrent outbreak of COVID-19. Globally,

countries have different policies towards the COVID-

19, which provides an opportunity to explore the

impact thereof on the pandemic To explore the

relationship between government policy and the

extent of recurrent outbreaks, we generalized this

model using global data.

a b

c

Fig. 3 Relationship between the recurrent outbreaks of

COVID-19 and relaxation of government policies. The top

panel a shows the epidemic in Argentina with low extent of

relaxation of the stringency index, which has weak recurrent

outbreak strength. The bottom panel a shows the epidemic in

South Africa with high extent of relaxation on the stringency

index, which has strong recurrent outbreak strength. The

horizontal axis in this panel denotes the xth day after 1 January

2020. The left vertical axis in this panel is the cumulative

number of infected cases (black dots). The blue line is the fitting

curve by the one-wave sigmoid model; the green line is the

fitting curve by the two-wave sigmoid model; the red line is the

fitting curve by the three-wave sigmoid model. The gray curve

shows the time series of stringency index corresponding to the

right vertical axis; b illustrates the distribution of the goodness

of fit by the model in 44 countries around world. c Shows the

scatter plot of recurrent outbreak index and relaxation of

government measures (stringency index) for 44 countries
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3.2 Recurrent outbreaks of COVID-19 strongly

correlated to the relaxation of the government

policies in 44 countries around the world

Having verified that the proposed model works with

the data of China’s mainland, we further expanded this

model to include publicly available data at a global

level. Figure 3a shows two typical examples of

instances with multiple waves (Argentina and South

Africa), which aligned with our model as well. Beyond

this, the model could also explain the data in 44

countries very well (Goodness of fit[ 0.95). Specif-

ically, we plotted the temporal dynamics of stringency

policy indices (gray curve in Fig. 3a). For these

Fig. 4 Time series of COVID-19 infected cases with policy indices in 44 countries. Each panel represents one country for the multiple

waves of the epidemic and indices of government response. The content in each panel is the same as Fig. 3a
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indices, the larger the stringency index values, the

stricter the government’s prevention and control

measures are. The results clearly indicate that when

governments’ response relaxed (Fig. 3a, the declining

gray curves), the epidemic reoccurred. To explore

whether this relationship holds on a larger scale, we

tested this model on data from 44 countries (including

China) globally (Fig. 4) and found that this model fits

the public data from each country consistently

(Goodness of fit[ 0.95) (Fig. 3b).

Our previous results indicated a strong positive

relationship between recurrence and relaxation of

government policies (as shown in Figs. 3a and 4). To

further quantify the extent of correlation, we per-

formed a correlation analysis between the extent of the

multiple waves of the epidemic outbreak and the

policies. We investigated whether policy relaxation

influences recurrent outbreaks. We further defined a

policy relaxation index as the ratio of the minimum

value after reaching the maximum to the maximum.

This could be considered the relative policy index and

ranges from 0 (consistent policy) to 1 (inconsistent

policy). We found a strong negative correlation

between both relaxation of stringency (r = - 0.47,

p = 0.0012, Fig. 3c) and recurrent outbreaks. So,

these results indicate that inconsistencies of the

government prevention and control policies could be

another important factor in recurrences of the

epidemic.

So far, based on the public dataset of China and

other 43 other countries around world, we have

evidence suggests that imported infected cases from

overseas and relaxation of government’s prevention

and control policies have strong correlation with the

recurrence of COVID-19. However, such correlation

analysis is not causal. Therefore, we developed the

SEIDR model to simulate the phenomenon of recur-

rent outbreaks, and we further manipulated the model

parameters on imported cases and government poli-

cies to see how the epidemic develops.

