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Abstract COVID-19 dynamics is one of the most

relevant subjects nowadays, and, in this regard,

mathematical modeling and numerical simulations

are of special interest. This paper describes COVID-19

dynamics based on a novel version of the susceptible–

exposed–infectious–removed model. Removed popu-

lation is split into recovered and death populations

allowing a better comprehension of real situations.

Besides, the total population is reduced based on the

number of deaths. Hospital infrastructure is also

included into the mathematical description allowing

the consideration of collapse scenarios. Initially, a

model verification is carried out calibrating system

parameters with data from China outbreak that is

considered a benchmark due the availability of data for

the entire cycle. Afterward, Brazil outbreak is of

concern, calibrating the model and developing

numerical simulations. Results show several scenarios

highlighting the importance of social isolation and

hospital infrastructure. System dynamics has a strong

sensitivity to transmission rate showing the impor-

tance of numerical simulations to guide public health

decision strategies. Results also show that complex

dynamical responses can emerge due to the oscilla-

tions of the transmission rate, being associated with

distinct infection subsequent waves.

Keywords COVID-19 � Coronavirus � NCoV �
Nonlinear dynamics � Mathematical models �
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1 Introduction

Coronavirus disease 2019 (COVID-19) was discov-

ered in 2019, becoming a pandemic that is promoting a

dramatic reaction all over the world. Several uncer-

tainties are associated with all the aspects of this

disease including clinical evolution and contamination

processes. Nonlinear dynamics of biological and

biomedical systems is the objective of several

researches that can be based either on mathematical

modeling or on time series analysis [22].

Mathematical modeling is an interesting approach

that can allow the evaluation of different scenarios,

furnishing information for a proper support for health
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system decisions. In particular, coronavirus spread can

be described by mathematical models that allow for

the nonlinear dynamics analysis, representing differ-

ent populations related to the phenomenon [6, 7, 12].

In principle, reality can be considered indescrib-

able, and therefore, it cannot be represented by

mathematical models. Nevertheless, mathematical

models can be understood as a reality caricature that

can be useful to achieve specific goals and therefore

being able to describe reality. In this regard, it can help

for either qualitative understanding, establishing

dynamical patterns, or quantitative predictions. Based

on this idea, mathematical modeling is an art in the

Picasso’s sense, expressed by his remarkable sen-

tence: ‘‘art is a lie that makes us realize truth.’’

Different kinds of models can be employed for the

COVID-19 dynamics. Rihan et al. [19] described the

dynamics of coronavirus infection in human, estab-

lishing interaction among human cells and the virus.

Chen et al. [8] developed a mathematical model for

calculating the transmissibility of the virus consider-

ing a simplified version of the bats–hosts–reservoir–

people transmission model, defined as a reservoir–

people model. Li et al. [14] estimated characteristics

of the epidemiologic time distribution, exploiting

some pattern trends of transmission propagation. Riou

and Althaus [20] exploited the pattern of human-to-

human transmission of novel coronavirus in Wuhan,

China. Two key parameters are considered: basic

reproduction number that defines the infectious prop-

agation, and the individual variation in the number of

secondary cases. Uncertainty quantification tools were

employed to define the transmission patterns. Zuo

et al. [26] proposed a statistical model comparing the

COVID-19 dynamics in several Asian countries. Car

et al. [5] investigated COVID-19 dynamics from time

series, building a dataset for training a multilayer

perceptron artificial neural network and showing that

artificial intelligence could have a good agreement

with real data.

Susceptible–exposed–infectious–removed (SEIR)

models are an interesting approach to deal with the

mathematical modeling of infectious diseases, espe-

cially coronavirus transmission. Wu et al. [25] inves-

tigated Wuhan, China case, evaluating domestic and

international spread outbreak. Lin et al. [15] proposed

a model considering individual reaction, governmen-

tal action and emigration. The model is based on the

original work of He et al. [10] that proposed a model to

describe the 1918 influenza. Savi et al. [21] investi-

gated the SEIR model applied to different countries,

exploiting some aspects of Brazilian scenarios.

COVID-19 scenarios all over the world are becom-

ing dramatic due to the absence of effective drugs and/

or vaccines. Even with vaccines, there are difficulties

due to the distribution and their efficacy. Since it is

possible that this general scenario is persisting for an

unknown period of time or new coronavirus variants

appears, it is required that governments need to

implement alternative strategies, known as non-phar-

maceutical interventions (NPIs), to contain the spread

of coronavirus infection in the population. These

strategies include governmental interventions related

to the close of education system, induce social

isolation and voluntary quarantine. This suggests the

inclusion of other variables on the mathematical

modeling in order to have better adjustments with

real data and to furnish useful information for decision

making.

