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Abstract This paper proposes an approach for the
determination of the analytical boundaries of con-
tinuous, stick-slip and no motion regimes for the
steady-state response of a multi-degree-of-freedom
(MDOF) system with a single Coulomb contact to har-
monic excitation. While these boundaries have been
previously investigated for single-degree-of-freedom
(SDOF) systems, they are mostly unexplored for
MDOFsystems.Closed-formexpressions of thebound-
aries of motion regimes are derived and validated
numerically for two-degree-of-freedom (2DOF) sys-
tems. Different configurations are observed by chang-
ing the mass in contact and by connecting the rubbing
wall to: (i) the ground, (ii) the base or (iii) the other
mass. A procedure for extending these results to sys-
temswithmore than 2DOFs is also proposed for (i)–(ii)
and validated numerically in the case of a 5DOF system
with a ground-fixed contact. The boundary between
continuous and stick-slip regimes is obtained as an
extension of Den Hartog’s formulation for SDOF sys-
temswithCoulomb damping (TransAmSocMechEng
53: 107–115, 1931). The boundary betweenmotion and
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no motion regimes is derived with an ad hoc procedure,
based on the comparison between the overall dynamic
load and the friction force acting on the mass in con-
tact. The boundaries are finally represented in a two-
dimensional parameter space, showing that the shape
and the extension of the regions associated with the
three motion regimes can change significantly when
different physical parameters and contact configura-
tions are considered.

Keywords Coulomb damping · Friction · Multi-
degree of freedom · Stick-slip · Motion regimes · Base
motion · Joined base-wall motion

1 Introduction

Improving the fundamental knowledge of the dynamic
behaviour of friction damped systems is one of themost
pressing challenges in structural dynamics. In fact, fric-
tion joints and interfaces are found in a wide range of
mechanical and civil structures. Furthermore, friction
dampers are often introduced in engineering applica-
tions to achieve energy dissipation, isolation and vibra-
tion control. However, their effect on the dynamic per-
formances of such systems is not yet fully understood.

The dynamic response of systems with frictional
interfaces is not always continuous. In fact, the fol-
lowing behaviours can also be observed in the rela-
tive motion between the surfaces of the joint: (i) stops
can periodically occur in the motion, leading to the
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so-called stick-slip regime; (ii) the surfaces in con-
tact can be completely stuck, a condition which will
be referred to as no motion regime. These phenom-
ena can have undesired and critical consequences on
engineering structures if not accounted for during the
design stage. For example, stick-slip can result in noise,
energy loss, excessivewear and component failures [1],
while unexpected full-stuck conditions in friction con-
tacts can lead to a significant reduction of damping
effects and alter the dynamic behaviour of the struc-
ture.

The goal of this paper is the development of an ana-
lytical approach for the formulation of the boundaries
of these motion regimes for multi-degree-of-freedom
(MDOF) systems with a Coulomb friction contact.
Specifically, two different boundaries will be investi-
gated: (i) between continuous and stick-slip regimes;
(ii) between motion and no motion regimes. Differ-
ent contact configurations will be explored, consider-
ing different masses involved in the friction contact
and either fixed or oscillating wall cases. The bound-
aries will be represented in two-dimensional parame-
ter spaces, which will be therefore divided into three
regions associated with continuous, stick-slip and no
motion regimes. The observation of these parameter
spaces will enable the determination of the motion
regime for each given set of parameters of the system,
of the contact and of the excitation considered.

The steady-state response features of harmonically
excited systems presenting a Coulomb contact between
the mass and a fixed wall were widely explored in
the literature (see, e.g. [2–7]) for the single-degree-of-
freedom (SDOF) case. Specifically, the determination
of an upper bound for continuous non-sticking motion
was mainly tackled by Den Hartog [2] and Hong and
Liu [5]; in addition, many authors [7–9] further inves-
tigated the motion bounds accounting also for the dif-
ferent number of stops per cycle in stick-slip regime.
In these systems, the upper bound for the presence of
mass motion, either in continuous or stick-slip regime,
is obtainedwhen the amplitudes of the exciting and fric-
tion forces are equal, independently of the exciting fre-
quency. However, a different behaviour was observed
by Marino et al. [10] in Coulomb damped SDOF sys-
tems subject to joined base-wall harmonic excitation,
where the rubbing wall is assumed to oscillate jointly
with the base. The wall motion introduces a different
dynamic load on the mass, whose amplitude becomes
proportional to the square of the exciting frequency.

Therefore, also the upper bound for the presence of a
relative motion in the contact will become frequency-
dependent.

The response of MDOF systems to harmonic exci-
tation is often investigated numerically [11–13]. As
time integration can be computationally expensive
[14], frequency domain methods such as harmonic bal-
ance [15–18] or multi-harmonic analysis [19–21] have
been explored. A more complete review on friction
damped systems and current numerical approaches can
be found in reference [22]. Analytical approaches are
also described in the literature for 2DOF systems with
a Coulomb contact: in 1966, Yeh [23] derived a closed-
form solution for the continuous non-sticking response
of 2DOF systemswith combined viscous and Coulomb
damping,whilemore recently further theoretical devel-
opments were presented in references [24–26]. Alter-
native approaches such as themethod of averaging have
also been explored for finding approximate solutions
when the number of DOFs of the system is larger [27].
Finally, the problem has often been addressed by intro-
ducing an equivalent viscous damper to account for the
energy loss due to the frictional dissipation [14,28,29].
Nevertheless, to the best of the authors’ knowledge, the
problem of the determination of the boundaries among
continuous, stick-slip and no motion regimes has never
been tackled for these systems.

In this contribution, the upper bound for non-
stickingmotion is evaluated by extendingDenHartog’s
approach [2]. In fact, Den Hartog determined the con-
tinuous dynamic response and the boundary between
continuous and stick-slip motion regimes by consid-
ering a time interval, equal to half period of motion in
steady-state conditions, where the governing equations
are linear. This approach can also be used to investigate
the behaviour ofMDOFsystems if a single friction con-
tact, i.e. a single nonlinearity, is considered. In partic-
ular, this enables the use of standard modal analysis to
evaluate the terms appearing in the boundary equation.
An ad hoc procedure is introduced for determining the
domain where relative motion is allowed in the fric-
tion contact. The approach is based on the evaluation
of the overall dynamic load acting on the mass in con-
tact when it is fixed. The upper bound is then described
by equating the amplitudes of this dynamic force and
of the friction force.

Three different types of friction contacts are inves-
tigated for two-degree-of-freedom (2DOF) systems:
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Multi-degree-of-freedom systems with a Coulomb friction 37

– ground-fixed wall contacts (Sect. 2), achieved
between one of the masses and a fixed wall;

– base-fixedwall contacts (Sect. 3), achievedbetween
one of themasses and a wall oscillating jointly with
the base;

– mass-fixed wall contacts (Sect. 4), where two
masses are connected by a spring and a Coulomb
contact in parallel.

These MDOF systems can provide a simplified model
for several engineering applications, including friction
dampers for civil building, car suspensions, bladed
discs and many others. For each of the listed con-
tact configurations, the analytical boundaries are evalu-
ated and validated with results found using a numerical
approach, which is introduced in Sect. 4. Subsequently,
the analytical results for ground-fixed and base-fixed
contacts are extended to systems with more than two
DOFs in Sects. 2 and 3, respectively; particularly, a
numerical validation is proposed for the case of a 5DOF
systemwith a ground-fixed contact applied on either the
fourth or the second mass at the end of Sect. 2.

2 Ground-fixed wall contacts

This section focuses on the study of a MDOF system
with a Coulomb contact between one of the masses of
the system and a ground-fixed wall. The purpose of
this investigation is determining which motion regime
(continuous, stick-slip or no motion) can be observed
for each set of physical parameters of the problem.
DenHartog’s approach for the determination ofmotion
regimes in SDOF systems [2] is recalled and extended
to MDOF systems by considering the superposition
of modal behaviour. Analytical expressions for the
bounds of the different motion regimes are presented
and validated with numerical results obtained using the
approach described in Sect. 4 for 2DOF systems with
a fixed contact on either the lower or upper mass and
for a 5DOF system with the either fourth or the second
mass in contact to a fixed wall.

2.1 Governing equations and dimensionless groups
definition

Let us consider a 2DOF system composed of two
masses m1 and m2 and two springs of stiffness k1 and
k2, where either the lower mass (Fig. 1a) or the upper

(a) (b)

Fig. 1 2DOF system under harmonic base excitation with a
Coulomb ground-fixed wall contact on a the lower mass or b
the upper mass

mass (Fig. 1b) is rubbing against a ground-fixed wall
generating a Coulomb friction force of amplitude F .
Such systems are excited by a harmonic base motion of
amplitude Y and frequency ω, described by the coordi-
nate y. The coordinates describing the position of the
two masses are x1 and x2, respectively. The govern-
ing equations of each of these systems can be written,
respectively, as:

m1 ẍ1 + (k1 + k2)x1 − k2x2 + Fsgn(ẋ1) = k1y (1a)

m2 ẍ2 − k2x1 + k2x2 = 0 (1b)

and:

m1 ẍ1 + (k1 + k2)x1 − k2x2 = k1y (2a)

m2 ẍ2 − k2x1 + k2x2 + Fsgn(ẋ2) = 0 (2b)

where y = Y cos(ωt) and:

sgn(ẋi ) =

⎧
⎪⎨

⎪⎩

1 if ẋi > 0

[−1, 1] if ẋi = 0

−1 if ẋi < 0

(3)

When the sliding velocity is zero, the sgn() function is
meant to assume any value between -1 and 1. The actual
value will be such that the system is in equilibrium,
i.e. the sum of the spring forces and of the friction
force is zero. By using the definition in Eq. (3), it is
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(a) (b)

Fig. 2 Non-dimensional 2DOF system under harmonic base
excitation with a Coulomb ground-fixed wall contact on a the
lower mass or b the upper mass

also assumed that the magnitudes of static and kinetic
friction forces are equal.

