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Abstract Tiltrotor aircraft are growing in preva-

lence due to the usefulness of their unique flight

envelope. However, aeroelastic stability—particularly

whirl flutter stability—is a major design influence that

demands accurate prediction. Several nonlinearities

that may be present in tiltrotor systems, such as

freeplay, are often neglected for simplicity, either in

the modelling or the stability analysis. However, the

effects of such nonlinearities can be significant,

sometimes even invalidating the stability predictions

from linear analysis methods. Freeplay is a nonlinear-

ity that may arise in tiltrotor nacelle rotation actuators

due to the tension–compression loading cycles they

undergo. This paper investigates the effect of a

freeplay structural nonlinearity in the nacelle pitch

degree of freedom. Two rotor-nacelle models of

contrasting complexity are studied: one represents

classical whirl flutter (propellers) and the other

captures the main effects of tiltrotor aeroelasticity

(proprotors). The manifestation of the freeplay in the

systems’ dynamical behaviour is mapped out using

Continuation and Bifurcation Methods, and

consequently the change in the stability boundary is

quantified. Furthermore, the effects on freeplay

behaviour of (a) model complexity and (b) deadband

edge sharpness are studied. Ultimately, the freeplay

nonlinearity is shown to have a complex effect on the

dynamics of both systems, even creating the possibil-

ity of whirl flutter in parameter ranges that linear

analysis methods predict to be stable. While the size of

this additional whirl flutter region is finite and

bounded for the basic model, it is unbounded for the

higher complexity model.

Keywords Whirl flutter � Continuation and

bifurcation methods � Nonlinear aeroelasticity

Abbreviations

VTOL Vertical Take-Off and Landing

V/STOL Vertical and/or Short Take-Off and

Landing

CBM Continuation and Bifurcation Methods

LCO Limit Cycle Oscillation

DoF Degree of Freedom

1 Introduction

Tiltrotor aircraft such as the XV-15 shown in Fig. 1

aim to combine the speed and range of turboprop

aircraft with the VTOL capabilities of helicopters.
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This relatively large flight envelope makes them

highly versatile and consequently they are attractive

to both civil and military operators. It is in increasing

their maximum cruising speed that the aeroelastic

instability known as whirl flutter is encountered.

Whirl flutter affects propellers or rotors mounted on

flexible structures. It is caused by the interaction of the

wing’s elasticity, gyroscopic moments acting on the

rotor as a whole and aerodynamic forces and moments

acting on the rotor disc. Motion-dependent in-plane

forces are the most significant contributor to the

instability [2]. The physical origin is typically the

coupling between the wing torsional motion and rotor

in-plane forces [3]. Additionally, these in-plane forces

may destabilise the whole aircraft’s short period flight

modes [4]. From the designer’s perspective, an

aircraft’s whirl flutter stability is a function of its

various physical properties, such as the damping and

stiffness of various structural components or the

placement of wing modal frequencies relative to one

another. However, from a pilot’s perspective, it is

encountered at or beyond a certain onset speed, when

the damping ratio of one or more whirl flutter modes

becomes negative.

In its canonical form, the instability is usually

referred to as ‘‘propeller whirl flutter’’ or ‘‘classical

whirl flutter’’. This usage strictly refers to a model of

the form first derived in [5]: a basic system with rigid

blades and a rigid shaft, all of which is able to pitch

and yaw elastically about an effective pivot point.

Although turboprop aircraft such as the Electra were

the context for the first (classical) whirl flutter studies,

the search for feasible high-speed V/STOL concepts

had by that time recognised the promise of the tiltrotor

configuration, and the aeroelastic properties of tiltro-

tor-like V/STOL configurations were considered as

early as 1963 [6]. However, with slender, highly

twisted and flexible blades and heavy engine nacelles

mounted upon wingtips to provide clearance of the

long blades from the fuselage, tiltrotors are promi-

nently vulnerable to whirl flutter. The dynamics of a

tiltrotor system—with flapping blades and a flexible

wing—are more complex than the classical model. For

instance, the manner in which the precession-gener-

ated aerodynamic loads act on the pylon/wing is

significantly different [7] to the classical case. The

phenomenon limits the performance of tiltrotor air-

craft; it either imposes a direct limit on the maximum

safe cruise speed, or the increased stiffness (and

therefore thickness) of the wings necessary to guar-

antee aeroelastic stability up to a certain design speed

results in reduced aerodynamic efficiency [8].

Several lines of research have been well explored in

efforts to delay the onset airspeed of whirl flutter in

tiltrotors. Active control has been applied to the

proprotor swashplate and to various aerodynamic

surfaces, while passive measures such as aeroelastic

tailoring or installing winglets constitute design

refinements that act against physical drivers of the

whirl flutter instability. Furthermore, at the heart of

any whirl flutter research lies the matter of accurate

prediction, and to this end, dedicated research has been

conducted, broadly focusing on closing gaps between

the predictions of various tools and their experiment

equivalents.