In this regard, hospital infrastructure and the

number of deaths seem to be essential points to be

included on mathematical modeling. The literature

presents some research efforts related to the dynamics

of COVID-19 pandemic progress considering differ-

ent scenarios of the NPIs for reducing transmission of

the virus, as well as the hospital infrastructure

necessary to take care of the infectious population

[4, 9, 15, 16, 18, 24].

This contribution proposes a novel mathematical

model to describe the general propagation of the

coronavirus. The idea is to use the SEIR framework

including different novel aspects: Removed popula-

tion is represented by two populations—recovered and

deaths; description of hospital infrastructure; and total

population varies according to the number of deaths.

Based on this model, numerical simulations are carried

out. Initially, a model verification is carried out

considering infected population evolution of China,

considered as a benchmark case due to the availability

of data for the entire cycle. Afterward, Brazilian data

are employed to calibrate the model and the COVID-

19 nonlinear dynamics is investigated treating differ-

ent scenarios. Results show that complex responses

can emerge due to oscillations on the transmission

rate, defining infection subsequent waves.
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2 Mathematical model

A frame-by-frame description of the COVID-19

dynamics can be represented by a set of differential

equations of the form _x ¼ f xð Þ; x 2 Rn, where x 2 Rn

represents a set of state variables that describe the

phenomenon. The description of COVID-19 dynamics

defines its propagation considering different kinds of

populations. An interesting alternative for this aim is

the susceptible–exposed–infectious–removed (SEIR)

framework model. The populations are defined con-

sidering that S is the susceptible population, E is the

exposed population, I is the infectious population, and

two removed populations: recovered, RC, and death,

RD. Under this assumption, the total population is

N ¼ Sþ E þ I þ RC þ RD. Besides, the total popula-

tion contains two classes: D is a public perception of

risk regarding severe cases and deaths; and C repre-

sents the number of reported and non-reported cases.

Another important observation is that population is

reduced due to deaths, and therefore, N is reduced

based on the increase in death population, RD, with a

rate, _RD.

Based on this, it is possible to establish a conceptual

model of the COVID-19 dynamics presented in Fig. 1,

which allows one to write the following governing

equations:

_S ¼ �b
SI

N
ð1Þ

_E ¼ b
SI

N
� rE ð2Þ

_I ¼ rE � cC þ cDð Þ I � IH
� �

� cH
DI

H ð3Þ

_RC ¼ cC I � IH
� �

ð4Þ

_RD ¼ cD I � IH
� �

þ cH
DI

H ð5Þ

_D ¼ d cC þ cDð ÞI � kD ð6Þ

_C ¼ rE ð7Þ

_N ¼ � _RD: ð8Þ

It should be pointed out that COVID-19 dynamics

has spatiotemporal characteristics that are not treated

by this set of governing equations. Hence, the

proposed model represents a kind of average behavior

that needs a proper adjustment to match real data. A

more realistic analysis would consider this model as a

unit cell of a network with interaction among the cells.

But this average behavior can be useful for different

goals.

Another point that should be highlighted is that the

model considers the effect of available hospital

infrastructure to take care of the infectious population.

Therefore, it is defined a subpopulation of the

infectious, IH, which represents the part of the

infectious that needs hospital assistance but does not

have access due to the lack of infrastructure. This is

described by function h�i in order to represent the

number of unavailable hospital assistance for the

infectious population:

IH ¼ hqI � bNHi ¼
qI � bNH; if qI[ bNH

0; if qI� bNH

(

ð9Þ

where q is the percentage of the population inside the

group that needs hospital assistance and bNH represents

the number of available hospital infrastructure

described as a function of time with the aid of a step

function as follows and as shown in Fig. 2:

bNH ¼ N
ið Þ

H H t � T
ið Þ

H

� �

¼

N
1ð Þ

H ; if t� T
1ð Þ

H

N
2ð Þ

H ; if T
1ð Þ

H \t� T
2ð Þ

H

N
3ð Þ

H ; if T
2ð Þ

H \t� T
3ð Þ

H

..

.

8
>>>><

>>>>:

ð10Þ

where N
ið Þ

H represents the number of available hospital

infrastructure until the time instant T
ið Þ

H . Under this
Fig. 1 Conceptual model for COVID-19 dynamics based on

SEIR framework
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assumption, time instant T
ið Þ

H represents the moment

when the infrastructure is changed due to some action.

The transmission rate is represented by function of

time, b ¼ b tð Þ, which considers social isolation

induced by governmental action, represented by

1 � að Þ, and the individual action, represented by the

function d. Therefore, the transmission rate is modeled

as follows:

b ¼ b tð Þ ¼ bb0 1 � bað Þd ð11Þ

where bb0 ¼ bðiÞ0 H t � T
ðiÞ
b0

� �
represents the nominal

transmission rate that is also a function of time, being

described with the aid of a step function H t � T
ðiÞ
b0

� �
,

similar to the one previously defined. The same

strategy is employed to define social isolation induced

by governmental actions, with the lockdown as the

extreme case. Therefore, the following expression is

written:

ba ¼ aiHðt � T
ðiÞ
GovÞ ð12Þ

where different steps are considered defined by time

instants T
ðiÞ
Gov.

