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Abstract Motivated by today’s huge volume of data
that needs to be handled in secrecy, there is a wish
to develop not only fast and light but also reliably
secure cryptosystems. Chaos allows for the creation of
pseudo-random numbers (PRNs) by low-dimensional
transformations that need to be applied only a small
number of times. These two properties may translate
into a chaos-based cryptosystem that is both fast (short
running time) and light (little computational effort).
What we propose here is an approach to generate
PRNs—and consequently digital secret keys—that can
serve as a seed for an enhanced chaos-based cryp-
tosystem. We use low-dimensional chaotic maps to
quickly generate PRNs that have little correlation, and
then, we quickly (“fast”) enhance secrecy by several
orders (“reliability”)with very little computational cost
(“light”) by simply looking at the less significant digits
of the initial chaotic trajectory. This paper demonstrates
this idea with rigor, by showing that a transformation
applied a small number of times to chaotic trajectories
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significantly increases its entropy and Lyapunov expo-
nents, as a consequence of the smoothing out of the
probability density towards a uniform distribution.
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1 Introduction

The secrecy in chaos-based cryptosystems relies on
mathematical transformations that generate a trajec-
tory whose correlation decays rapidly. The correlation
of chaotic trajectories will always decay to zero after a
sufficiently long time. This is due to the mixing prop-
erty that allows nearby points to be quickly mapped
anywhere in the transformation domain, and due to the
sensibility to the initial condition chaotic transforma-
tions have. In fact, the speed of correlation decay and
the sensibility to the initial conditions quantified by
the Lyapunov exponent are intimately connected [1].
A chaotic system with a very large positive Lyapunov
exponent is thus desirable for cryptography [2], since it
allows for very rapid decay of correlations. Moreover,
chaotic signals can be generated by low-powered, small
area and simple integration as well as analog circuits
operating in very large frequency bandwidths.

Cryptosystems need to perform heavy calculations.
For example, chaos-based block ciphers [3–5] such as
those that encrypt images, movies and audio employ a
series of complex mathematical transformations over
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too many bits of information. If one wants a light cryp-
tosystem that can be run in any portable devices or
that can be considered even for massive streaming,
the use of real numbers with higher precision should
be avoided. To improve on the performance of chaos-
based cryptosystems, the underlying chaotic transfor-
mation has been discretized by considering transfor-
mations operating on an integer domain. Discretization
can preserve important ergodic properties as the mix-
ing property and the sensibility to the initial conditions,
but might also create spurious periodic cycles of low
period [4,6], which result in correlations weakening
the security of cryptosystems that rely on these trans-
formations. Even chaotic transformations (such as the
Bernoulli shift map) acting on real numbers with finite
resolution might create spurious periodic cycles due to
numerical errors.

With recent advances, it is relatively easy today to
perform numerical computation with arbitrary preci-
sion, and thus, current efficient cryptosystems can rely
onmapswith real arithmetics of higher precision.How-
ever, any meaningful encoding of the chaotic trajec-
tory that allows decoding, such as those used to create
a pseudo-random number (PRN) generator or binary
secret keys, would be strongly correlated with the most
significant digits of the trajectory. To create a stream
cipher based on chaos [7], where a binary informa-
tion stream is encoded by XOR transformation to a
binary secret key created by encoding a chaotic trajec-
tory, Gerard Vidal Cassanya [8] has proposed the use of
the less significant digits of a trajectory obtained from
a higher-dimensional chaotic system of ODEs to create
the binary secret key. The idea of using the less signif-
icant digits of chaotic trajectories has appeared before
in the work of Ref. [9]; however, it was in Ref. [8] (and
other previous patent applications citedwithin) that less
significant digits were taken by a transformation that
this work claims to be optimal to support a fast, light
and reliable cryptosystem.

Inspired by today’s huge volume of data that needs
to be handled in secrecy, there is a desire to develop
not only fast (quick run time) and light (little compu-
tational cost) but also reliable (highly entropic, sen-
sitive to the initial conditions, low correlation) cryp-
tosystems. An important aspect of a cryptosystem is its
initialization. For example, onemight employ a PRN to
choose parameters. Secret keys, which can be created
from PRNs, are also used to encrypt the information
and represent a core operation in any cryptosystem.