3.3 SEIDR model can reproduce recurrent

epidemic outbreaks

According to the assumption that the extent of

recurrent outbreaks was related to the index for cases

imported from overseas and relaxation of the govern-

mental stringency policy in a region, we simulated the

a b

c

d

e

f

g

h

i

j

Fig. 5 Simulation of the recurrent outbreak of COVID-19. a Is

the model structure of the SEIDRmodel. Individuals are divided

into the following five classes (susceptible (S), exposed (E),
infectious (I), dead (D) and recovered (R) population). b Shows

the simulated time series of the cumulative infected case in a

different weight of oversea imported (different color) settingWC

andWTemp is 0. c Shows the T(t) in a different weight of oversea
imported (different color). d Is the scatter plot of the weight of

oversea imported (WT) and recurrent outbreak index. e Shows

the simulated time series of the cumulative infected case in a

different extent of inconsistent policies (different color) setting

WT and WTemp is 0. f Shows the C(t) in a different extent of

inconsistent policies (different color). g Is the scatter plot of

relaxation of government policy and the recurrent outbreak

index. h Shows the simulated time series of the cumulative

infected cases in a different extent of inconsistent policies

(different color) settingWT andWC is 0. i Shows the Temp(t) in a

different extent of variations (different color). j Is the scatter plot
of temperature index and the recurrent outbreak index. (Color

figure online)
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outbreak of COVID-19 through the SEIDR model

(Fig. 5a). There are five classes in the model (suscep-

tible (S), exposed (E), infectious (I), dead (D) and

recovered (R) population). The initial value of S and I is

set at 9999 and 1 respectively (assuming that the

population is 10,000). The value ofE,R andD is set at 0

initially. We mainly considered two case in this

simulation, one is the influence of the imported case

that depends on the parameter WT (see Eq. 8), and the

other is the influence of the relaxation of government

policies that depends on the parameterWC (see Eq. 7).

We firstly kept WC and WTemp at 0 and did the

simulation with different WT (ranging from 0 to 20).

We found that as the WT increases, a new wave of

epidemics is more likely to emerge (Fig. 5b) since

there are more infected cases imported (Fig. 5c). We

also calculated the recurrent outbreak index just as the

analysis in real data (Eq. 10). We found that the

recurrent outbreak index is negatively correlated with

the oversea imported cases (Fig. 5d), which is the same

as the modeling results in real data (Fig. 1c). We then

kept WT and WTemp = 0 and did the simulation with

different WC (ranging from 0 to 1). In the model, the

smaller the C(t) is (Eqs. 2–3), the stricter the govern-

ment prevention and controlmeasureswill be. To unify

the index in simulation and real data, we defined

government control index (Fig. 5f) as 1 - C(t) from

the simulation. The relaxation of government policy is

defined as the value ofWC. The largerWC is, the more

relaxed the government policy is. We found that as the

policy is more relaxed, the emergence of a new wave

becomes more apparent (Fig. 5e). The recurrent out-

break index is also negatively correlated with quantity

of overseas imported cases (Fig. 5g), which is the same

as the results using the real data (Fig. 3c).

After demonstrating the validity of this dynamic

model with results from real data, we further looked at

the impact of temperature in recurrent outbreaks. We

assumed that lower temperatures possibly increase the

infectivity of the virus [50, 51]. Keeping WT and

WC = 0, we ran the simulation with different WTemp

(ranging from 0 to 1) and found that as the temperature

increases, the emergence of a newwave becomesmore

apparent (Fig. 5h, i). The recurrent outbreak index is

also negatively correlated with variation of the tem-

perature (Fig. 5j).

4 Discussion

We modeled the multiple waves of COVID-19 for 30

provinces in China’s mainland based on the data from

1 January 2020 to 2 January 2021 during the recurrent

outbreaks. Further, we applied this model to explain

the data from 44 countries (including China). For

different provinces of China, a strong positive corre-

lation was found between the extent of recurrent

outbreak and the extent of imported infected cases. For

different countries around the world, strong correla-

tions were found between the recurrent outbreak index

and different types of government policy. Addition-

ally, these phenomena were fully replicated

a b c

Fig. 6 Recurrent outbreak index and stringency index are

strongly correlated with the recurrent consumer confidence

index. a Shows the scatter plot between recurrent outbreaks of

COVID-19 and recurrent consumer confidence. b Shows the

scatter plot between relaxation of stringency index and recurrent

consumer confidence. c Shows the scatter plot between change

of consumer confidence index and change of GDP index in the

first three quarters
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manipulating weight of imported cases and govern-

ment policy parameters of our adapted SEIDR model.