In addition, individual action is represented by

d ¼ 1 � D

N

� �j

ð13Þ

in which the intensity of responses is defined by

parameter j. It should be pointed out that the different

values of transmission rate are closely related to the

Table 1 Model parameters for the simulations

Parameter Description Value

cD Death rate cD ¼ CD=CI

1�RD=C

� �
cC

cH
D

Hospital assistance rate 0.5

q Percentage of the population inside the group that needs hospital assistance 0.15 (15%)

d Perception of severe cases and deaths 0.2

k�1 Mean duration of public reaction 11.2 days

j Transmission rate parameter associated with individual actions 1117.3

Table 2 Model parameters for China

Parameter Description Value

b0 Nominal transmission rate 0.514

r�1 Mean latent period 3 days

c�1
C

Mean recovered period 5 days

cD Death rate 4.082 9 10–3

ai Transmission rate parameter associated with social isolation induced by governmental actions [0, 0.4239, 0.8478]

T
ðiÞ
Gov

Transmission rate time parameter associated with social isolation induced by governmental actions [0,13,20] days

Fig. 2 Step function employed to consider parameter variations

through time
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social isolation. All these parameters need to be

adjusted for each place, being essential for the

COVID-19 description.

The following parameters are considered on the

governing equations: r is the mean latent period; d is

the perception of severe cases and deaths; k is the

mean duration of public reaction. Three parameters

are adopted in order to describe the removed
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Fig. 3 Model verification based on China actual data:

a comparison between numerical results and data for infected

and cumulative death population through time and b other

model variables evolution

Table 3 Model parameters for Brazil

Parameter Description Value

b0 Nominal transmission rate 1.020

r�1 Mean latent period 5.2 days

c�1
C

Mean recovered period 2.9 days

cD Death rate 1.815 9 10–2

ai Transmission rate parameter associated with social isolation induced by governmental actions [0, 0.40, 0.30]

T
ðiÞ
Gov

Transmission rate time parameter associated with social isolation induced by governmental actions [0, 15, 45] days
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Fig. 4 Model verification based on Brazil actual data:

a comparison between numerical results and data for infected

and cumulative death population through time and b other

model variables evolution
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Fig. 5 Population dynamics considering different social

isolation induced by governmental actions: a current exposed,

b current infected, c cumulative recovered, d cumulative deaths,

e public perception risk and f reported and non-reported cases.

Hospital infrastructure without any restriction
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Fig. 6 Population evolutions considering different social isolation induced by governmental actions: a a = 0.00, b a = 0.30,

c a = 0.60, d a = 0.90

Table 4 Infected and cumulative deaths predicted considering different governmental actions. Hospital infrastructure without any

restriction

Governmental action

after 90 days (a)

Peak

(days)

Current infected

max. value (pop.)

Cumulative deaths on

December 31, 2020 (pop.)

0.00 112 313,367 846,833

0.30 114 156,440 531,503

0.40 107 114,576 399,440

0.50 94 97,358 250,498

0.60 92 94,473 110,509

0.70 91 93,435 61,918

0.80 91 93,896 49,260

0.90 91 92,561 43,331
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populations: cC is associated with the recovered

population; cD is related to the death population; and

cH
D is related to the death population inside the group

that needs hospital assistance but, due to system

collapse, does not receive this assistance. The defini-

tion of the fatality rate is based on the relation between

cumulative total deaths, CD, and the total cases, CI .

Therefore, it is possible to use the following expres-

sion, considering a similar ratio between the associ-

ated rates for the removed population:

CD

CI
¼ cD

cD þ cC

! cD ¼ CD=CI

1 � CD=CI

� �
cC: ð14Þ

The recovered parameter, cC, is defined based on

the period necessary for the immune system response.

The death parameter, cD, is defined from the expres-

sion presented in Eq. (14). The hospital parameter, cH
D;

is defined from the relation of the part of the infected

that needs hospital assistance.

In general, the parameter definitions depend on

several issues, being a difficult task. The use of step

functions confers flexibility to represent different

scenarios, meaning that parameters are time depen-

dent. These characteristics are related to the transmis-

sion rate and hospital infrastructure, for example.

It is also important to observe that some researches

concluded that undocumented novel coronavirus

infections are critical for understanding the overall

prevalence and pandemic potential of this disease. Li

et al. [13] evaluated Wuhan situation and estimated

that 86% of all infections were undocumented and that

the transmission rate per person of undocumented

infections was 55% of documented infections. This

aspect makes the description even more complex.