Any innovative invention that creates reliable PRNs
or secret keys with optimized use of computational
resources will contribute tremendously to a world that
wants to communicate massive amounts of informa-
tion, but securely. PRNs are not only important for
secrecy in communication. It is also fundamental to
the functioning of several autonomous machines, toys,
and they are essential for several numerical algorithms.
This work demonstrates that looking at the less signif-
icant digits of chaotic trajectories is indeed a pathway
for the creation of fast, light and reliable PRNs.

The work of Ref. [10] has analyzed the dynamics
and the statistical properties of the deep-zoom trans-
formation to a chaotic trajectory, a transformation that
takes up the less significant digits of a real number. This
transformation applied to the logistic map regarded as
the k-logistic map [10] was defined by the less signifi-
cant digits located at k digits to the right of the decimal
point. It was shown that a PRN based on the k-logistic
map has strong properties regarding statistical random-
ness tests DIEHARD and NIST, and thus demonstrat-
ing from a statistical perspective that the k-logistic map
can sustain secure cryptosystems. The k-logistic map
takes advantage of not only having trajectory points
with arbitrarily large precision, and thus within princi-
ple no detectable spurious cycle, but also on hiding the
information about the most significant digits, which
could reveal information about the algorithm behind
the generation of the PRNs.

The interest in the present work is to understand how
thedeep-zoom transformation changes a particularmap
ergodic properties such as its space partition, density
measure, Lyapunov exponent, Topological, and Shan-
non’s entropy. Our results, mostly illustrated by how
the deep-zoom transformation operates into the Logis-
tic map, are valid to generic 1D chaotic maps or a set
of numbers generated by any other process. The deep-
zoom transformation is a complementary operation to
chaos-based cryptosystem: We first quickly generate
a chaotic trajectory by a low-dimensional map, and
then, we use the deep-zoom transformation to quickly
and lightly enhance security. Our work thus proposes
a pathway for the creation of a fast, light and reliable
chaos-based cryptosystem.

Our first result is to demonstrate that the k-deep-
zoom (k-DZ) transformation to a point x is mathemat-
ically equivalent to iterating for k times the decimal
shift map (DSM) [11,12]. This map is well known,
and it is since decades considered to be a mathemati-
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cal toy model to demonstrate how a shift into the less
significant digits results in strong chaos. Despite its
tremendous appeal due to the nice way this map deals
with decimal digits, scientists working with encryption
based on nonlinear transformations have focused their
attention on other more known similar maps, such as
the Bernoulli shift map [13] or the Baker’smap, instead
of the DSM. The main difference is whereas the DSM
operates by shifting the decimal numbers, Bernoulli
shift and Baker’s map operate by shifting the binary
sequence encoding the real numbers of the trajectory.

Then, we demonstrate that by applying the k-DZ
transformation only once to generic chaotic trajecto-
ries, the mapped trajectories will approach a uniform
invariant measure for a sufficiently large but in practice
small k, thus requiring much less computational effort
to create numbers with uniform statistics, a standard
requirement for reliable PRNs. The convergence to
the uniform invariant measure also dictates the conver-
gence of the Lyapunov exponent (LE) to the topologi-
cal and Shannon’s entropy of the mapped trajectories,
indicating that the transformedpoints have achieved the
largest sensibility to the initial conditions that is possi-
ble. Having a trajectory for which the level of chaos is
the same as the level of entropy means that uncertainty
about the past and the future is as large as one could
wish for the particular chaotic map being considered.
Moreover, all these quantities are linearly proportional
to k, thus implying that randomness (higher entropy)
and the sensibility to the initial conditions (large LE)
can be trivially increased by the resolutionwithwhich a
trajectory is observed, and not by increasing the dimen-
sion of a system or by considering higher-order iterates
of the map onto itself, operations that would require
computational resources.

Throughout this paper, we will show how this map
amazing properties applied to any 1D chaotic systems
with finite probability measure allows for a clear path
to the creation of fast (quick run time, low number of
iterations), light (little computational effort, lowdimen-
sion) and reliable (uniform statistics, strongly sensitive
to the initial conditions, high entropy) pseudo-random
numbers or symbolic secret keys, thus supporting fast,
light and reliable chaos-based cryptosystems.

Enhanced sensitivity to the initial conditions and
increase in entropy is achieved as a consequence that
the k-DZ transformation smooths out the probabil-
ity density of an arbitrary initial distribution of num-
bers transforming it into a uniform distribution. Highly

entropic numbers with high sensitive to the initial con-
ditions give support to reliable cryptosystems. Chaotic
maps can produce numbers faster than inbuilt pseudo-
random number generators, thus giving support to a
cryptosystem that is fast. Moreover, these maps (e.g.,
as the Logistic map) can be low-dimensional, which
reduces further computational requirements, giving
support to a cryptosystem that is light.