4.1 Comparison with previous work

In this study, mathematical modeling from both

descriptive [2, 53–55] and dynamical [29] aspects

were used to study the mechanism of epidemic

recurrence systematically. We proposed this two-fold

framework for the first time, which will help us to have

a more comprehensive understanding of the mecha-

nism of recurrent outbreaks. We not only studied the

epidemic situation on one wave [2, 36, 38, 56], but also

multiple waves. To test the robustness of this

approach, we focused on the analysis of epidemics

in dozens of regions and countries on many continents

instead of only tested in specific countries or regions

[27–29, 57, 58].

The proposed descriptive logistic model could

depict the multiple waves of the infected cases of

COVID-19 around the world. The summation of

multiple logistic functions can accurately depict

available public data. Each period wave of the

epidemic can be described by three parameters: the

maximum number of cases (Ai), logistic growth rate

(ki), and semi-saturation period (ti). The logistic

growth rate is deemed to be related to the spread of

the virus, and the semi-saturation period is deemed to

be related to government response [36]. Using these

model parameters, we can capture the underlying

mechanisms possibly contributing to the increase of

the cumulative infected cases during different waves.

Another important advantage of this model is its

adaptive capacity. The data used fit the proposed

model globally. In the case where there are new

outbreaks, this model can still be used to capture

outbreaks by increasing the value N (Eq. 1), as long as

we have the correct assumption for each wave of the

epidemic. This model can be a useful tool to explore

the relationship between recurrent outbreaks, which

considers governmental policies as well as economic

activities, showing a high capacity to measure the

macroscopic behavior of an epidemic.

In addition to the proposed descriptive model, we

also integrated the dynamic SEIDR model (developed

from the SEIR model) [4, 37–39]. We first discussed

the mechanisms of recurrent outbreaks using this

model and calibrate the relevant model parameters

(changing with time), which could replicate our results

from the descriptive model. Moreover, we found that

the simulation data (Fig. 5b, e, h) that shows the

phenomenon of recurrent outbreak could be fitted as

the summation of sigmoid functions, which is a

relatively simple and effective approximation to the

real numerical solutions. Since there is no analytical

solution for such complex nonlinear dynamics

(Eqs. 2–9), we also provided a way to approximate

the real solutions.

4.2 The multi-dimension impact of recurrent

outbreaks of COVID-19

The outbreak of the COVID-19 epidemic has had a

significant impact on all aspects of society, including

the economy [22, 59], tourism [60–62], education

[63–65], diet [21, 66], mental health [22, 67–70],

among many. When further waves emerge, it is bound

to affect all aspects of people’s lives.

There is a clear relationship between the extent of

recurrent outbreaks and relaxation of government

policy or imported infected cases from overseas.

Generally, the stricter the policy of prevention and

control, the less frequent the outbreaks of COVID-19

will be. However, regulations on different aspects of

the socioeconomic life have yielded contradictory

results. On the one hand, policies on implementing the

lockdown, active contact tracing after a positive

diagnosis, and restrictions on gatherings are construc-

tive and conducive policies, which can significantly

decrease the number of new waves of the epidemic.

On the other hand, however, policies such as monetary

stimulus to the economy, providing income support to

citizens who lost their jobs can be destructive due to

long-term strain on the economy and therefore exac-

erbate recurrent outbreaks of the epidemic.We assume

that fiscal stimulus during pandemic might encour-

aged more face-to-face interactions, boosting trans-

mission rates. These destructive contributors are what

we should aim to avoid in reality.

In the natural aspect, temperature may be another

important index. A previous study has shown that the

temperature-driven changes could cause recurrent

insect outbreaks [71]. From our simulation, we also

found that the temperature index had a significant

impact on the recurrence of an outbreak.Moreover, we

noticed that in the scatter diagram of Figs. 1c and 3c.