Table 1 presents the parameters employed for all

simulations. Other parameters are adjusted depending

on the case.

Numerical simulations are performed considering

the fourth-order Runge–Kutta method. A convergence

analysis is developed for the presented cases. The next

sections treat the COVID-19 dynamics considering

two different objectives. Initially, the next section

performed a model verification using information

from the process experienced by China. Afterward, the

subsequent section establishes a model verification of

the Brazilian case and investigates different possible

scenarios. Simulations are performed in order to

clarify the model ability to capture the main charac-

teristics of the COVID-19 dynamics.

3 Model verification

A model verification is carried out using information

available on Worldometer [23]. Once again, it should

be pointed out that the analysis is based on average

populations, assumed to have spatial homogeneous

distribution. In principle, it would be more realistic to

represent small areas where it is expected homoge-

neous response. Nevertheless, the consideration of the

whole country is useful for a general qualitative

behavior of the outbreak. China data are considered as

the benchmark case due to the fact that it is the first

case in the world and can be used to gather important

information to support the predictions for other

countries. This analysis is employed to establish a

comparison with real data. Table 2 presents additional

parameters employed for the simulations. They are

based on the information of the Lin et al. [15] that, in

turn, is based on other references as He et al. [11] and

Breto et al. [3]. Furthermore, an average value of the

fatality rate CD

CI
¼ 0:02 is adopted based on China

actual data. It is important to highlight that this value is

calculated with the available data and the existence of

unreported cases can substantially change this num-

ber. For more details, see other citations referenced

therein.

Parameters presented in Tables 1 and 2 are

employed for simulations with a population of
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Fig. 7 Population dynamics considering different social

isolation induced by governmental actions. Infectious that

needs hospital assistance but does not have access due to the
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(a) (b)

(d)(c)

(e) (f)

Fig. 8 Population dynamics considering different social isolation induced by governmental actions: a current exposed, b current

infected, c cumulative recovered, d cumulative deaths, e public perception risk and f reported and non-reported cases
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N = 1.43 billion and an initial state with 554 infected

persons (I0 = 554), relative to January 22, 2020. In

addition, susceptible population initial condition is

assumed to be S0 ¼ 0:9N. Another information

needed for the model is the number of exposed

persons for each infected person. It is assumed that

each infected person has the potential to expose 20

persons, E0 ¼ 20I0.

Hospital infrastructure is considered to be without

any restriction, which means that all the population

that needs assistance is assisted, and therefore, pop-

ulation IH ¼ 0 for all time during the whole simula-

tion. Figure 3a presents the infected and cumulative

death populations showing a good agreement between

simulation and real data obtained from Worldometer

[23]. Figure 3b presents the evolution of other vari-

ables of the model. Note that, due to chronological

issues, the whole cycle is observed on Chinese data,

defining a peak–vanish pattern associated with an

increase in the infectious followed by a decrease to

low levels. Based on that, it is possible to say that the

model is capable to describe the whole cycle of

COVID-19 dynamics.

4 Brazilian case

This section has the objective to investigate COVID-

19 dynamics in Brazil. Initially, a model calibration is

performed, establishing a model verification for

Brazil. In the sequence, numerical simulations are

carried out investigating different scenarios. All

simulations consider a population of N = 209.3 mil-

lion and an initial state with 1 infected (I0 = 1) and 250

exposed persons (E0 = 250), relative to February 25,

2020. Parameters listed in Tables 1 and 3 are

employed in all the simulations [9, 17]. An average

value of fatality rate CD

CI
¼ 0:05 is adopted based on

Brazil actual data. Values adopted for ai consider three

moments associated with governmental action (0, 15

and 45 days), representing that the effect of two events

that occurred from the moment of the first infected

person was identified and the present moment when

the paper is being written. In the first event, which

occurred after 15 days, some regions of the country

implemented actions of social isolation, such as

closing the schools/universities and adopting remote

work. One month after, there was a relaxation of the

social isolation, which has been maintained until May

2020.

Figure 4a presents the infected population and

cumulative deaths evolution obtained from numerical

simulations and real data obtained from Worldometer

[23], showing that the same trend of the other cases is

followed, being enough to have a general scenario.

Figure 4b presents the evolution of other variables of

the model.

4.1 Different scenarios

Different scenarios are now investigated considering a

period of time until the end of 2020. Brazilian

bFig. 9 Population evolutions considering different transmis-

sion rates, altered by governmental actions: a a = 0.00,

b a = 0.40, c a = 0.60, d a = 0.90

Table 5 Infected and cumulative deaths predicted considering different governmental actions

Governmental intervention

after 90 days (a)

Current infected—

peak (days)

Current infected—

max. value (pop.)