2 The k-deep-zoom (k-DZ) transformation, its
equivalence to the Decimal shift map (DSM), and
the logistic map

Given a 1D map f (x) defined in a domain [a, b] and
producing an orbitO(x0) = {x0, x1, . . . , xt } generated
by the initial condition x0,with a given invariant density
ρ(x) and probability measure μ(x), such that for an
interval ε ∈ [a, b] we have that μ(ε) = ∫

x∈ε
ρ(x)dx ,

the k-DZ transformation φk(x) was defined in [10] by

φk(x) = x10k − �x10k�, (1)

where � � stands for the floor function. In Ref. [10],
and motivated mostly for practical reasons, a param-
eter L was considered which set the number of less
significant digits for the function φk(x). Here, we drop
this definition and assume that L → ∞, or is a large
number.

This map can be analogously described by

φk(x) = 10k(x, mod 10−k). (2)

φk(x) = 10k x, mod 1. (3)

The DSM map is defined by

D(x) = 10x, mod 1, (4)

and its k-folded version (the k-th iteration of D) which
we represent by Dk is basically

Dk(x) = 10k x, mod 1, (5)

which is exactly equal to Eq. (3). Thus, the k-fold DSM
map is mathematically equal to the k-DZ transforma-
tion.

To illustrate the action of the DZ transformation,
given the value x = 0.3923481, then φk=2(x) =
0.23481.

2.1 The k-DZ transformation and other maps in
literature

The idea of using a cryptosystem based on mod trans-
formations that extract the less significant digits of real
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numbers generated by chaotic systems was to the best
of our knowledge first proposed in Ref. [9]. Given a
real number xn generated by a chaotic system (discrete
or continuous), this work has proposed cipher x by

Rn ≡ Axn, mod S, (6)

with A and S representing arbitrary constants.
Equation (4) can be seen as a particular case of Eq.

(6), but not of Eq. (3) because the k-DZ transformation
introduces the extra parameter k.

Our work shows when this parameter can generate
suitable PRNs. However, in the work of Ref. [9], only
the case for A = 107 and S = 256 was studied, and
without the rigour anddeepness presented in the present
work to study the ergodic and dynamic manifestations
of these transformations. The choice of S = 256,which
turns the map of Eq. (6) not equivalent to the DSM
map, was made to organize the number Rn into a two-
dimensional gray-scale image for further processing.
This choice, however, is not optimal for the security
of the encryption, measured in terms of entropy and
sensibility to the initial conditions. The optimal choice,
demonstrated further, is obtained for S = 1, as in Eqs.
(3) or (5). The choicemade of A as an arbitrary constant
is also per se not always optimal to extract the less
significant digits, unless this arbitrary constant is of
the form A = 10k , as in Eq. (3).

2.2 The Logistic map

The logistic map has been extensively studied over the
past years [14]. Since it is a well-know system and
that produces typical chaotic behavior [15], we focus
the application of the k-DZ transformation to trajectory
points being iterated by the logistic map for typical ini-
tial conditions and that produce chaotic sets when they
are stable, which we refer as the k-logistic map, adopt-
ing previously defined terminology. Worth mentioning
that the probability of finding a chaotic orbit for a ran-
domly chosen parameter by any typical initial condition
in the Logistic map is finite [16]. So randomly picked
parameters (within the allowed domain) and randomly
picked initial conditions will likely generated a chaotic
attractor. It is described by

f (xt+1) = bxt (1 − xt ), (7)

where xt ∈ [0, 1]. In Eq. (7), xt ∈ �, and as such each
trajectory point is assumed to have infinite precision.

However, in practice, xt has finite precision, but this
does not prevent one from solving Eq. (7) by numeri-
cal means. The shadowing lemma [17] guarantees that
numerical solutions of this map are stable even if tra-
jectory points have a finite resolution, in the sense that
the numerical trajectory will remain close to a true tra-
jectory for a very long time, this time depending on the
resolution of the trajectory considered.

3 Analysis

3.1 Phase space, partition, and topological entropy

Equation (2) is useful because it provides the key to
calculate the location of the partition points, where the
map becomes discontinuous. The points of disconti-
nuities happen at the boundaries created by the mod
function, so at multiples of 10−k , more specifically at
m10−k , for m ∈ N and m ≤ 10k . There will be then
10k discontinuous intervals. Figure 1 shows the origi-
nal logistic map with b=4 (k = 0, left panel), and the
corresponding k-DZ transformation for k = 1 (second
panel to the right), k = 2 (third panel to the right), and
k = 3 (right-most panel).