As several parameters appear in Eqs. (1) and (2),
it is convenient to rewrite them in a non-dimensional
form, using the smallest possible number of parameters
required for describing the dynamic behaviour of the
systems. A possible non-dimensional form of Eqs. (1)
and (2) is:

r21 x̄
′′
1 + (1 + κ)x̄1 − κ x̄2 + βsgn(x̄ ′

1) = cos τ (4a)

γ r21 x̄
′′
2 − κ x̄1 + κ x̄2 = 0 (4b)

and:

r21 x̄
′′
1 + (1 + κ)x̄1 − κ x̄2 = cos τ (5a)

γ r21 x̄
′′
2 − κ x̄1 + κ x̄2 + βsgn(x̄ ′

2) = 0 (5b)

In the above equations, a non-dimensional time and a
non-dimensional position for the j-th mass were intro-
duced, respectively, as:

τ = ωt x̄ j = x j
Y

(6)

and the symbol ′ indicates the derivative with respect
to τ . The four non-dimensional groups chosen are:

– the frequency ratio:

r1 = ω

√
m1

k1
(7)

– the friction ratio:

β = F

k1Y
(8)

– the stiffness ratio:

κ = k2
k1

(9)

– the mass ratio:

γ = m2

m1
(10)

It is worth noting that Eqs. (4) and (5) can be inter-
preted as the governing equations of equivalent non-
dimensional systems where, as shown in Fig. 2a, b, the
masses are r21 and γ r21 and the springs have a stiff-
ness equal to 1 and κ , respectively. The friction ratio
β represents the amplitude of the friction force, while
the base excitation is of unitary amplitude and unitary
frequency.

2.2 Sticking conditions

The conditions for which a sticking phase will occur in
the mass motion are discussed here. These conditions
are required for the numerical integration of Eqs. (4)
and (5) with the approach described in Sect. 4. Sticking
will occur when, at a specific time, the relative veloc-
ity between the components in contact is zero and the
amplitude of the sumof all the non-inertial forces acting
on themass in contact does not overcome the amplitude
of the friction force. This translates into the conditions:

x̄ ′
1 = 0 (11a)

| cos τ − (1 + κ)x̄1 + κ x̄2| < β (11b)

for the system in Fig. 2a and in:

x̄ ′
2 = 0 (12a)

κ|x̄2 − x̄1| < β (12b)
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for the system in Fig. 2b.

2.3 Boundaries of motion regimes for a SDOF system

Theboundarybetween continuous and stick-slipmotion
regions for MDOF systems will be determined as an
extension of the expression found by Den Hartog for
SDOF systemswithCoulombdamping [2].WithinDen
Hartog’s approach:

– theCoulomb friction force is expressed as−Fsgn(ẋ),
where ẋ is the relative velocity between the mass
and the wall. This force introduces a nonlinearity
in the problem only if the velocity sign changes in
a certain time interval;

– a steady-state response period included between
two subsequent response maxima is considered.
Assuming that the motion is continuous, the mini-
mum displacement will occur in the middle of the
interval, so the velocity sign will be constant and
negative if only the first half cycle is taken into
account;

– therefore, a linear problem is defined for this sub-
interval and an analytical solution for mass motion
is found, allowing the determination of closed-form
expressions of the amplitude and of the phase angle
of the response;

– the conditions for which a stop occurs inside this
time interval are used to evaluate a closed-form
expression of the upper bound for non-sticking
motion.

For each frequency ratio r , the smallest friction ratio for
which a stop occurs inside the considered time interval
is expressed as:

βlim =
√

V 2

U 2 + (S/r2)2
(13)

The following quantities are introduced in the above
equation:

– the response function:

V = 1

1 − r2
(14)

is the frequency response of an undamped SDOF
system;

– the damping function:

U = sin(π/r)

r [1 + cos(π/r)] (15)

describes the friction effect on the frequency
response of the system;

– the function:

S = max
0≤τ≤π

r{sin(τ/r) +Ur [cos τ − cos(τ/r)]}
sin τ

(16)

has been observed to be unitary for most values of r
[2] and, therefore, the assumption of S = 1 will be
considered in what follows. This assumption elimi-
nates the time dependence of Den Hartog’s bound-
ary and reduces Eq. (13) to the solution presented
by Hong and Liu in reference [5], which has been
obtained with a different analytical approach.

It is worth noting that Den Hartog’s boundary was
obtained under the assumption of steady-state motion.
In reference [4], Shaw demonstrated that SDOF sys-
tems with Coulomb friction are asymptotically sta-
ble in the absence of viscous damping, except that
for r = 1/n, n = 1, 2, ...; particularly, an infin-
ity of equally marginally stable solutions coexist if
r = 1/(2n) [6]. Therefore, excluding these partic-
ular values, different motion regimes cannot coexist
for given r and β depending on the initial conditions.
Moreover, it must be observed that for r = 1 the ampli-
tude of the response will grow indefinitely if β < π/4
[2] and, therefore, steady-state condition will not be
reached.

Continuous motion will occur below the boundary
described by Eq. (13) and is depicted by the blue area
in Fig. 3, while stick-slip motion is expected above this
line (the orange area in Fig. 3). Steady mass motion
will not be possible when the amplitude of the exciting
force is smaller than the amplitude of the static friction
force; this happens when β ≥ 1 (grey area). This basic
notion will be used in more complex systems to obtain
the boundary between motion and no motion regions.
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Fig. 3 Motion regimes of a SDOF system under harmonic exci-
tation with a Coulomb fixed wall contact in the parameter space
r -β

2.4 Boundary between continuous and stick-slip
regimes for 2DOF systems

The analytical approach proposed for the evaluation of
the boundary between continuous and stick-slipmotion
regimes in MDOF systems with a Coulomb friction
contact is based on the following assumptions and
observations.

– It is assumed that the steady-state response of the
system is independent of the assigned initial condi-
tions and converges asymptotically to a stable solu-
tion. As previously mentioned, this stability prop-
erty iswell known for SDOFsystemsbut, to the best
of the authors’ knowledge, it has never been thor-
oughly investigated in theMDOF case. The conver-
gence to a unique steady-state response has been
verified in all the numerical investigations carried
out in this paper.

– If the relativemotion between themass and thewall
in contact is non-sticking, the governing equations
of the system will be linear within a time interval
equal to half period of motion. In fact, the Coulomb
force will be constant in any interval where no
change in the sign of their relative velocity occurs.

– The response functions of the system can be
obtained by neglecting the friction force and using
a standard modal analysis procedure, as described
in Sect. 2.4.1.

– In addition, this conjecture is proposed: the bound-
ary between continuous and stick-slip regimes can
be expressed by usingEq. (13), in the assumption of
S = 1. In this equation, the response function V is
obtained as described above. The damping function

U is formulated in a similar fashion as a superpo-
sition of the damping functions of each vibrating
mode.

Numerical investigations are carried out for varying
parameters, masses in contact and numbers of DOFs to
validate the boundaries obtained under these assump-
tions.

2.4.1 Response functions

Although the response functions of a MDOF system
can be determined by using standard modal analysis,
the main steps of the procedure will be reported in this
section to define the relevant variables. The approach is
described in detail for the 2DOF case and can be easily
extended to systems with a larger number of degrees of
freedom, as described in Sect. 2.6.

The first step consists in evaluating the natural fre-
quencies and the corresponding mode shapes of the
undamped system, therefore disregarding the friction
effect and the external excitation. Let us denote as �i

the natural frequencies of the linear system in the phys-
ical coordinates space. The natural frequencies of the
non-dimensional system can be expressed as:

�i = �i

ω
(17)

Such frequencies can be obtained as solutions of the
generalised eigenvalue problem written in the form:

(
K − �

2
i M

)
ψ = 0 (18)

where

M =
[
r21 0
0 γ r21

]

(19)

and:

K =
[
1 + κ −κ

−κ κ

]

(20)

are, respectively, the mass and the stiffness matrices
of the non-dimensional system and where the cor-
responding mode shapes are indicated with ψ i =
[
ψ1,i ψ2,i

]T
. Thus, the natural frequencies can be

viewed as eigenvalues and the mode shapes as eigen-
vectors. For a non-trivial solution of Eq. (18), it is
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required that:

det
(
K − �

2
1,2M

) = 0 (21)

which leads to an algebraic equation. The resulting nat-
ural frequencies can be written as:

�1,2 = 1

r1
√
2γ

[

(γ +κ+γ κ)∓
√

(γ + κ + γ κ)2 − 4γ κ

] 1
2

(22)

Having found the natural frequencies, the mode shapes
ψ i must satisfy:

(1 + κ − �
2
i r

2
1 )ψ1,i − κψ2,i = 0 (23a)

− κψ1,i + (κ − γ�
2
i r

2
1 )ψ2,i = 0 (23b)

The mode shapes are defined up to a constant, so only
the ratio between their components can be obtained
from the system in Eq. (23):

ϕi = ψ2,i

ψ1,i
= 1

1 − γ

κ
�

2
i r

2
1

(24)

In order to define uniquely the components of each
mode a normalisation is usually operated according to
different criteria (see reference [30]). In this paper, the
modes will be normalised so that the modal masses:

m̂i = ψT
i Mψ i (25)

are equal to 1. The normalised mode shape vectors
obtained from such procedure are:

ψi = 1

r1
√

1 + γ ϕ2
i

[
1 ϕi

]T
(26)

These eigenvectors are independent and therefore any
undamped motion of the system can be written as their
linear combination. Let us define the modal matrix �

as the matrix whose columns are the mode shapes:

� = [
ψ1 ψ2

] = 1

r1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
√

1 + γ ϕ2
1

1
√

1 + γ ϕ2
2

ϕ1
√

1 + γ ϕ2
1

ϕ2
√

1 + γ ϕ2
2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(27)