Cumulative deaths on

December 31, 2020 (pop.)
IH—lack of hospital

assistance (pop.)

0.00 112 294,996 2,498,629 30,310

0.30 113 150,090 1,003,322 8575

0.40 106 112,670 440,749 2962

0.50 94 97,210 252,369 643

0.60 92 94,452 110,715 229

0.70 91 93,432 61,948 76

0.80 91 92,896 49,260 0

0.90 91 92,561 43,331 0
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governmental action has the characteristic to be

without a central coordination that makes the social

isolation a polemic point, different from the great

majority of the world. Based on that characteristic, it is

important to present simulations showing distinct

scenarios related to social isolation. Figure 5 presents

different scenarios defined by the transmission rate

induced by governmental actions represented by

different values of the parameter a, showing the

evolution of all populations involved on COVID-19

dynamics. It is assumed an unlimited hospital infras-

tructure, which means that all the population that

needs assistance is assisted. Calibrated values are

maintained for the period of the first 90 days, defined

from the available data for the present moment when

the paper is being written. From this point forward, the

future is predicted considering different values of a,

(a)

(b)

Fig. 10 Influence of the hospital infrastructure limitations on

the population dynamics considering different social isolation

induced by governmental actions: a current infected, b cumula-

tive deaths
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Fig. 11 Population dynamics considering different hospital

infrastructure: a current infected, b cumulative deaths and

c infectious that needs hospital assistance but does not have

access due to the lack of infrastructure
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which characterizes distinct scenarios. The following

parameter values are adopted: 0.00, 0.30, 0.40, 0.50,

0.60, 0.70, 0.80 and 0.90. These scenarios represent

different conditions associated with fixed governmen-

tal actions adopted at the end of the first 90 days that

are maintained until the end of the year. It should be

noticed that the curves have dramatic different values,

and therefore, the number of infected and deaths

presents huge differences. There is a huge reduction in

both numbers with the increase in social isolation. In

addition, there is an important qualitative change

related to the infectious population. The social isola-

tion produces an infectious dynamics with a peak

followed by a decrease to small numbers, called peak–

vanish case, as shown in Fig. 5b for a between 0.60

and 0.90. On the other hand, the lack of social isolation

produces a curve with a plateau characteristic

observed in Fig. 5b for a between 0.00 and 0.50,

which means that the critical period is spread over the

time.

Figure 6 presents the detailed views of the dynam-

ics of populations of current infected and cumulative

deaths highlighting some characteristic behaviors.

Once again, it is evident that the number of involved

populations is dramatically different for each kind of

governmental action. The difference of the two

possible behaviors, characterized by the peak–vanish

and plateau behaviors for the current infected popu-

lations, is also observed.

Based on these scenarios, it should be pointed out

that different governmental actions related to social

isolation effect result in dramatically different num-

bers of infected and cumulative deaths. Table 4
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Fig. 12 Influence of the perception of risk represented by

parameter d on the population dynamics: a current infected,

b cumulative deaths
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Fig. 13 Influence of the individual actions represented by

parameter j on the population dynamics: a current infected,

b cumulative deaths
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summarizes the results showing that a worst scenario

of 846,833 deaths is in huge contrast with the best

scenario of 43,331 deaths. This comparison clearly

indicates that a more appropriate approach can result

in a huge number of preserved lives.

4.2 Influence of hospital infrastructure

One of the most relevant points related to COVID-19

evolution is the hospital infrastructure. Based on that,

different scenarios are now of concern estimating

distinct hospital infrastructure levels. The constraints

are difficult to be quantified since it is not only the

number of hospital beds available, but medical staff,

drug availability and medical equipment are also

necessary to define the hospital infrastructure. The

absence of this infrastructure increases the number of

deaths since the population that needs assistance does

not receive it. The specific infrastructure for this

population is represented in the model by the total

number of available intensive care units (ICUs),

designed by NH. Data accessed from the Brazilian

Ministry of Health [1, 2] show that Brazil has close to

40,000 ICUs. Nevertheless, only 13,939 are eligible

for the treatment of patients with COVID-19. Numer-

ical simulations are carried out considering the value

of NH. It is important to highlight that there is a non-

homogeneous geographic distribution in Brazil, with

the ratio of 9 and 21 ICU beds per 100,000 inhabitants

in the north and southeast regions of the country,

respectively [6, 7]. In addition, some hospitals suffer

with a lack of health professionals to assist patients

with COVID-19. This condition can make the lack of

ICUs even more critical.