So, the set containing the points x∗ where disconti-
nuities appear can be obtained by solving the following
equation:

x∗(m) = m10−k . (8)

We can define a topological entropy of the k-DZ
transformation, which is an upper bound for the Shan-
non entropy, by the Boltzmann entropy of gas measur-
ing the entropy of it in terms of the number of observ-
able states. Here, we can define the states as being the
fall of a trajectory point into an interval within the par-
tition provided by Eq. (8). Regardless of the value of
b, and actually regardless of which kind of 1D chaotic
map is used, this number is given by the number of par-
tition points of the k-DZ transformation and it is equal
to 10k , which is also the number of possible symbolic
sequences that the k-logistic map produces. It is given
by

HT = k ln (10). (9)

It is useful to compare this result with the topolog-
ical entropy of the original logistic map, defined in
terms of the number of subintervals in its generating
Markov partition, and equal to 2o, where o ∈ N is the
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Fig. 1 The k-DZ transformation applied to the trajectory points of the Logistic map. From left to right panels, for k = 0, k = 1, k = 2,
and k = 3 by using Eq. (3)

order of the partition representing the resolution of the
subintervals composing the partition (measuring 2−o

in length). That results in that HT = o ln (2). Here,
we see an advantage of the use of the k-logistic map
to produce efficient pseudo-random numbers in a light
fashion, so without requiring too expensive computa-
tional resources. Assuming o and k to be of the same
order, the topological entropy of the k-logistic map be
ln (10)/ ln (2) larger than that of the logistic map.

It is also worthwhile to compare the result in Eq. (9)
with the topological entropy, H (S)

T , obtained by apply-
ing Eq. (6). Defining A = 10k , we obtain that the topo-
logical entropy equals H (S)

T = k ln (10) − ln (S) for
Eq. (6). Thus, the entropy achieved in Eq. (9) for the
k-DZ transformation in Eq. (3) can only be achieved
by applying Eq. (6) to that same chaotic set if S = 1.

3.2 k-logistic map probability density

One of the most important characteristics of a good
PRN generator is that successive output values of it,
say u0, u1, u2, . . . are independent random variables
from the uniform distribution over the interval [0, 1].
It was shown in [10] that as k increases the probabil-
ity distribution of the map becomes more and more
uniform. This is reproduced in Fig. 2, in terms of the
histogram (frequency) analysis. As can be seen in this
figure, for k = 0 (a) this distribution is not uniform as it
is to be expected from the logistic map with b=4, with
a high probability of finding points close to 1 and 0. As
k grows with k = 1, k = 2, and k = 3, the distribu-

tion tends to become increasingly uniform, as can be
observed in the Fig. 2b. In (c), we show amagnification
of (b) for the region close to zero.

3.3 The natural invariant measure of the k-DZ
transformation and its Shannon’s entropy

To calculate the asymptotic Lyapunov exponent of
the k-DZ transformation, which is independent on the
choice of the chaotic map, we notice that the k-DZ
is piecewise linear, wherein each partition sub-interval
the map has a constant derivative function. Arranging
the values of x∗(i) in Eq. (8) in a ranking of crescent
order and indicating it by, i.e., x∗(m) ≡ x∗

i such that
x∗
i+1 > x∗

i , each partition subinterval comprises the
interval

di = [x∗
i , x∗

i+1[, (10)

for i ∈ N and i = [0, 1, . . . , 10k − 1].
The derivative of the piecewise-linear map for each

sub-interval di can be calculated by

ωi = |di |−1 = 10−k, (11)

since φk(di ) = 1, where |di | represents the length of
the sub-partition di .