The modal matrix is used to introduce the coordinate
transformation:

x̄ = �η̄ (28)

where the components η̄i of the vector η̄ are defined
as modal coordinates. The introduction of this system
of coordinates allows the rewriting of Eqs. (4) and (5)
as systems of uncoupled equations. In fact, neglecting
friction force at this stage, Eq. (4), as well as Eq. (5),
can be written in matricial form as:

Mx̄′′ + Kx̄ = p̄ (29)

where p̄ = [
cos τ 0

]T
. By introducing the transfor-

mation in Eq. (28), the governing equations assume
the form:

�TM�η̄′′ + �TK�η̄ = �T p̄ (30)

or, in a more compact form:

M̂η̄′′ + K̂η̄ = p̂ (31)

where

M̂ = �TM� = I (32)

and:

K̂ = �TK� = diag(�̄2
i ) (33)

are, respectively, the modal mass and the modal stiff-
ness matrices, while:
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p̂ = �T p̄ = 1

r1
cos τ

[
1

√

1 + γ ϕ2
1

1
√

1 + γ ϕ2
2

]T

(34)

is defined as themodal force vector. Therefore, the i-th
equation of the system in Eq. (31) can be written as:

η̄′′
i + �̄2

i η̄i = p̂i (35)

Equation (35) represents the governing equation of a
SDOF system characterised by the natural frequency
�̄i . Therefore, the amplitude Hi of its response to the
exciting force p̂i can be expressed as:

Hi = P̂i
�̄2

i − 1
= 1

r1
√

1 + γ ϕ2
i

1

�̄2
i − 1

(36)

where

P̂i = 1

r1
√

1 + γ ϕ2
i

(37)

is the amplitude of the i-th modal force. From Eq. (28),
it can be observed that:

x̄ j = ψ j,1η̄1 + ψ j,2η̄2 =
2∑

i=1

ψ j,i η̄i (38)

and, therefore, it is possible to obtain the response func-
tion for the j-th degree of freedom of the undamped
system as:

Vj =
2∑

i=1

ψ j,i H i (39)

By introducing the i-th modal frequency ratio as:

Ri = ω

�i
= 1

�i
(40)

it is possible to write Vj as:

Vj =
2∑

i=1

ψ j,i P̂i
R2
i

1 − R2
i

(41)

It is worth noting as the excitation vector p can
assume different forms if different loading configura-
tions are considered, e.g. when the harmonic excitation
is applied to the upper mass. This case is not accounted
in this section but it will be dealt with in Sects. 3 and
4. Let us introduce the modal weight:

�P, j i = ψ j,i P̂i R
2
i (42)

and denote the response functions of the i-th mode as:

vi = 1

1 − R2
i

(43)

It is then possible to rewrite the j-th response func-
tion as:

Vj =
2∑

i=1

�P, j ivi (44)

and, by introducing the matrix of the modal weights�P

and the vector vwhose components are vi , the response
vector as:

V = �Pv (45)

This notation can be particularly useful when dealing
with systems with a larger number of DOFs.

The response functions of a 2DOF systemunder har-
monic base excitation, observed on the lower and on the
upper mass, are obtained by substituting Eqs. (26) and
(37) into Eq. (41) and can be written, respectively, as:

V1 =
2∑

i=1

1

1 + γ ϕ2
i

(
Ri

r1

)2 1

1 − R2
i

(46)

and:

V2 =
2∑

i=1

ϕi

1 + γ ϕ2
i

(
Ri

r1

)2 1

1 − R2
i

(47)

2.4.2 Damping functions and results

In this study, it is proposed thatmodal superposition can
be used to express the damping functions of a MDOF
system.
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In a similar fashion as in Eq. (15), let us denote the
damping function of the i-th mode as:

ui = sin(π/Ri )

Ri [1 + cos(π/Ri )] (48)

Let us suppose that the damping function of a 2DOF
system with a ground-fixed wall contact on the j-th
mass can be written as:

Uj =
2∑

i=1

�F, j i ui (49)

where �F, j i is the friction modal weight relative to the
i-th mode, expressed as:

�F, j i = ψT
i eFψ j,i R

2
i (50)

and eF is a vector where only the j-th component is
different from zero and it is equal to 1. Comparing Eqs.
(42) and (50), it is possible to note as in the latter the
excitation vector P is replaced by eF . From Eq. (50), it
is easily obtained that:

�F, j i = ψ2
j,i R

2
i (51)

By introducing thematrix of the frictionmodalweights,
whose coefficients are �F, j i , the damping vector U of
a MDOF system can be written as:

U = �Fu (52)

The components Uj of such vector will indicate the
damping function that must be considered if a fixed-
wall contact is imposed on the j-th mass of the system.

An expression is proposed for the boundary between
continuous and stick-slip motion in the space r1-β.
Denoting with β j the friction ratio relative to a con-
tact between the mass m j and the wall, the boundary
can be written in a similar fashion to Eq. (13) as:

β j,lim =
√
√
√
√

V 2
j

U 2
j + (1/m̄ j )2

(53)

The term m̄ j refers to the second-order coefficient in
the non-dimensional governing equations in Eqs. (4)
and (5), i.e. m̄1 = r21 and m̄2 = γ r21 . The damping

function Uj can be rewritten, by substituting Eqs. (48)
and (51) into Eq. (49), as:

Uj =
2∑

i=1

ψ2
j,i R

2
i

sin(π/Ri )

Ri [1 + cos(π/Ri )] (54)

With respect to the system illustrated in Figs. 1a and
2a, where the contact occurs between the lower mass
( j = 1) and a fixed wall, the damping function will be
therefore expressed as:

U1 =
2∑

i=1

1

1 + γ ϕ2
i

(
Ri

r1

)2 sin(π/Ri )

Ri [1 + cos(π/Ri )] (55)

and, consequently, the boundary will be expressed as:

β1,lim =
√
√
√
√
√
√
√

V 2
1

U 2
1 +

(
1

r21

)2 (56)

The boundary obtained from Eq. (56) is represented
in Fig. 4 for different values of the mass and stiffness
ratios. In the figure, it is shown as this analytical curve
has an excellent agreementwith the results obtained via
numerical integration, using the approach described in
Sect. 4 for 0 ≤ r1 ≤ 2.5 and 0 ≤ β ≤ 1. Stick-
slip motion occurs also for low friction ratios when the
frequency ratio is small; furthermore, in the same fre-
quency range, the boundary shows an irregular pattern,
partially recalling the one observed in SDOF systems
(Fig. 3). Nevertheless, a main difference is that a peak
can always be observed in this range, specifically in
correspondence of the lowest natural frequency of the
system. Moving towards higher frequency ratios, it is
possible to observe a very thin grey region (more clearly
in Fig. 4a,d). This corresponds to an antiresonance of
the system, which can be observed in the lower mass
of a 2DOF system, independently of damping, at:

r1 =
√

κ

γ
(57)

At this frequency, in the presence of Coulomb damp-
ing, the friction prevents the system from exhibiting
any vibration in steady-state conditions; therefore, no
motion has been observed numerically. The right side
of the boundary reproduces the same pattern observed
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(a) (b)

(c) (d)

Fig. 4 Motion regimes of a 2DOF system under harmonic excitation with a Coulomb ground-fixed wall contact on the lower mass in
the parameter space r1-β. Coloured regions refer to the numerical results. Each figure corresponds to a different mass ratio (γ ) and
stiffness ratio (κ)

in SDOF systems, with a finite peak with β ∼= 0.8,
reached slightly before the second resonant frequency
ratio of the system, and then decreasing towards an
asymptotic value [10].

The same approach can also be applied to a 2DOF
system where the ground-fixed wall contact involves
the upper mass (Figs. 1b, 2b). In this case, the damping
function and the boundary condition can be written,
respectively, as:

U2 =
2∑

i=1

ϕ2
i

1 + γ ϕ2
i

(
Ri

r1

)2 sin(π/Ri )

Ri [1 + cos(π/Ri )] (58)

and:

β2,lim =
√
√
√
√
√
√
√

V 2
2

U 2
2 +

(
1

γ r21

)2 (59)
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(a) (b)

(c) (d)

Fig. 5 Motion regimes of a 2DOF system under harmonic excitation with a Coulomb ground-fixed wall contact on the upper mass in
the parameter space r1-β. Coloured regions refer to the numerical results. Each figure corresponds to a different mass ratio (γ ) and
stiffness ratio (κ)

This analytical function is shown in Fig. 5, where
it is compared with the numerical boundary between
continuous and stick-slip motion, showing also in this
case an excellent agreement. Particularly, the bound-
ary appears to increase from zero to a finite peak,
although not regularly at low frequencies. This peak
is located between the peak of the boundary between
motion and no motion regions (described in Sect. 2.5)
and the second natural frequency of the system. It is
also possible to observe as the frequency ratio of the
peak appears to be only weakly influenced by the mass
ratio. Finally, increasing r1 above the peak frequency
ratio, the boundary converges to zero. Some irregular-
ities in the agreement between analytical and numeri-
cal boundaries can be observed locally (for instance at
r ∼= 1.2 in Fig. 5d); this is due to the approximation
introduced by assuming S = 1, as specified in Sect.
2.3.

2.5 Condition for the presence of a no motion region
in 2DOF systems

In Fig. 5, numerical results revealed a large no motion
region, shown in grey.

As stated inSect. 2.3 for SDOFsystems, steady-state
response can be observed in Coulomb damped systems
only when the amplitude of the exciting force is larger
than the amplitude of the friction force. Specifically, in
MDOF systemswith a single source ofCoulombdamp-
ing, this condition must be verified on the mass directly
involved in the contact by comparing the amplitudes of
the friction force exerted by the fixed wall and of the
overall dynamic load acting on such mass when its dis-
placement and velocity are equal to zero. Therefore,
the conditions for steady motion between such mass
mi and the wall in contact can be found assuming that
the mass is perfectly fixed to the wall.
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For instance, when a friction contact between the
lowermass and thewall is considered (Fig. 2a), the only
force acting on m1, in addition to the friction force, is
the base excitation transmitted by the lower spring. As
the amplitude of the non-dimensional base motion and
the stiffness of this spring are both unitary, the motion
condition will be given, trivially, by β < 1, as observed
for SDOF systems.