Figure 7 shows the evolution of the population that

needs hospital assistance and does not receive it

considering different scenarios defined for the distinct

governmental actions treated on the previous simula-

tions. Figure 8 presents the evolution of all popula-

tions involved on COVID-19 dynamics. In general, it

is noticeable the same qualitative behavior observed

for the populations in the previous simulations for all

Table 6 Different

scenarios considering

several approaches of the

governmental actions

implementation

Interventions prior to

90 days preserved

Case T
ðiÞ
Gov

0 15 45 90 120 150 180 210 240 270 300

ai
1 0.00 0.40 0.30 0.70 0.50 0.70 0.50 0.70 0.50 0.70 0.50

2 0.00 0.40 0.30 0.70 0.70 0.50 0.50 0.70 0.70 0.50 0.50

3 0.00 0.40 0.30 0.80 0.30 0.80 0.30 0.80 0.30 0.80 0.30

4 0.00 0.40 0.30 0.80 0.40 0.80 0.40 0.80 0.40 0.80 0.40

5 0.00 0.40 0.30 0.80 0.50 0.80 0.50 0.80 0.50 0.80 0.50

6 0.00 0.40 0.30 0.80 0.70 0.60 0.50 0.40 0.30 0.30 0.30
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Fig. 14 Population dynamics considering different social

isolation induced by governmental actions: a current infected,

b cumulative deaths
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cases, but two important points should be observed:

The size of the populations is totally different, which

means that the infected populations and deaths are

completely different; the other important point to be

observed is related to the hospital infrastructure. Note

that there is a dramatic difference in terms of

necessary hospital infrastructure, either for the number

of hospital space or the spread over the time. The

decrease in the social isolation is associated with the

increase in the infected and death populations. In

addition, infectious population presents an important

plateau behavior that is related to an increase in deaths.

Once again, it can be observed that different govern-

mental actions result in dramatically different num-

bers of infected and cumulative deaths.

Figure 9 highlights some characteristic behaviors

of the dynamics. The left panel shows the populations

of current infected and cumulative deaths, whereas the

right panel shows the population that needs hospital

assistance and does not receive it. As for the previous

cases, the number of involved populations is dramat-

ically different for each kind of governmental action,

and two possible behaviors, characterized by the

peak–vanish and plateau behaviors for the current

infected populations, are also observed.

Table 5 summarizes the results showing a worst

scenario of 2.5 million deaths (close to 1.2% of the

Brazilian population) and a best scenario of 43,331

deaths, an even more dramatic difference when the

hospital infrastructure is incorporated into the analy-

sis. Results show that the limitations of the hospital

infrastructure cause more than 30,000 infected indi-

viduals inside the group that needs hospital assistance

maybe left without access, a condition associated with

a high fatality rate.

Figure 10 shows a comparison between numerical

results considering two situations relative to the

specific hospital infrastructure required to deal with

the COVID-19. The first set of results (Unlimited

Hosp. Infrastructure) considers an ideal condition

where there is no restriction of the hospital infrastruc-

ture to assist part of the infectious that needs hospital

assistance, whereas the second one (Limited Hosp.

Infrastructure) considers situations where restrictions

are defined by the total number of available intensive

care units (ICUs). Numerical results confirm that the

absence of this infrastructure largely increases the

number of deaths since the population that needs

assistance does not receive it. This increase in the

deaths from 846,833 to 2,498,629 (for a = 0.00 after

90 days) is an emblematic situation associated with an

increase of more than 200%.

Hospital infrastructure can be altered by different

ways. It is possible to increase this creating field

hospitals, but it is also possible to decrease this

number due to loss of medical staff or equipment.

Mathematically speaking, this effect can be repre-

sented in the model parameter NH. In this regard, a

simulation is carried out considering different values

of this parameter, established from percentages of the

original hospital infrastructure. Figure 11 presents

results considering unlimited hospital infrastructure

and some different levels of coverage for patients with

COVID-19 that need ICU treatment: 100%, 75%, 50%

and 25%. The scenario of a = 0.30 after the first

90 days is considered, and the reference number of

Table 7 Infected and cumulative deaths predicted considering different governmental actions associated with cyclic actions and

hardening action followed by a progressive softening action

Governmental intervention

after 90 days (a)

Current infected—

peak (days)

Current infected—

max. value (pop.)

Cumulative deaths on

December 31, 2020 (pop.)
IH—lack of hospital

assistance (pop.)

Case 1 91 93,432 94,520 76

Case 2 91 93,432 84,111 76

Case 3 91 92,896 111,845 0

Case 4 91 92,896 74,448 0

Case 5 91 92,896 58,831 0

Case 6 91/286a 92,896/147,700 a 340,934 8216

aSecond wave peak
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13,939 ICUs eligible for treatment is adopted. Current

infected, cumulative deaths and the part of the

infectious that needs hospital assistance but does not

have access due to the lack of infrastructure, IH, are

shown illustrating how the reduction in the hospital

infrastructure impacts the disease dynamics. The

presented scenarios show a persistent crisis on the

hospital infrastructure characterized by the plateaus

pattern.