The evolution of an arbitrary initial probability mea-
sure to a 1D nonlinear transformation is dictated by
the Perron–Frobenius operator. For piecewise linear
systems, the Perron–Frobenius operator can be cast in
terms of a linear system of equations operating in each
subinterval of the map partition. The k-DZ transforma-
tion takes as the initial measure generated by the non-
linear logistic map and then applies k times the DSM .
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(a) (b) (c)

Fig. 2 Frequency distribution curves for a the original logistic
map, b the k−-logistic map with k = 1, k = 2 and k = 3 and
parameter b = 4. The horizontal axis shows the xt ∈ [0, 1] (500
bins), and the vertical axis shows the frequency of the 104 values

discarding the first 103 transient values. The curves represent the
mean and standard deviation (shaded error bar) for sequences
generated over 100 random initial conditions. c The inset plot
depicts a zoom on the windows x ∈ [0, 0.03] for these 4 plots

If we assume that the measure in each subinterval of
the k-DZ is uniform (which initially will be not) and
we represent it by the component [μ]i of the vector
μ (i = {1, . . . , n}) with n = 10k , and we define the
density in each interval as given by

ρi = μi

di
, (12)

an equation for the evolution of the non-normalized
density at iteration t can be obtained [18].

Zρ′t = ρ′t+1
, (13)

where the square matrixZ with component [Z]i j is the
reciprocal of the absolute value of the slope of the map
taking the measure from the interval j to the interval i
and can be defined by a matrix with equal rows as

Z =

⎡

⎢
⎢
⎣

ω−1
0 ω−1

1 . . . ω−1
n−1 ω−1

n

ω−1
0 ω−1

1 . . . ω−1
n−1 ω−1

n
· · · · · · · · · · · · · · ·
ω−1
0 ω−1

1 . . . ω−1
n−1 ω−1

n

⎤

⎥
⎥
⎦ .

Equation (13) represents how the measure evolves
concerning only 10k intervals are valid if the measure
and the density are uniform for every sub-partition di
since it has been derived from the continuous Perron–
Frobenius operator integrated over intervals where the
measure was assumed to be constant. If the initial mea-
sure is not uniform for each subpartition interval, as it is
the case since the initial measure was generated by the
logistic map, we either should consider the continuous

operator (effectively described by an infinite dimension
matrix) or alternatively, we can adopt a much simpler
strategy.We take Eq. (13) and study it in the limit, when
t → ∞.

Defining the vector d = {d1, d2, . . . , dn} and the
diagonal matrix D = Id, the element []i j of the matrix
DZD−1 represents the percentage of the measure in
the interval d j that goes to the interval di . The matrix
Z has equal rows because the piecewise equivalent of
the k-logistic map takes measure from each interval
to all others with the same proportion in each of the
intervals d j .

The equilibrium point of Eq. (13) is obtained when

Zρ∗ = ρ∗, (14)

which means that the time invariant density is a nor-
malized eigenvector of Z .

The matrixZ is a stochastic matrix, since it is a non-
negative matrix and the sum of all elements in a row
totals 1. This is easy to see since
∑

i

ω−1
i =

∑

i

di = 1. (15)

The Perron–Frobenius theorem guarantees that a
square stochastic matrix has a unique dominant real
unitary eigenvalue, with all other eigenvalues smaller
than 1. Thismeans that the density of the k-DZ transfor-
mation in the limit of k → ∞ is natural (it is unique),
regardless of the initial probability measure that is fed
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Fig. 3 The k-logistic map state space. From left to right panels
are shown k = 0, k = 1, . . ., k = 7 using parameter b = 4. The
horizontal and vertical axes show the state space of xkt against

φk( f (xt )). Each orbit contains 105 points starting from random
initial conditions

into the k-DZ transformation. The natural density can
be recovered by proper normalization dividing ρ∗ by∑

i [ρ∗]i di so that the physical natural density in each
interval is given by

[ρ]i = [ρ∗]i∑
i [ρ∗]i di . (16)

This is to guarantee that the density produces the
natural measure by Eq. (12).

It is also easy to see that the unique unitary eigen-
value has associated with it a uniform eigenvector with
all components equal to a constant value c: ρ∗ =
[c c c . . . , c]T, so the piecewise k-DZ transformation
has a uniform density given by

[ρ]i = c
∑

i [c]di
= 1. (17)

This leads us to an invariant natural measure in each
interval that equals the Lebesgue measure of the inter-
val, and thus,

μi = di = 10−k . (18)

So, for sufficiently large k, it is to be expected that
the k-logistic map will have a uniform natural invariant

density, although the density of the logistic map is not
uniform for each interval. In practice, this sufficiently
large number is around k=4, when this map generates
PRNs with all the good statistical characteristics for
security [10]. Being invariant means that any initial
probability measure will eventually evolve to the same
invariant measure. Thus, the reliability of the security
for the PRNs generated by the k-DZ transformation is
substantially more dependable on the properties of the
DSM, than on the statistical properties of the chaotic set
of points being iterated by the k-DZ transformation, or
also on the chaotic map considered to initially generate
the chaotic trajectory to be fed into the k-DZ transfor-
mation. Since the invariant measure of the k-logistic
map is constant (for sufficiently large k), this means
that any encoding supported by the partition defined in
Eq. (8) will produce equiprobable symbols, this ren-
dering cryptanalysis based on frequency statistics to be
inappropriate.