Instead,when the contact occurs on the secondmass,
the only exciting force to be considered is the spring
force due to the displacement of the lower mass and
transmitted by the upper spring. Thus, the condition
for the presence of a steady motion is expressed by:

|κX1| > β (60)

The amplitude X1 of the lowermassmotion canbe eval-
uated by fixing the upper mass in the non-dimensional
system (Fig. 2b). In this case, the system reduces to a
SDOF, where the lower mass is attached to the ground
on either side, by springs of stiffness, respectively, 1
and κ . Therefore, its governing equation will be:

r21 x̄
′′
1 + (1 + κ)x̄1 = cos τ (61)

By imposing x̄1 = X1 cos τ , it is possible to write the
response amplitude as:

X1 = 1

1 + κ − r21
(62)

Substituting Eq. (62) into Eq. (60), it is possible to
rewrite the motion condition as:

β <
κ

|1 + κ − r21 | (63)

This analytical boundary is plotted in Fig. 5 and shows a
very good agreement with the boundary obtained from
the numerical integration. A first observation is that
this boundary is completely independent of the mass
ratio; this justifies also the already mentioned weak
dependence on γ shown by the peak of the boundary
between continuous and stick-slip regimes. It is pos-
sible to observe how the motion is allowed at r ∼= 0
for force ratios smaller than κ/(1 + κ). The bound-
ary increases monotonically until reaching an infinite
peak for r1 = √

1 + κ , which is, therefore, the only
frequency ratio for which motion is always allowed.

Table 1 Motion regimes of Coulomb damped 2DOF systems
with a ground-fixed wall configuration for different friction ratio
ranges

Contact Friction ratio range Regime

m1 0 ≤ β <

√
V 2
1

U2
1 + 1

r41

Continuous

√
V 2
1

U2
1 + 1

r41

≤ β < 1 Stick-slip

β ≥ 1 No motion

m2 0 ≤ β <

√
V 2
2

U2
2 + 1

γ 2r41

Continuous

√
V 2
2

U2
2 + 1

γ 2r41

≤ β < κ

|1+κ−r21 | Stick-slip

β ≥ κ

|1+κ−r21 | No motion

Finally, the boundary converges to zero at high frequen-
cies. It is worth observing that the several spikes shown
by the numerical results in Fig. 5 above the bound-
ary are due to residual transient motion not completely
decayed at the end of the time interval considered in
the numerical simulation, as underlined in Sect. 5.

The motion regimes scenario defined by the ana-
lytical boundaries found in this section for 2DOF sys-
temswith a ground-fixedwall Coulomb contact is sum-
marised in Table 1.

2.6 Boundaries for systems with more than two DOFs

The procedures described in Sects. 2.4 and 2.5 for
the analytical determination of the boundaries between
motion regimes for 2DOFsystemswith afixedCoulomb
contact can be extended to systems with a larger num-
ber of DOFs, maintaining the limitation that Coulomb
dampingmust be generated by a single contact between
one of the masses and the ground-fixed wall.

2.6.1 Governing equations

First of all, it is important to define the governing equa-
tions of a generic MDOF system consistently with the
formulation used for 2DOF systems so far. Consider
a NDOF system, made of N masses mi connected in
series by N springs of stiffness ki , which is subjected to
a monoharmonic excitation with driving frequency ω,
due to either a base motion or a direct mass excitation
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(Fig. 6a). If a friction contact is imposed between the
j-th mass and a fixed wall, it will be possible to write
the j-th governing equation of the system as:

m j ẍ j − k j x j−1

+(k j + k j+1)x j − k j+1x j+1 + Fsgn(ẋ j ) = p j

(64)

where x j−1 = 0 if j = 1 and x j+1 = k j+1 = 0 if
j = N . If present, the load k1y due to the base motion
must be included in the equation if j = 1. Equation
(64) can also be written in non-dimensional form as:

γ j r
2
1 x̄

′′
j − κ j x̄ j−1

+(κ j + κ j+1)x̄ j − κ j+1 x̄ j+1 + βsgn(x̄ ′
j ) = p̄ j

(65)

where the j-th mass ratio and the j-th stiffness ratio
are defined, respectively, as:

γ j = m j

m1
(66)

and:

κ j = k j
k1

(67)

The non-dimensional system described by Eq. (65) is
shown in Fig. 6b. It can be observed that the system is
completely described by 2N parameters: the frequency
ratio r1, the friction ratio β, the mass ratios γ2, ..., γN
and the stiffness ratios κ2, ..., κN . Trivially, γ1 = 1 and
κ1 = 1 by definition.

2.6.2 Boundary between continuous and stick-slip
regimes

Regarding the boundary between continuous and stick-
slip regimes, it is intuitive that the modal superposition
can be applied to any number of DOFs. According to
Eq. (65), the mass and the stiffness matrices will be,
respectively:

(a) (b)

Fig. 6 NDOFsystemunder harmonic excitationwith aCoulomb
ground-fixedwall contact on the j-thmass (a) and the correspon-
dent non-dimensional system (b)

M =

⎡

⎢
⎢
⎢
⎣

r21 0 . . . 0
0 γ2r21 . . . 0
...

...
...

...

0 0 . . . γNr21

⎤

⎥
⎥
⎥
⎦

(68)

and:

K =

⎡

⎢
⎢
⎢
⎣

1 + κ2 −κ2 0 . . . 0
−κ2 κ2 + κ3 −κ3 . . . 0

...
...

...
...

...

0 0 . . . −κN κN

⎤

⎥
⎥
⎥
⎦

(69)

By substituting these matrices into Eq. (22), it is possi-
ble to derive the N natural frequencies of the undamped
system and, from Eq. (21), its N mode shapes. Once
these quantities are determined, it is possible to fol-
low the remaining part of the procedure described in
Sect. 2.4, determining the response function Vj and the
damping function Uj for the j-th mass. The boundary
curve is finally obtained by substituting these values,
as well as posing m̄ j = γ j r21 ( j = 1, ..., N ), into Eq.
(53).
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(a) (b)

Fig. 7 Lower (a) and upper (b) subsystems for the evaluation
of the motion conditions for a NDOF system under harmonic
excitation with a Coulomb ground-fixed wall contact on the j-th
mass

2.6.3 Boundary between motion and no-motion
regimes

The determination of the boundary betweenmotion and
no motion regimes can be lead similarly to Sect. 2.5.
The first step consists in determining which dynamic
forces act on the mass in contact m j when it is fixed
at x̄ j = 0. The sum of these forces, which will be
compared with the friction force, can include, in gen-
eral, dynamic loads applied directly on the mass and
the spring forces due to the dynamic responses of the
masses m j−1 and m j+1. Particularly:

– a spring force ofmodule κ j X j−1 will be considered
if any source of excitation is found in the lower part
of the system (Fig. 7a);

– a spring force of module κ j+1X j+1 will be con-
sidered if any source of excitation is found in the
upper part of the system (Fig. 7b);

The second step consists in the evaluation of the
unknown response amplitudes X j−1 and/or X j+1,
which can be obtained by referring to the following
undamped subsystems:

– the response amplitude X j−1 can be evaluated from
the lower subsystem, which is composed of the j−1
masses located below themass in contactm j , while
such a mass is replaced by a fixed wall, as shown
in Fig. 7a;

(a) (b)

Fig. 8 5DOF system under harmonic excitation with a single
Coulomb ground-fixed wall contact on the fourth mass (a) and
on the second mass (b)

– the response amplitude X j+1 can be evaluated from
the upper subsystem shown in Fig. 7b, where the
N − j upper masses are instead considered.

These subsystems will be, in general, two undamped
MDOF systems and their dynamic response can be
determined analytically using standard approaches
(see, e.g. [29,30]).

These responses can be substituted into the motion
conditions obtained at the end of the first step, therefore
yielding thefinal formulation of themotion boundary. It
can be observed that the response amplitudes evaluated
from each of the subsystems will display infinite peaks
in correspondence of their natural frequencies and this
will affect the shape of the boundary: if the excitation
is below m j (such as a base motion), the boundary
between motion and no motion regimes will exhibit
j − 1 infinite peaks. Similarly, N − j infinite peaks
will be visualised if any dynamic force is acting on the
upper part of the system; finally, N − 1 peaks will be
found if both loading conditions occur simultaneously.
These infinite peaks imply that, at specific frequencies,
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steady-state motion will be observed in the contact for
any values of friction ratio.

2.6.4 Example: 5DOF systems with a ground-fixed
Coulomb contact

The procedure introduced for the analytical determi-
nation of the boundaries of motion regimes is applied
to a 5DOF system under harmonic base motion with a
Coulomb contact as an example of NDOF system with
N > 2.

Without loss of generality, let us consider a 5DOF
system where all the masses are equal to m and all the
springs have stiffness k, i.e. where all the stiffness and
mass ratios are unitary. A ground-fixed contact, char-
acterised by a friction force of amplitude F , is applied
to the mass m4 and the system is subjected to a base
motion y = Y cos(ωt), as shown in Fig. 8a.

The response and the damping functions V4 and U4

have been evaluated by applying the modal superposi-
tion procedure introduced in this section and the bound-
ary between continuous and stick-slip motion has been
obtained by substituting their values into Eq. (53) for
j = 4. Regarding the boundary between motion and
no motion regimes, it can be observed that the only
dynamic force acting on m4, when fixed at x4 = 0, is a
spring force of amplitude kX3. Therefore, the bound-
ary is obtained when F = kX3 or, non-dimensionally,
when β = X3. The value of X3 can be determined by
using standard modal analysis on the undamped sub-
system shown in Fig. 9a.