4.3 Influence of the perception risk and individual

actions

Since social isolation is the essential point that defines

the COVID-19 dynamics, two key points need to be

considered: perception of risk, associated with indi-

vidual actions; and governmental actions, which force

social isolation. The analysis of the perception of risk,

represented by parameter d, is now in focus. Different

scenarios are evaluated considering several possible

values of this parameter. Figure 12 presents results

related to simulations of distinct values of the

perception risk parameter, showing current infected

population and cumulative deaths. The scenario for

a = 0.30 used in the previous section is considered. It

is observed that the increase in this parameter reduces

bFig. 15 Population evolutions considering different transmis-

sion rates, altered by cyclic governmental actions: a Case 1,

b Case 2, c Case 3, and e Case 5
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Fig. 16 Population evolutions considering different transmission rates, altered by a governmental hardening action followed by a

progressive softening action: Case 6. Interventions prior to 90 days preserved

Table 8 Different

scenarios considering

different early

governmental actions

approaches: Constant,

Progressive and Cyclic

Approach a2 T
ðiÞ
Gov

0 15 45 90 120 150 180 210 240 270 300

ai
Constant 0.70 0.00 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70

0.80 0.00 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80

0.90 0.00 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90

Progressive 0.70 0.00 0.70 0.60 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

0.80 0.00 0.80 0.70 0.60 0.50 0.50 0.50 0.50 0.50 0.50 0.50

0.90 0.00 0.90 0.80 0.70 0.60 0.50 0.50 0.50 0.50 0.50 0.50

Cyclic 0.70 0.00 0.70 0.70 0.50 0.50 0.70 0.70 0.50 0.50 0.70 0.70

0.80 0.00 0.80 0.80 0.50 0.50 0.80 0.80 0.50 0.50 0.80 0.80

0.90 0.00 0.90 0.90 0.50 0.50 0.90 0.90 0.50 0.50 0.90 0.90
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the infectious populations and, consequently, the

number of deaths.

Figure 13 presents results related to the effect of

individual actions, represented by parameter j.

Numerical simulations are developed considering the

variation of the parameter value from – 50 to ? 50%

with respect to the reference value of j =1117.3 listed

in Table 1 and adopted for all the other simulations.

Results show that higher values reduce the current

infected and cumulative deaths.

4.4 Influence of the governmental action

Different scenarios are now evaluated considering

several possible implementations of governmental

actions. Table 6 presents cases where the previous

adopted values of a for the interventions prior to

90 days are maintained and future actions are imple-

mented considering a combination of hardening/soft-

ening governmental actions. Results from the previous

analysis show that a minimum value of a ¼ 0:70 must

be adopted at T
ð3Þ
Gov = 90 days to maintain the number

of deaths below 100,000. Therefore, this minimum

value is adopted for the analysis.

Several possibilities for the social isolation have

been discussed worldwide. One promising scenario

involves the combination of triggering hardening/soft-

ening actions [9].

Figure 14 shows the population evolutions consid-

ering Cases 1–6. Cases 1–5 are associated with cyclic

governmental actions. These actions result in multiple

subsequent infection waves. Case 6 represents a

condition where a governmental hardening action is

implemented after 90 days, followed by a progressive

softening action. For this situation, the increase in the

infectious population during the second wave,

together with the limitations of the available hospital

infrastructure, results in more than 8000 infected

individuals within the group who needs hospital

assistance. This contributes to a larger number of

deaths that could be avoided. These scenarios show

that social isolation combined with proper hospital

infrastructure can drastically reduce the number of

deaths.

Table 7 summarizes these results, showing a worst

scenario of 340,934 deaths and a best scenario of

58,831 deaths, indicating that a reduction in the

number of deaths is possible with a proper isolation

strategy controlled by governmental action.

Figure 15 highlights some characteristic behaviors

of the population dynamics of the current infected and

cumulative deaths for some cases associated with

cyclic governmental actions, whereas Fig. 16 presents

results for a hardening action followed by a progres-

sive softening action. The left panel shows the

populations of the current infected and cumulative

deaths, whereas the right panel shows the population

that needs hospital assistance and does not receive it.

Results show multi-peak behavior followed by vanish

or plateau behaviors for the current infected

populations.

Table 9 Infected and cumulative deaths predicted considering different early governmental actions approaches: Constant, Pro-

gressive and Cyclic

Approach Governmental

actions (a)

Current infected—

peak (days)

Current infected—

max. value (pop.)

Cumulative deaths

on December 31, 2020 (pop.)