The asymptotic Shannon’s entropy of the k-DZ
transformation is therefore equal to the topological
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Fig. 4 The k-logistic map state space. From left to right panels
are shown k = 0, k = 1, . . ., k = 7 on region b ∈ [3.6, 4]. The
horizontal and vertical axes show the state space of xkt against

φk( f (xt )). Each orbit contains 5× 103 points starting from ran-
dom initial conditions

entropy:

HS = −
n∑

i=1

μi lnμi = −
n∑

i=1

di ln di = HT . (19)

3.4 The Lyapunov exponent of the k-DZ
transformation

The Lyapunov exponent (LE) of the k-DZ transforma-
tion can always be calculated regardless of the chaotic
map being used as the generator of the initial mea-
sure. This is so because the map is piecewise linear
with constant derivative everywhere (except the parti-
tion points). The Lyapunov exponent can be calculated
by

λ =
∫

ln

(∣
∣
∣
∣
dφk(x)

dx

∣
∣
∣
∣

)

dμ, (20)

where dμ = ρ(x) dx , represents the invariant measure
of the k-DZ transformation.

The chaoticmap has its own domain of validity. This
domain must be normalized to fit within the domain

of the k-DZ transformation. For the logistic map, the
domain is [0, 1], the same as the domain of the k-DZ
transformation. Therefore, its LE is equal to

λ =
∫ 1

0
ln

(∣
∣
∣
∣10

k
∣
∣
∣
∣

)

dx = k ln (10) = HT . (21)

So we see that for a sufficiently large k, the k-
DZ transformation produces a LE that approaches the
topological entropy which is also equal to Shannon’s
entropy. A light cryptosystem that does not require
much computational effort demands the use of transfor-
mations that can be as entropic as possible and with the
largest as possible sensibility to the initial conditions
(which implies in a quick decay of correlation).

When comparing the LE of the k-DZ transforma-
tion in Eq. (3) [result in Eq. (20)] with the LE of the
transformation Eq. (6) (proposed in Ref. [9]), assum-
ing A = 10k , we notice that Eq. (6) can be equivalently
written as:

Rn = S

(
10k

S
xn, mod 1

)

, (22)
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which can be rewritten as:

Rn = S�(xn), (23)

where�(xn) = 10k
S xn, mod 1. Noticing that the LE of

the function �(xn) is the same as the one obtained if
�(xn) is multiplied by a constant, then the LE of Eq.
(6) is equal to

λ(S) = ln

(
10k

S

)

= H (S)
T . (24)

Thus, the LE of Eq. (6) is only equal to the one of Eq.
(3), if S = 1. As a result of Eq. (24), we have assumed
that the speed of convergence of the probability den-
sity measure [19] of Eq. (6) is the same as the one of
Eq. (3). This is to be expected since the second largest
eigenvalue of the matrix Z regulating the evolution of
the density measure for Eq. (3) is the same as the one
for this matrix regulating the evolution of the density
measure for Eq. (6), and both are equal to zero.

3.5 Enhancement of sensibility to the initial
conditions of the k-logistic map

The LE of the k-DZ transformation does not depend on
the choice of the chaotic map generating the measure.
It is nevertheless interesting to understand how much
chaos is enhanced by the application of the k-DZ trans-
formation into a chaotic map. Considering this chaotic
map to be the logistic map [Eq. (7)], we then want
to understand how much chaos is enhanced if the DZ
transformation with k = 1 is applied not to the trajec-
tory points generated by the logistic map, but to the
map itself. So we calculate the Lyapunov exponent of
the map φk( f (xt )), whose state space (φk( f (xt ))× xt )
is shown in Fig. 3. Additionally, Fig. 4 shows a colored
version of this previous picture for parameters in region
b ∈ [3.6, 4].

This map is described by

φk( f (x)) = 10k( f (xt ), mod 10−k). (25)

Its LE can be calculated by

λ =
∫

ln

(∣
∣
∣
∣
dφk( f (x))

dx

∣
∣
∣
∣

)

dμ, (26)

where dμ = ρ(x) dx now represents the measure of
the logistic map.