The so-determined boundaries are shown in Fig.
10a,where a comparisonwith the numerical boundaries
obtained with the approach introduced in Sect. 5 is also
achieved, exhibiting a very good overall agreement. As
already mentioned for other results, the small spikes
present in the grey area are due to a not completely
decayed transient motion in the numerical solutions,
while the presence of some local disagreement in the
boundary between continuous and stick-slip regimes
at r1 ∼= 1.5 is instead related to the approximation of
S = 1 (see Sect. 2.3).

As expected, the boundary between motion and no
motion regions exhibits three infinite peaks for r1 =
0.7654, r1 = 1.4142 and r1 = 1.8478. Such peaks
correspond to the resonances of the 3DOF undamped
subsystem in Fig. 9a.

If the friction contact is applied on the second mass,
as shown in Fig. 8b, the corresponding lower subsystem

(a) (b)

Fig. 9 Lower subsystems corresponding to the no-motion con-
figurations of the main systems in Fig. 8a (a) and in Fig. 8b (b)

has only one DOF (Fig. 9b) and a single infinite peak is
found (at r1 = √

2) in the motion boundary plotted in
Fig. 10b. In the figure, it is possible to observe a good
agreement between analytical and numerical results; all
the observations regarding the discrepancies between
these results made for the previous system also apply
to this configuration.

Finally, it can be observed in both cases that the
shape of the upper bound for non-sticking motion is
strongly affected by the presence of resonances in the
motion/no motion boundary and usually exhibits the
same number of major peaks; however, in all the cases
investigated for thefixed-wall configuration, their value
was always finite.

3 Base-fixed wall contacts

In this section, the analytical formulation of the bound-
aries achieved for MDOF systems with a ground-fixed
wall contact is extended to systems where a Coulomb
contact occurs between a mass and a wall moving
jointly with the base. As proposed in reference [10]
for SDOF systems, Den Hartog results [2] can be
extended to systems excited by joined base-wallmotion
if an appropriate reference system is chosen. The ana-
lytical bounds of the motion regimes for 2DOF sys-
tems with base-fixed wall contacts are derived in what
follows.
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(a) (b)

Fig. 10 Motion regimes of a 5DOF system under harmonic excitation with a single Coulomb ground-fixed wall contact on the fourth
mass (a) and on the second mass (b) in the parameter space r1-β, for mass ratios γ2 = γ3 = γ4 = γ5 = 1 and stiffness ratios
κ2 = κ3 = κ4 = κ5 = 1. Coloured regions refer to the numerical results

3.1 Governing equations and sticking conditions

Let us consider a 2DOF system consisting of two
masses m1 and m2 and two springs of stiffness k1 and
k2. The system is assumed to be excited by a harmonic
base motion y = Y cos(ωt) and a friction contact is
achieved between a moving wall jointed to the base
and either m1 (Fig. 11a) or m2 (Fig. 11b). Such a sys-
tem is governed by the equations:

m1 ẍ1 + (k1 + k2)x1

− k2x2 + Fsgn(ẋ1 − ẏ) = k1y (70a)

m2 ẍ2 − k2x1 + k2x2 = 0 (70b)

in the first configuration and by the equations:

m1 ẍ1 + (k1 + k2)x1 − k2x2 = k1y (71a)

m2 ẍ2 − k2x1 + k2x2 + Fsgn(ẋ2 − ẏ) = 0 (71b)

in the latter. In order to apply to this system the pro-
cedures described in Sect. 2, it is convenient to rewrite
Eqs. (70) and (71) in the same form as Eqs. (1) and
(2); this can be achieved by applying an appropriate
variable transformation.

Let us define the relative motions between either
mass m1 or m2, respectively, as:

z1 = x1 − y (72)

(a) (b)

Fig. 11 2DOF system under harmonic base excitation with a
Coulomb contact between a base-fixedwall and a the lowermass
or b the upper mass

and:

z2 = x2 − y (73)

. Substituting Eqs. (72) and (73) into Eqs. (70) and (71),
and after some algebraic manipulations, it is possible
to write:

m1 z̈1 + (k1 + k2)z1 − k2z2 + Fsgn(ż1) = k1r
2
1 y
(74a)

m2 z̈2 − k2z1 + k2z2 = k1γ r
2
1 y (74b)
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(a) (b)

Fig. 12 Equivalent system with a ground-fixed wall contact for
a 2DOF system with a base-fixed wall contact involving a the
lower mass or b the upper mass

(a) (b)

Fig. 13 Non-dimensional equivalent systemwith a ground-fixed
wall contact for a 2DOF system with a base-fixed wall contact
involving a the lower mass or b the upper mass

when the contact occurs between the base-jointed wall
and the lower mass and:

m1 z̈1 + (k1 + k2)z1 − k2z2 = k1r
2
1 y (75a)

m2 z̈2 − k2z1 + k2z2 + Fsgn(ż2) = k1γ r
2
1 y (75b)

when the upper mass is in contact.
Equations (74) and (75) are the governing equations

of the systems shown in Fig. 12a, b, which will be
defined equivalent systems of the systems introduced
in Fig. 11a, b. These 2DOF equivalent systems present

a ground-fixed wall contact and, therefore, the modal
superposition procedure can be applied as described
in Sect. 2.4. As it can be observed from Fig. 12a, b,
both masses are excited by equivalent harmonic forces
whose amplitudes are proportional to r21 ; therefore, the
dynamic load will increase significantly at high fre-
quency ratios, unlike the friction force, allowing the
presence of continuous motion also when high friction
ratios are considered. This result is in perfect agree-
ment with what was observed in [10] for Coulomb-
damped SDOF systems under harmonic joined base-
wall motion.

In order to apply themodal superposition procedure,
it is convenient to rewrite Eqs. (74) and (75) in a non-
dimensional form. Introducing the dimensionless state
variables:

z̄1 = z1
Y

z̄2 = z2
Y

(76)

and considering all the non-dimensional groups intro-
duced inSect. 2.1, it is possible towrite,with the respect
to the two different contact locations considered in this
section:

r21 z̄
′′
1 + (1 + κ)z̄1 − κ z̄2 + βsgn(z̄′1) = r21 cos τ (77a)

γ r21 z̄
′′
2 − κ z̄1 + κ z̄2 = γ r21 cos τ (77b)

and:

r21 z̄
′′
1 + (1 + κ)z̄1 − κ z̄2 = r21 cos τ (78a)

γ r21 z̄
′′
2 − κ z̄1 + κ z̄2 + βsgn(z̄′2) = γ r21 cos τ (78b)

Equations (77) and (78) are representative of the
non-dimensional equivalent systems shown in Fig. 13a,
b. Following the criteria detailed in Sect. 2.2, it is pos-
sible to derive from Eq. (77) the sticking conditions
needed for the numerical integration:

z̄′1 = 0 (79a)

|r21 cos τ − (1 + κ)z̄1 + κ z̄2| < β (79b)

Equation (79) can be rewritten in terms of x1 and x2 as:

x̄ ′
1 = − sin τ (80a)

|(1 + r21 ) cos τ − (1 + κ)z̄1 + κ z̄2| < β (80b)
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(a) (b)

(c) (d)

Fig. 14 Motion regimes of a 2DOF system under harmonic base excitation with a Coulomb contact between the lower mass and a
base-fixed wall in the parameter space r1-β. Coloured regions refer to the numerical results. Each figure corresponds to a different mass
ratio (γ ) and stiffness ratio (κ)

Similarly, the conditions for the configuration involv-
ing a friction contact on the upper mass will be:

x̄ ′
2 = − sin τ (81a)

|γ r21 cos τ − κ(x̄2 − x̄1)| < β (81b)

3.2 Boundary between continuous and stick-slip
regimes for 2DOF systems

The systems in Fig. 13a, b exhibit the same contact con-
figurations as the systems shown in Fig. 2a, b, which
have been referred to when introducing the modal
superposition procedure in Sect. 2.4. The only relevant
difference between these systems is found in the differ-
ent load configurations, as the equivalent systems con-
sidered here are subjected to dynamic forces directly
applied on the masses, rather than to base motion. Let
us then write the excitation vector for the current sys-

tems as:

p̄ = [
r21 cos τ γ r21 cos τ

]T
(82)

Substituting Equations (27) and (82) into Eq. (34), it is
possible to write the modal force vector as:

p̂ = r1 cos τ

[
1 + γ ϕ1

√

1 + γ ϕ2
1

1 + γ ϕ2
√

1 + γ ϕ2
2

]T

(83)

Therefore, considering Eq. (46), it is possible to write
the response functions for each mass of the equivalent
systems as:

Vz1 =
2∑

i=1

(1 + γ ϕi )r21
1 + γ ϕ2

i

(
Ri

r1

)2 1

1 − R2
i

(84)
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(a) (b)

(c) (d)

Fig. 15 Motion regimes of a 2DOF system under harmonic base excitation with a Coulomb contact between the upper mass and a
base-fixed wall in the parameter space r1-β. Coloured regions refer to the numerical results. Each figure corresponds to a different mass
ratio (γ ) and stiffness ratio (κ)

and:

Vz2 =
2∑

i=1

(1 + γ ϕi )ϕi r21
1 + γ ϕ2

i

(
Ri

r1

)2 1

1 − R2
i

(85)

Regarding the damping functions, as the contact con-
figurations and the friction forces are the same consid-
ered in Sect. 2, it is possible to write Uz1 = U1 and
Uz2 = U2, referring to Eqs. (55) and (58). Finally, the
boundaries between continuous and stick-slip regimes
are described, respectively, for the two cases, by Eqs.
(56) and (59) for Vj = Vz j and Uj = Uz j .