Some individual points are in the lower-left corner,

they are not in the law of the actual black curve, they
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are more like some outliers (see Figs. 1c and 3), which

could indicate that the recurrent outbreak of the

epidemics in some regions or countries may be due to

some mechanisms not explored in our study (e.g.,

temperature). In China, due to the consistent strict

control of the epidemic by government, the epidemics

in some provinces in the north were recurrent by the

end of 2020. In most countries around the world

(Fig. 4), there is a new wave occurred in around

September, which is the starts of the autumn. The

temperature starts to go down which may increase the

spread property of the virus. Hence we considered that

the imported infected cases, inconsistent government

policies and the variation of the temperature could be

main contributors to trigger a new epidemic wave.

Furthermore, we also collected the data of the

Consumer Confidence Index (CCI) from 26 countries

globally (see Methods) to explored the influence to the

economy by the recurrent outbreaks of COVID-19.

Consumer confidence covaries with recurrent out-

breaks and changes in GDP (Fig. 6). In most countries,

the consumer confidence index continued to decline

during the early wave of the first phase of the

epidemic. When the situation began to improve, the

consumer confidence index rose, but it fell again when

the epidemic broke out again. Therefore, we calcu-

lated the change in consumer confidence as the

recurrent consumer confidence index. We found that

recurrent CCI is significantly correlated to the extent

of recurrent outbreaks (r = - 0.47, p = 0.015)

(Fig. 6a). Even more, the relaxation of the stringency

index shows a clear positive correlation with the

recurrent CCI (r = 0.42, p = 0.033) (Fig. 6b), which

indicates that strict and consistent prevention and

control measures may carry more value in maintaining

the consumers’ economic status expectations. Fur-

thermore, changes in CCI show a clear positive

correlation with the change of GDP (r = 0.69,

p\ 0.0001). This indicates that strict and consistent

prevention and control measures may be meaningful

in improving the national economy. Our results show

the strong relationship between recurrent outbreak and

recurrent consumer confidence (Fig. 6). Meanwhile,

the change of recurrent consumer confidence has so far

severely affected the change in seasonal GDP of a

country, which could have profound impacts on long-

term outlooks for economies.

4.3 Implication of our study on controlling

recurrent outbreaks of COVID-19

Applying control theory and mathematical models can

provide specific scientific reference for governments.

The above results indicate that although early emer-

gence from strict control measures will help restore the

order of daily life and boost economic activity, the

consequential recurrent outbreaks will damage con-

sumer confidence, and thus harm the economy. While

extreme isolation of the population will suppress the

virus, this comes at a profound cost. More factors need

to be taken into consideration when balancing policy

stringency and epidemic control measures.

The long-term impact of a recurrent pandemic

outbreak has been demonstrated by previous diseases

[72, 73], which is a phenomenon that can also be

observed in diseases caused by bacteria [74–76]. For

COVID-19, it is crucial to forecast the recurrent

outbreaks, due to its global reach and impact on

individual livelihoods [27, 77], as well as on the

economy [23, 78, 79] and mental health [67, 69, 80].

Before a vaccine becomes available, how we can co-

exist with this virus in the meantime is a new and

pertinent question. How a balance between economic

losses and casualties as a result of the resurgence of the

epidemic is an open question that should be addressed

by future research.

5 Conclusion

Practically, we found two main mechanisms that

strongly correlate with the extent of a recurrent

outbreak of the epidemic that; the sudden increase of

imported cases from overseas and the relaxation of

local governments’ epidemic prevention policies. We

quantified this using a novel descriptive multi-wave

model. These recurrent outbreaks affect consumer

confidence and significantly influence changes in

GDP.

Theoretically, we simulated the main results from a

compartmental dynamical model (SEIDR Model) and

tested the causal effect on the emergence of a new

wave of the outbreak including 3 factors; (1) the

impact of imported infected cases, (2) the relaxation of

the government policy, and (3) the variation of the

temperature index.
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In the future, further investigation of the mecha-

nisms underlying epidemic recurrence using including

more factors (e.g., virus mutation), to help predict the

trajectories of epidemics and increase our knowledge.
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