The first derivative of the map in Eq. (25) is

dφk(x)

dx
= 10kb(1 − 2x), (27)

whereas its density for b = 4 is given by

ρ(x) = π−1

[x(1 − x)]1/2 . (28)

PlacingEqs. (27) and (28) inEq. (26) and integrating
over the map domain (x ∈ [0, 1]), we obtain that

λ =
∫ 1

0

k ln 10 + ln 4 + ln |(1 − 2x)|
π

√
x(1 − x)

dx = k ln(10) + ln(2),

(29)

since
∫ 1

0

ln |(1 − 2x)|
π

√
x(1 − x)

dx = ln 2.

So the first thing to notice is that the LE of the map
in Eq. (25) is equal to the LE of the 1-logistic map plus
the LE of the original logistic map for b = 4 (which
is equal to ln (2)). This tells us that when creating a
cryptosystem based on a chaotic map, more entropy
and sensibility to the initial conditions can be achieved
by a simple inspection to the least k significant dig-
its, instead of doing more iterations in the chaotic map
generating the initial chaotic sequence.

This analysis can be easily extended to the logistic
map operating under any parameter b that produces
chaotic motion.

The Lyapunov exponent of the map in Eq. (25) can
be calculated using the time approach by

λ(b) = lim
T→∞

1

T

T∑

t=1

ln

∣
∣
∣
∣10

kb(1 − 2xi )

∣
∣
∣
∣, (30)

which lead us to

λ(b) = k ln 10 + lim
T→∞

1

T

T∑

t=1

ln

∣
∣
∣
∣b(1 − 2xi )

∣
∣
∣
∣, (31)

and finally to

λ(b) = k ln 10 + λ0(b), (32)

where λ0(b) is just the Lyapunov exponent of the logis-
ticmap for the parameter b. Thus, here it is obvious that
the gain for sensibility to the initial conditions is triv-
ially achieved by just choosing a sufficiently large k.

4 Pseudo-random numbers and symbolic secret
keys

The output of the k-DZ transformation φk(x) gener-
ates real points in the unit interval. These points have
a uniform invariant density, are highly entropic, and
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have high sensitivity to the initial conditions. More-
over, their security analysis was already analyzed in
Ref. [10] (specifically, Tables II and III), showing high-
quality pseudo-random numbers for k ≥ 4 through sta-
tistical randomness tests such as DIEHARD [20] and
NIST [21]. These values have all the properties wished
for a PRN.

Another strategy we can employ to generate PRNs
and that directly renders the creation of digital secret
keys is by means of the symbolic representation of the
trajectory of the k-DZ transformation. Thus, a parti-
tion that is not the natural partition of the k-DZ trans-
formation needs to be considered. This natural par-
tition is given by d whose borders are defined by
Eq. (8). Then, for a given k, there will be 10k sym-
bols for the natural partition. The point φk(xi ) ∈
[di , di+1] is encoded by the i-th symbol of the alpha-
bet (i = {0, 1, . . . , 10k − 1}), represented by si .
A transformed trajectory of length L represented
by {φk(x1), φk(x2), . . . , φk(xL)} will have the sym-
bolic representation s = {s1, s2, . . . , sL}, where si ∈
[0, 10k − 1]. The vector s fully represents the informa-
tion about the location of the points xi being mapped
(within the resolution of the partition cells), and there-
fore should be avoided for the creation of the secret key.
The partition to create a secret key should have a mini-
mal number of intervals, for example a binary partition
whereφk(xi ) < 0.5 is encoded by ‘0’ andφk(xi ) ≥ 0.5
is encoded by ‘1’. In this way, points within xi ∈ [0, 1]
will be encoded with equal probabilities for ‘0’ and ‘1’.

5 Conclusions

Cryptography relies on the application of several
transformations to eliminate all existing correlations
between the message and its ciphered version. A pre-
liminary requirement for achieving this relies on the use
of highly entropic and non-correlated pseudo-random
numbers. The sensitivity to the initial conditions prop-
erty chaotic systems have is the key to this goal. The
interest today is to be able to accomplish such a task for
reliable encryption but by relying on transformations
that require little computational effort (light) and quick
running time (fast).

In thiswork,we characterize the properties of the so-
called the k-Deep Zoom (k-DZ) to potentially support
reliable cryptosystems that uses pseudo-random num-
bers or secret keys that were created fast and lightly.