The analytical boundary between continuous and
stick-slip regimes obtained from such a procedure for
a 2DOF system with a contact between the lower mass
and the base-fixed wall is represented in Fig. 14 for
varying stiffness and mass ratios and it shows a good
agreement with the numerical results. The curve is split
into two parts by an antiresonance, which is further

described in Sect. 3.3. At low frequencies, the bound-
ary presents very small values of friction ratio until
reaching a first sharp peak in correspondence of the
lower natural frequency, while a second smoother peak
appears shortly before the antiresonance. In this fre-
quency range, some discrepancies between analytical
and numerical results can be observed and they are due
to the assumption of S = 1 (see Sect. 2.3). After the
antiresonance, the curve gradually increases to infinity;
therefore, it will always be possible to observe a con-
tinuous motion between mass and wall by increasing
the frequency ratio until a certain threshold value.

The analytical boundary between continuous and
stick-slip regimes for the contact configuration involv-
ing the upper mass is depicted in Fig. 15. It shows an
excellent agreement with the numerical results. The
boundary is very similar to the one shown for the pre-
vious configuration in Fig. 14, except for a few differ-
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ences, which will be described in more detail in the
following subsection.

3.3 Condition for the presence of a no motion region
in 2DOF systems

Both Figs. 14 and 15 highlight the presence of regions
where no relative motion was observed numerically
between the mass and the wall in contact in steady-
state conditions. This means that the mass involved
in the friction contact is stuck on the base-fixed wall
and, therefore, forced to move with the same harmonic
motion as the base. As specified in Sects. 2.3 and 2.5,
this eventuality occurs when the amplitude of the fric-
tion force acting on the mass in contact is larger than
the amplitude of the sum of the other forces acting on
such a mass when its relative position and velocity are
zero.

In order to determine the analytical formulation of
the boundary between motion and no-motion regions
in the case where the lower mass is in contact, let us
consider the non-dimensional equivalent system shown
in Fig. 13a. The non-frictional forces acting on such a
mass when it is still in z̄1 = 0 are the equivalent excit-
ing load r21 cos τ , due to the basemotion, and the spring
force κ z̄2, due to the motion of the upper mass. There-
fore, according to what previously stated, the motion
condition will be:

|r21 + κZ2| > β (86)

If the lower mass is fixed to the wall, the system in Fig.
13a will behave like a SDOF system governed by the
equation:

γ r21 z̄
′′
2 + κ z̄2 = γ r21 cos τ (87)

The amplitudeof the response to the excitationγ r21 cos τ

can be determined by imposing z̄2 = Z2 cos τ in the
above equation and it can be written as:

Z2 = γ r21
κ − γ r21

(88)

Substituting Eq. (88) into Eq. (86), the final motion
condition can be written as:

β <

∣
∣
∣
∣
κ(1 + γ )r21 − γ r41

κ − γ r21

∣
∣
∣
∣ (89)

The boundary described by Eq. (89) is represented
in Fig. 14 and shows a good agreement with numeri-
cal results. As shown in the figure, the boundary starts
from the origin of the parameter space and increases
until reaching an infinite peak at r1 = √

κ/γ . Further
increasing the frequency ratio, the boundary decreases
until the already mentioned antiresonance. The fre-
quency ratio of the antiresonance can be determined
as a root of the numerator of Eq. (89):

r1 =
√

κ(1 + γ )

γ
(90)

After the antiresonance, the boundary increases to
infinity, coherently with what has been observed for the
boundary between continuous and stick-slip motions.

The same procedure can be used also for determin-
ing the motion condition when the upper mass is in
contact with the moving wall. Referring to the non-
dimensional equivalent system in Fig. 13b, it is possi-
ble to observe that, when the upper mass is still, the
overall excitation on this mass is given by the sum of
the equivalent dynamic load γ r21 cos τ , due to the base
motion, and of the spring force κ z̄1, due to the motion
of the lower mass and transmitted by the spring of stiff-
ness κ . Thus, the motion condition can be written as:

|γ r21 + κZ1| > β (91)

When the upper mass is stuck, the system turns into
a SDOF system where the lower mass is connected to
a fixed wall by both springs, therefore with an overall
stiffness equal to 1 + κ . The governing equation will
be:

r21 z̄
′′
1 + (1 + κ)z̄1 = r21 cos τ (92)

and, therefore, the response amplitude will be:

Z1 = r21
1 + κ − r21

(93)
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IntroducingEq. (93) into Eq. (91), themotion condition
becomes:

β <

∣
∣
∣
∣
(γ + γ κ + κ)r21 − γ r41

1 + κ − r21

∣
∣
∣
∣ (94)

Equation (94) describes the boundary between no
motion and stick-slip regime in Fig. 15, which shows a
very good agreement with the corresponding numer-
ical boundary. The analytical curve shows a similar
behaviour to the one described for the previous con-
figuration with two main differences:

– the infinite peak is observed at r1 = √
1 + κ , which

is the root of the denominator of Eq. (94);
– the antiresonance is placed at:

r1 =
√

γ + γ κ + κ

γ
(95)

All the boundaries described in this section are sum-
marised in Table 2.

3.4 Boundaries for systems with more than two DOFs

The formulation of the boundaries among motion
regimes in the parameter space r1 −β can be extended
to joined base-wall excited systems with a larger num-
ber of DOFs, similarly to Sect. 2.6, if only one mass of
the system is rubbing against the moving wall.

Also for this contact configuration, a fundamental
step is the definition of a system of governing equations
for the MDOF system, expressed consistently with the
formulation used for 2DOF systems in Sect. 3.1. Let us
consider a harmonically excited NDOF system where
a friction contact is achieved between the massm j and
the wall. It is possible to write the governing equation
for the j-th DOF of the system as:

m j ẍ j − k j x j−1 + (k j + k j+1)x j

−k j+1x j+1 + Fsgn(ẋ j − ẏ) = 0 (96)

where x j−1 = 0 if j = 1 and x j+1 = k j+1 = 0 if
j = N . The RHS will be equal to k1y if j = 1. As
proposed in Sect. 3.1, it is convenient to introduce the
state variable z j = x j − y, so that Eq. (96) can be
rewritten as:

m j z̈ j − k j z j−1 + (k j + k j+1)z j

−k j+1z j+1 + Fsgn(ż j ) = k jr
2
j y (97)

or, in a dimensionless form, as:

γ j r
2
1 z̄

′′
j − κ j z̄ j−1 + (κ j + κ j+1)z̄ j

−κ j+1 z̄ j+1 + βsgn(z̄′j ) = γ j r
2
1 cos τ (98)

As it can be deduced comparing Eqs. (98) to (65), the
introduction of the coordinates z1, ..., zN allows the
representation of the system as a NDOF system with a
ground-fixed contact. Specifically, the mass and stiff-
ness matrices of the system will be the same as in Eqs.
(68) and (69). Therefore, all the considerations stated in
Sect. 2.6 apply. Particularly, it is worthwhile observing
that the joined base-wall excitation produces equivalent
dynamic loads equal to γi r21 cos τ on all the masses of
the system. This means that, unless the mass in contact
is placed at bottom ( j = 1) or the top of the system
( j = N ), both the lower and the upper undamped sub-
systemsmust be taken into account when following the
procedure described in Sect. 2.6.

4 Mass-fixed wall contacts

This section focuses on the formulation of the bound-
aries amongmotion regimes for 2DOF systemswhere a
Coulomb contact is achieved between the two masses,
in parallel with a spring. The analytical results found in
Sects. 2 and 3 can be extended also to this configuration
after finding a variable transformation that allows the
formulation of this problem in terms of an equivalent
2DOF system with a ground-fixed contact.

4.1 Generalities and sticking conditions

Let us consider a 2DOF system where the masses m1

andm2 are connected in parallel by a spring of stiffness
k2 and a Coulomb contact characterised by the friction
force F . The lower mass m1 is connected to the base
by a spring of stiffness k1; the system is excited by a
harmonic base motion y = Y cos(ωt) (Fig. 16a). The
governing equations of this system can be written as:

m1 ẍ1 + (k1 + k2)x1

− k2x2 + Fsgn(ẋ1 − ẋ2) = k1y (99a)

m2 ẍ2 − k2x1 + k2x2 + Fsgn(ẋ2 − ẋ1) = 0 (99b)

The dynamic behaviour of this system can be anal-
ysed by seeking a variables transformation allowing to
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Table 2 Motion regimes of
Coulomb damped 2DOF
systems with a base-fixed
wall configuration for
different friction ratio
ranges

Contact Friction ratio range Regime

m1 0 ≤ β <

√
V 2
1

U2
1 + 1

r41

Continuous

√
V 2
z1

U2
z1

+ 1
r41

≤ β <

∣
∣
∣
∣
κ(1+γ )r21−γ r41

κ−γ r21

∣
∣
∣
∣ Stick-slip

β ≥
∣
∣
∣
∣
κ(1+γ )r21−γ r41

κ−γ r21

∣
∣
∣
∣ No motion

m2 0 ≤ β <

√
V 2
2

U2
2 + 1

γ 2r41

Continuous

√
V 2
z2

U2
z2

+ 1
γ 2r41

≤ β <

∣
∣
∣
∣
(γ+γ κ+κ)r21−γ r41

1+κ−r21

∣
∣
∣
∣ Stick-slip

β ≥
∣
∣
∣
∣
(γ+γ κ+κ)r21−γ r41

1+κ−r21

∣
∣
∣
∣ No motion

(a) (b) (c)

Fig. 16 2DOF system under harmonic base excitation with a spring and a Coulomb contact in parallel between the masses (a), its
equivalent representation as a 2DOF system with a ground-fixed wall contact on the lower mass (b) and the non-dimensional system
corresponding to the latter (c)

rewrite Eq. (99) in the same form as Eq. (1). This would
allow to extend the results found for ground-fixed wall
contacts in Sect. 2.4 to the contact configuration inves-
tigated in this section.