Constant 0.70 18 636 469

0.80 17 614 259

0.90 17 602 191

Progressive 0.70 18/311a 635/51,386a 51,386

0.80 17/311a 614/11,969a 11,969

0.90 17 602 196

Cyclic 0.70 18 636 1188

0.80 17 614 277

0.90 17 602 191

aNo peak—value in the 311 day
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As a highly contagious disease, COVID-19 requires

the implementation of governmental actions in the

very beginning. Previous analysis has shown the

difficulties to control or reduce the number of infec-

tious and deaths if nothing is done at early stages. With

the objective to analyze the importance of the

implementation of a rapid response, three approaches

involving early governmental actions are considered:

Constant, Progressive and Cyclic. In the first one, a

constant action is adopted from the beginning of the

(a)

(b)

(c)

Fig. 17 Evolution of the infected and cumulative deaths

populations considering different early governmental actions

approaches implemented at the beginning of the pandemic in

Brazil: a Constant, b Progressive and c Cyclic. Early govern-

mental intervention (prior to 90 days)
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intervention; the second considers a progressive

reduction in the action until a value of 0.50 is reached;

and the third one considers a cyclic variation between

two levels of action with a period of two months. For

all the cases, the governmental action begins in the

15th day. Table 8 presents the cases description, and

Table 9 summarizes results for the three approaches.

Due to the early actions taken, none of the 9 cases

presented a condition of lack of hospital infrastructure

for the part of the infectious population requiring

specific assistance. Figure 17 presents the evolution of

the current infected (left panel) and the cumulative

deaths (right panel).

These results show that, in comparison with

previous cases, the use of early governmental actions

causes a smaller population of infectious, for which

the cumulative deaths can be below 200. There is also

no shortage of hospital infrastructure for the part of the

infectious population requiring assistance. Overall, the

Constant approach presents the best results associated

with a smaller number of cumulative deaths at the end

of the period, but with the cost of maintaining a severe

level of social isolation during a long period of time.

The use of an initial a value of 0.90 results in a similar

behavior for the three approaches, with a number of

cumulative deaths lower than 200. For initial values of

a of 0.70 and 0.80, the Progressive approach reveals

the effect of a second wave (as in Case 6 of the

previous analysis), resulting in a large number of

deaths. A similar behavior is observed considering the

Cyclic approach for a = 0.70, where many deaths are

observed due to a second and a third infectious waves.

However, for a = 0.80 the Cyclic approach furnishes

lower values of cumulative deaths, similar to the

constant approach. Therefore, it can be an interesting

alternative to replace the constant approach with the

advantage of imposing a less severe governmental

action and, therefore, a condition of less severe social

isolation over the whole period.

It is important to highlight that, due to the strong

sensitivity of the system nonlinear dynamics, small

changes in conditions or control parameters can

greatly affect the evolution of populations. Therefore,

success in controlling the pandemic and reducing

deaths depends on the adoption of approaches and

mechanisms that allow for monitoring the evolution of

populations together with the rapid implementation of

control procedures in the form of efficient govern-

mental actions. COVID-19 nonlinear dynamics has

rich responses, and a proper comprehension of system

dynamics is essential for a proper scenario

management.

5 Conclusions

A mathematical model based on the susceptible–

exposed–infectious–recovered framework is

employed to describe the COVID-19 evolution. The

proposed model considers the following novel aspects:

The removed populations are composed of recovered

and death populations; population that needs hospital

assistance is incorporated allowing the analysis of the

lack of hospital infrastructure. A benchmark case is

treated considering available data from China. After-

ward, Brazilian case is analyzed. Initially, a verifica-

tion case is performed for both cases with available

data showing the capability of the model to describe

real data. Afterward, different scenarios are of concern

investigating governmental actions and hospital

infrastructure, evaluating their evolution until the

end of 2020. Numerical simulations clearly show that

social isolation, guided by governmental and individ-

ual actions, is essential to reduce the infected popu-

lations and the total period of the crisis. Results based

on actual data show that the number of deaths can vary

from 40 thousand to 2.5 million depending on the

social isolation level and the hospital infrastructure. In

addition, early governmental actions are essential to

ensure smaller population infectious and the absence

of shortage of hospital infrastructure for the part of the

infectious population requiring assistance, for which

numerical simulations indicate a total number of

deaths below 200. Therefore, simulations present

differences from 200 to 2.5 million deaths, showing

that a central coordination is essential to save a huge

number of lives. Different qualitative behaviors can be

expected depending on social isolation levels. On the

one hand, it is possible to observe a peak–vanish

infectious curve representing a rapid dramatic crisis.

On the other hand, COVID-19 dynamics can present a

plateau behavior, spreading the crisis for a long period

of time, being even more dramatic in terms of the

number of deaths. Subsequent waves are also possible,

establishing even more dramatic scenarios. Although

the mathematical model can be improved in order to

include more phenomenological information that can

increase its capability to describe different scenarios,
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it should be pointed out that numerical simulations

seem to be coherent with available data, being an

important tool that can be useful for public health

planning.
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