Besides the decimal shift map (DSM) is not conceptu-
ally equivalent to the k-DZ, we show that the k-DZ is
mathematically equivalent to the DSM map iterated k
times. More than that, we show that the k-fold DSM
can be rewritten into a form completely equivalent to
the k-DZ transformation. So all the good properties of
the DSM map such as uniform statistics, high entropy,
and sensibility to the initial conditions are inherited
by the k-DZ. There is a semantic difference between
both maps. Whereas the k-DZ transformation effec-
tively represents an algorithm that simply extracts the
less significant digits of a real number, the DSM is a
map that transforms a point into another point. This
semantic interpretation of the DZ-transformation can
be in the future exploited for the creation of dedicated
electronic chips operating at the hardware level that
only work with less significant digits, thus potentially
bringing the encryption process to the physical level.
We show that the entropy and the Lyapunov expo-
nent are linearly proportional to k. This means that the
trivial and light task of peeking onto the sequence of
less significant digits positioned k digits to the decimal
floating-point is sufficient to drastically increase the
entropy and therefore the uncertainty past and future
numbers, at a minimal computational cost.

Several of the properties of the k-DZ transformation
depend only on the map itself, not on the chaotic sys-
tem being considered as the generator of the original
trajectory being encoded, or any other set of numbers
being generated by any other process (e.g., stochastic
processes). Thus, one might wonder why to use the k-
DZ transformation into a chaotic set of numbers after
all? The reason is that chaotic trajectories have sev-
eral advantages. They are easy to be generated and do
not require the use of higher-dimensional systems, in
both digital or analog domains, they require less algo-
rithmic complexity, less-power electronics, less CPU
dedication and can be generated at impressive large
bandwidths. Chaos, however, is deterministic and cor-
relation does decay quickly, but not as quickly as one
would wish. The additional application of the k-DZ
transformations to chaotic trajectories fast and lightly
enhances the already existing wished properties of
chaos to cryptography, a transformation that optimizes
essential ingredients to a secure cryptosystem, but with
minimal computational effort.

Our strategy to create pseudo-random numbers or
secret keys requires the use of a chaotic system whose
simulated trajectory is guaranteed to be chaotic for
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a long period, and that can be additionally generated
using minimal computational resources. For this rea-
son, the logistic map is a good candidate. The k-DZ
transformation is then applied a single time to this sta-
ble chaotic trajectory. Our claim is that this strategy
quickly generates secure and light PRNs.Another strat-
egy to generate secure PRNs, which might increase the
computational cost to some extent, was proposed in
Ref. [13], where an approximate true trajectory of the
Bernoullimap is calculated directly using real algebraic
numbers. It would be interesting to study the perfor-
mance of PRNs (in terms of speed, weight, and relia-
bility) that are either generated by applying the k-Deep
Zoom to the logistic map or by the true trajectory of
the Bernoulli map.

We must conclude by reinforcing the idea that our
main results do not require the use of the logistic
map. Any other map could be used, for example we
could use as the initial chaotic trajectory that serves as
the input to the k-DZ transformation, one that is cre-
ated by the intertwining logistic map (ILM) [22]. This
map has attracted attention in the chaos-based crypto-
community because it expands the key space, produces
a density measure that seems to be uniform (yet to be
demonstrated), and that could potentially have robust
chaotic attractors (Ref. [23]) (yet to be demonstrated),
systems that produce chaotic attractors that cannot be
replaced by a periodic attractor by a parameter pertur-
bation. However, its use to generate chaotic trajectories
as the input data to our k-DZ transformation would
need to be done with caution not to compromise our
promise to the potential creation of a fast, light and
reliable cryptosystem. The ILM is a three-dimensional
map (higher-dimensional), with a trigonometric trans-
formation (sinusoidal) (thus not light). The Lyapunov
exponent of the ILM map remains below 0.5, whereas
the Bernoulli shift map has as its Lyapunov exponent
the value of ln (2). It is worth mentioning that the Lya-
punov exponent of the trajectory obtained from the one
obtained from the k-DZ transformation applied to a tra-
jectory of the logistic map is proportional to k ln (10).
Finally, to the best of our knowledge the results that the
ILMproduces a uniformdensitymeasure is not demon-
strated, whereas in this work we rigorously demon-
strated that any chaotic trajectory canbe transformedby
the k-DZ transformation in order to produce an invari-
ant uniform distribution. Moreover, the approach to the
invariant uniform distribution is rapidly, only requiring
a single iteration of the k-DZ transformation.
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