The first step is the introduction of the state variable:

xd = x2 − x1 (100)

i.e. the relative displacement between the components
in contact. Multiplying Eq. (99a) by m2/m1 and sub-
tracting it from Eq. (99b), it is then possible to write:

m2 ẍd + k2

(

1 + m2

m1

)

xd

+F

(

1 + m2

m1

)

sgn(ẋd) = m2

m1
k1(x1 − y) (101)

and therefore:
m1m2

m1 + m2
ẍd + k2xd

+Fsgn(ẋd) = m2

m1 + m2
k1(x1 − y) (102)

Equation (102) partially recalls a result previously
described by Den Hartog. In fact, in reference [31],
he observes that a system composed by two masses
m1 and m2 connected in parallel by a spring k and a
Coulomb contact with friction force F , where a har-
monic motion x1 = X1 cos(ωt) is imposed on mass
m1, is equivalent to a SDOF system characterised by:
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– a mass
m1m2

m1 + m2
;

– a spring of stiffness k;
– a ground-fixed wall contact with friction force F;

– harmonic excitation of amplitude
m2

m1
k1x1.

Therefore, in Den Hartog’s system the motion x1 is
given a priori and not intended as a response, differ-
ently from what happens in the system described in
this section. Furthermore, Den Hartog’s system is not
connected to the ground, so it will exhibit only one
oscillating mode in addition to a rigid-body motion.
Conversely, the system in Fig. 16a is by all means a
2-DOF system, where both x1 and x2 are unknown, so
the problem cannot be reduced to the analysis of an
equivalent SDOF system.

Equation (102) also allows the definition of the stick-
ing conditions for this system, useful for the numerical
integration approach described in Sect. 4:

ẋd = 0 (103a)
∣
∣
∣
∣

m2

m1 + m2
k1(x1 − y) − k2xd

∣
∣
∣
∣ < F (103b)

or, in terms of x1 and x2:

ẋ2 = ẋ1 (104a)
∣
∣
∣
∣

(
m2

m1 + m2
k1 + k2

)

x1

− k2x2 − m2

m1 + m2
k1y

∣
∣
∣
∣ < F (104b)

4.2 Boundary between continuous and stick-slip
regimes

Let us introduce the coordinate xc of the centroid of the
system:

xc = m1x1 + m2x2
m1 + m2

(105)

and consider the sum of Eqs. (99a) and (99b):

m1 ẍ1 + m2 ẍ2 + k1(x1 − y) = 0 (106)

This can be rewritten as:

(m1 + m2)ẍc = −k1(x1 − y) (107)

As expected, the motion of the centroid of the system is
not influenced by either the friction force or the action
of the spring k2. By writing x1 and x2 in terms of the
new state coordinates xd and xc:

x1 = xc − m2

m1 + m2
xd (108a)

x2 = xc + m1

m1 + m2
xd (108b)

it is possible to remove x1 from Eqs. (101) and (107),
obtaining the following system of equations:

m1 ẍd +
(

m2

m1 + m2
k1 + m1 + m2

m2
k2

)

xd

− k1xc + m1 + m2

m2
Fsgn(ẋd) = −k1y (109a)

(m1 + m2)ẍc − m2

m1 + m2
k1xd + k1xc = k1y (109b)

Equation (109) provides a useful alternative descrip-
tion of the system in terms of the relative motion
between themasses and its centroid.However, although
the friction force is now present only in Eq. (109)a, this
systemdoes not accomplish the requirement of present-
ing the same form as Eq. (1); in fact, it does not describe
a 2DOF system.

It is possible to further transform Eq. (109) in order
to achieve this purpose. First of all, let us introduce the
constant:

G = m2

m1 + m2
= γ

1 + γ
(110)

in order to keep notation to its minimal. Eq. (109)
yields:

m1 ẍd +
(

Gk1 + k2
G

)

xd

− k1xc + F

G
sgn(ẋd) = −k1y (111a)

(m1 + m2)ẍc − Gk1xd + k1xc = k1y (111b)

Consider a new variable zc defined as:

zc = 1

G
(xc − y) (112)
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(a) (b)

(c) (d)

Fig. 17 Motion regimes of a 2DOF system under harmonic base excitation with a spring and a Coulomb contact in parallel between
the masses in the parameter space r1-β. Coloured regions refer to the numerical results. Each figure corresponds to a different mass
ratio (γ ) and stiffness ratio (κ)

By substituting Eq. (112) into Eq. (109), the system of
equations:

m1 ẍd +
(
k2
G

+ Gk1

)

xd

− Gk1zc + F

G
sgn(ẋd) = 0 (113a)

m2 z̈c − Gk1xd + Gk1zc =
(

1 + m2

m1

)

k1r
2
1 y (113b)

is obtained. Equation (113) describes the equivalent
2DOF system with a ground-fixed wall contact on the
lower mass shown in Fig. 16b.

Particularly, this system is excited by a harmonic
load (1+m2/m1)k1r21 y applied on the upper mass; the
amplitude of this force depends on the frequency ratio
and therefore, for a given system, it will grow when
the driving frequency is increased. It is convenient to
rewrite Eq. (113) in a non-dimensional form by using
the quantities described in Sect. 2.1 and introducing:

x̄d = xd
Y

z̄c = zc
Y

(114)

Eq. (113) will assume the form:

r21 x̄
′′
d +

(
κ

G
+ G

)

x̄d − Gz̄c + β

G
sgn(x̄ ′

d) = 0

(115a)

γ r21 z̄
′′
c − Gx̄d + Gz̄c = (1 + γ )r21 cos τ (115b)

These equations can be seen as the governing equations
of an equivalent non-dimensional system, shown inFig.
16c.

At this point, the procedure introduced in this paper
for the analytical determination of the boundaries of the
motion regime from the parameters of the system can
successfully be applied also to the system considered in
this section. The mass matrix of the system will have
the same expression as shown in Eq. (19), while the
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stiffness matrix will be:

K =
[ κ

G
+ G −G

−G G

]

(116)

It is possible to evaluate the natural frequencies �1,2

of the system from Eq. (21) and it can be verified that,
despite the different expression of the matrix K, they
will be the equal to the ones obtained in Eq. (22). The
mode shapes can be determined from the general eigen-
value problem indicated in Eq. (18), which yields:

(
κ

G
+ G − �

2
i r

2
1

)

ψ1,i − Gψ2,i = 0 (117a)

− Gψ1,i + (G − γ�
2
i r

2
1 )ψ2,i = 0 (117b)

The ratio between the components of eachmode shapes
can be determined from either Eq. (117a) or (117b).
Considering, for instance, Eq. (117b), the ratio will be:

ϕ̃i = ψi,2

ψi,1
= G

G − γ�
2
i r

2
1

= 1

1 − (1 + γ )�
2
i r

2
1

(118)

The formulation of ϕ̃1 and ϕ̃2 is different from the one
found in Eq. (24), but the mode vectors and the modal
matrix will maintain the same form described, respec-
tively, in Eqs. (26) and (27) for ϕ1 = ϕ̃1 and ϕ2 = ϕ̃2.
After introducing the transformation in modal coordi-
nates fromEq. (31), it is necessary to evaluate themodal
force, considering that the equivalent load shown in
Fig. 16c is applied to the upper mass and has a differ-
ent amplitude compared to the case studied in Sect. 2.
For this system, the applied force vector is:

p̄ = [
0 (1 + γ )r21

]T
(119)

By applying Eq. (34), the corresponding p̂ is found:

p̂ = (1 + γ )r1 cos τ

[
ϕ̃1

√

1 + γ ϕ̃2
1

ϕ̃2
√

1 + γ ϕ̃2
2

]T

(120)

Following the same steps done for evaluating V1 (in
Eq. (46)), the response function Vd , referred to the rel-

ative motion xd (i.e. the lower mass of the equivalent
system), can be obtained as:

Vd =
2∑

i=1

(1 + γ )ϕ̃i r21
1 + γ ϕ̃2

i

(
Ri

r1

)2 1

1 − R2
i

(121)

Similarly, the damping function can be obtained from
Eq. (54). As the equivalent system exhibits the same
natural frequencies as the systems studied in Sect. 2
and a formally identical modal matrix, the damping
function will have the same form as the function U1

described in Eq. (55) for the case of a friction contact
applied on the lower mass:

Ud =
2∑

i=1

1

1 + γ ϕ̃2
i

(
Ri

r1

)2 sin(π/Ri )

Ri [1 + cos(π/Ri )] (122)

In conclusion, the boundary curve between continuous
and stick-slip regimes in the r1-β parameter space can
be written as:

βd,lim = Gβ1,lim = γ

1 + γ

√
√
√
√
√
√
√

V 2
d

U 2
d +

(
1

r21

)2 (123)

where the expression of β1,lim obtained in Eq. (56) is
multiplied byG since the amplitude of the friction force
acting in the equivalent system is β/G.

The boundary curve described by Eq. (123) is shown
in Fig. 17 for different values of mass and stiffness
ratios and agreeswell with the boundary highlighted by
numerical results. Starting from low frequencies, con-
tinuous motion is possible only for very small friction
ratios; a very sharp peak can be observed in correspon-
dence of the first natural frequency of the system. After
the peak, the boundary increases reaching a smoother
second peak, whose value is always smaller than 1 in
the observed cases.

4.3 Condition for the presence of a no motion region

In Fig. 17, it is shown clearly that it is not always possi-
ble to observe a relative motion between m1 and m2 as
the parameters of system are varied. In the absence of
such motion, the system will exhibit a stuck configura-
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tion, reducing to an undamped SDOF system of mass
m1 + m2 and spring k1.

The condition for which the relative motion is pos-
sible can be described analytically by applying the pro-
cedure introduced in Sects. 2.5 and 3.3 to the non-
dimensional system. Referring to Fig. 16c, it is pos-
sible to observe that the only exciting force acting on
the lowermasswhen it is fixed, excluding friction force,
is the spring force due to the motion of the upper mass.
Being G the stiffness of the upper spring and β/G the
intensity of the friction force, the motion condition will
be:

|GZc| >
β

G
(124)

which can be rewritten as:

γ 2

(1 + γ )2
|Zc| > β (125)

In order to determine Zc, it must be considered that,
when the lower mass is stuck, the upper spring and the
upper mass behave like a SDOF system excited by the
equivalent force (1+γ )r21 cos τ due to the basemotion.
Thus, the governing equation of this system will be:

γ r21 z̄
′′
c + Gz̄c = (1 + γ )r21 cos τ (126)

and the amplitude of the response, obtained by substi-
tuting z̄c = Zc cos τ , can be written as:

Zc = (1 + γ )r21
G − γ r21

(127)

Substituting Eqs. (110) and (127) into Eq. (125), and
after some algebraic manipulations, the motion condi-
tion can be finally expressed as:

β <
γ r21

|1 − (1 + γ )r21 | (128)

This condition describes the boundary between the
stick-slip region (in orange) and the no motion region
(in grey) in Fig. 17. This boundary starts from the origin
of the parameter space and quasi-static motion can be
observed only for very small values of the friction ratio.
As it can be deduced also from Eq. (128), an infinite

Table 3 Motion regimes of Coulomb damped 2DOF systems
with a mass-fixed wall configuration for different friction ratio
ranges

Friction ratio range Regime

0 ≤ β <
γ

1 + γ

√
√
√
√
√

V 2
d

U2
d + 1

r41

Continuous

γ

1 + γ

√
√
√
√
√

V 2
d

U2
d + 1

r41

≤ β <
γ r21

|1 − (1 + γ )r21 | Stick-slip

β ≥ γ r21
|1 − (1 + γ )r21 | No motion

peak is reached at:

r1 =
√

1

1 + γ
(129)

After the peak, the boundary decreases until reaching
an asymptotic value given by:

β∞ = γ

1 + γ
(130)

when r1 → +∞. Finally, it is interesting to observe
that themotion condition is independent of the stiffness
ratio.

Themotion regime scenario described in this section
is summarised in Table 3.

5 Numerical approach

In the previous sections, numerical results have been
used for validating the analytical expressions of the
bounds among motion regimes in MDOF systems with
different configurations of Coulomb contacts. This sec-
tion focuses on the description of the numerical meth-
ods used for this purpose.

The numerical integration of the governing equa-
tions of the MDOF systems analysed in this paper
can be performed using standard numerical solvers as
long as the solution is continuous; however, particu-
lar care must be taken when sticking phases appear in
the motion. In fact, in stick-slip regime, the transitions
between sliding and sticking phases cause sudden vari-
ations in the solution, which cannot be easily dealt with
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by most numerical methods. Stiff solvers are usually
implemented in order to address this particular numer-
ical problem (see, e.g. [32]).

Nevertheless, in reference [33], it was shown that
better performances in terms of accuracy and compu-
tational cost can be achieved for stick-slip motion in
SDOF systems if a standard nonstiff solver is used for
the integration during the sliding stages and explicit
conditions are set a priori to account for the transi-
tions between the sliding and the sticking regimes. This
approach has been extended in this paper to account for
MDOF systems and is detailed below, for simplicity, in
the 2DOF case. However, the same procedure can also
be used to account for systems with a larger number of
DOFs.

In the presence of either ground-fixed or base-fixed
contacts, only the mass in contact will be stuck on the
wall. In fact, the remaining mass will keep oscillat-
ing and, therefore, also during the sticking phases, its
motion will not be known a priori. The integration pro-
cess can be summarised as follows.

– During the sliding phases, both masses are oscil-
lating continuously and the solution is nonstiff, so
the governing equations are integrated by using
a variable-step Runge–Kutta (4,5) method, imple-
mented in the Matlab function ode45 [34].

– The integration is stopped when the relative veloc-
ity between mass and wall, i.e. the argument of
the sgn function, is equal to zero. If also the sec-
ond sticking condition, defined in Eqs.(11b) and
(12b) for ground-fixed contacts and in Eqs.(80b)
and (81b) for base-fixed contacts, is verified, a
sticking phasewill start; otherwise, a further sliding
phase will follow.

– During the sticking phases, the mass in contact will
move jointly to the wall, so its displacement x̄s and
its velocity x̄ ′

s are imposed. Specifically, if the stop
occurs at time τ0 and at the position x̄s0 , the imposed
values will be:

x̄s = x̄s0 x̄ ′
s = 0 (131)

for a stuck ground-fixed contact and:

x̄s = x̄s0−cos τ0+cos τ x̄ ′
s = − sin τ (132)

for a stuck base-fixed contact.

– At the same time, numerical integration is per-
formed for the mass not in contact, whose motion
represents the only unconstrained degree of free-
dom of the system at this stage. Therefore, the
dynamic behaviour of the system will be described
by a single equation. For instance, if the case of a
ground-fixed contact on the lower mass is consid-
ered, the governing equation is obtained by posing
x̄1 = x̄s . Substituting Eq. (131) into Eq. (4b), it can
be written as:

γ r21 x̄
′′
2 + κ x̄2 = κ x̄s0 (133)

All the other configurations analysed in this paper
can be dealt with similarly.

– The sticking phasewill be stoppedwhen the second
sticking condition is no longer verified, i.e. when
the resultant dynamic load overcomes the friction
force.

In mass-fixed contacts, the sticking occurs between
the masses so this case needs to be addressed dif-
ferently. As specified in Sect. 4.3, when the sticking
occurs, i.e. when the sticking conditions expressed in
Eq. (104), the system will transition to a stuck con-
figuration, behaving as an undamped SDOF system of
mass m1 +m2 and stiffness k1. Indicating with x̄d0 the
relative displacement between the two masses when
the stop occurs and referring to Eq. (109b), it is pos-
sible to write the only governing equation needed for
describing the dynamic behaviour of the system in a
stuck configuration as:

(1 + γ )r21 x̄
′′
c + x̄c = cos τ + Gx̄d0 (134)

The position of the two masses during this stage will
be determined, from Eq. (108), as:

x̄1 = x̄c − Gx̄d0 (135a)

x̄2 = x̄c + (1 − G)x̄d0 (135b)

In this paper, each integration, for varying r1, β, γ
and κ parameters, has been performed for 100 cycles
of base motion, aiming to determine the motion regime
in steady-state conditions. For almost all the configu-
ration of these parameters, no change of regime could
be observed with longer durations. A few exceptions
are described in the literature, regarding transitions

123



62 L. Marino, A. Cicirello

between continuous and stick-slip regimes after a con-
siderable number of motion cycles (see, e.g. reference
[6]), but they were not considered relevant within the
purposes of this numerical analysis, as limited to a few
particular sets of parameters. As already mentioned in
Sect. 2.5, residual motion in the friction contacts was
sometimes observed after 100 excitation cycles above
the boundary between stick-slip and motion regimes;
this resulted in the small spikes observable in most of
the graphical representations of the parameter space
r1 −β presented in this paper. Nevertheless, the ampli-
tude of such residual motions was found to be negligi-
ble in most cases. During the integration process, the
absolute and relative tolerances were set, respectively,
to 10−6 and 10−12.

6 Concluding remarks

The analytical boundaries of motion regimes for three
types of MDOF systems with a Coulomb friction con-
tact have been investigated. Specifically, the boundaries
among regions of: (1) continuous motion; (2) stick-slip
motion; (3) no motion have been investigated in a non-
dimensional parameter space in terms of the frequency
ratio and the friction ratio.

The boundaries were evaluated in closed-form and
validated numerically for 2DOF systems with a (i)
ground-fixed, (ii) base-fixed and (iii) mass-fixed wall
contact. A procedure for extending these results to sys-
tems with more than two DOFs was also proposed for
the cases (i) and (ii), with a further numerical valida-
tion for the case of a 5DOF system with a ground-fixed
wall contact.

The approach for the definition of the bound-
ary between continuous (non-sticking) and stick-slip
regimes was directly achieved for 2DOF systems with
a fixed-wall Coulomb contact on either the upper or
the lower mass by considering the superposition of the
modal behaviour and applying Den Hartog’s approach
[2] for determining the response of each mode. Differ-
ently, the non-sticking conditions for 2DOF systems
presenting the contact configurations (ii) and (iii) were
obtained by reducing these systems to equivalent con-
figurations with a ground-fixed wall contact. This was
achieved by introducing appropriate variable transfor-
mations in the governing equation of such systems.

An ad hoc procedurewas introduced for the determi-
nation of the boundary between motion and no motion

regions, based on the principle that sliding will occur in
a friction joint only if the overall dynamic load applied
on the components in contact has a larger amplitude
than the friction force.

An excellent agreement was observed when com-
paring the analytical and the numerical boundaries for
2DOF systems in all the cases analysed. The inves-
tigation of the parameter space highlighted how the
shape and the extension of regions associated with the
three motion regimes change significantly when differ-
ent mass and stiffness ratios, wall motions or masses in
contact are considered. Itwas observed that, for particu-
lar configurations and parameters, the boundary curves
can be very close or overlap, generating regions where
different motion regimes can be verified if small vari-
ations are introduced in either the friction or the excit-
ing forces. This dynamic behaviour is usually unsuit-
able for structural design. Finally, it was shown that
the boundary between motion and no motion regions
is independent of: (i) the mass ratio for a ground-fixed
wall contact and (ii) the stiffness ratio when the contact
occurs between the two masses.

Overall, the presented results give information rel-
evant to the design and the analysis of friction joints
in engineering structures. Current work on this topic
is focusing on the analysis of the dynamic response
features of MDOF systems with a Coulomb contact.
Moreover, future work will focus on (i) the determina-
tion of motion regimes for discrete systems with more
than one friction contact and (ii) the extension of this
approach to continuous multi-modal structures.
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