The vast majority of the available literature is

limited in its treatment of nonlinearities present in real

tiltrotor aircraft. In many cases, available studies

restricted the modelling of the structural stiffness to

linear approximations, which is contingent on the

assumption of small deformations. Where nonlinear

structural stiffnesses were used, linear stability anal-

ysis methods were ultimately employed once lin-

earization about a nonlinear trim point had been

obtained. Park et al. investigated whirl flutter with a

nonlinear structural model [9], though the focus of the

paper was an overall design optimization framework

as opposed to impacts on the whirl flutter predictions

made by using nonlinear elements in the model.

Additionally, whirl flutter stability analysis in Park’s

work was conducted using time-domain methods: a

simulation was conducted for each case under exam-

ination to see if whirl flutter was encountered.

Similarly, an investigation by Janetzke et al. [10]

used nonlinear aerodynamic models adapted from

Fig. 1 XV-15 tiltrotor aircraft [1]
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aerofoil data, though the structural aspects of the

model did not appear to have benefitted from the same

approach.

However, nonlinearities of various types can have a

significant impact on system behaviour, as has been

evident in a number of works. Masarati et al. [11]

showed within a tiltrotor context that deformability

nonlinearities within the blades can have effects that

manifest in the overall system stability. Krueger [12]

showed that differences in the dynamic behaviour of a

rotor between windmilling and thrust mode can arise

from nonlinearities introduced by the influence of the

drivetrain such as freeplay and backlash. In general,

limit cycle oscillations (LCOs) are necessarily non-

linear phenomena and are commonly observed in

practical aeroelastic contexts. Their study in compu-

tational works is not possible without consideration of

the nonlinearities that give rise to their existence, such

as Gandhi and Chopra’s work on an elastomeric lag

damper that combats air and ground resonance in a

bearingless helicopter main rotor [13], which models

the damper as a nonlinear spring in series with a

Kelvin chain to permit the prediction of LCOs. The

consideration of nonlinearities is therefore key for

aeroelastic study.

A prolific source of nonlinearity in tiltrotors is their

structure. Their material properties may be non-

uniform, and any property anisotropy may also

introduce nonlinearity. Other specific sources of

structural nonlinearities in a tiltrotor rotor-nacelle

system may include the deformability of the rotor

blades or joint deadband [11] or the drivetrain [12] as

previously mentioned. The gimbal may itself be a

source of structural nonlinearity if elastomeric mate-

rials are used therein to provide elastic restraint.

Structural freeplay—a stiffness nonlinearity where a

deadband of highly reduced or zero stiffness exists

around an undeformed equilibrium position—may

exist at hinges and other mechanical interfaces [14], in

addition to backlash and saturation nonlinearities. It is

only outside of this deadband region that appreciable

structural restoring forces act [15]. A typical impact of

freeplay in aerospace systems is to shrink stability

envelopes. For example, Lee and Tron [16] demon-

strated that the existence of freeplay in a control

surface led to a significantly reduced flutter onset

speed. This ability of freeplay to prematurely induce

flutter in this manner has been long known, after it was

described definitively by Woolston [17] in the 1950s.

Other aerospace contexts with similarly reduced

instability boundaries include landing gear shimmy

[14], flutter of wing-mounted stores [18] and freeplay-

induced oscillations in helicopter pitch-links [24].

Freeplay is well known to arise gradually in mechan-

ical systems due to ordinary wear, though structural

damage may cause freeplay deadbands to appear

instantly. Additionally, freeplay oscillations them-

selves may directly cause the deadband to grow [19].

Exemplified by Breitbach [20], a significant body

exists of nonlinear aeroelastic research by a number of

authors into basic systems such as pitch-plunge

models. Nonlinearity types are categorised and their

respective detrimental impacts on stability character-

istics are shown in isolation. However, tiltrotor

aeroelastic systems have not received such treatment.

In order to fulfil their flight envelope, tiltrotor

aircraft employ nacelle tilting actuators. These actu-

ators are able to rotate each nacelle to any point

between horizontal and vertical, and hold the nacelle

still. The two-stage telescopic ballscrew design that is

typically employed [21] undergoes a range of com-

pressive and tensile loads within one operating cycle.

Over time, wear of the lug end that attaches to the

nacelle may cause the whole assembly to develop a

degree of freeplay. The same effect could also be

created through wear or damage of the trunnions that

allow the actuator to fit into the wing end via split

spindle arms. In view of freeplay’s known role in the

premature onset of aeroelastic oscillations, its pres-

ence in the nacelle pitch of tiltrotors, affecting whirl

flutter stability characteristics, is therefore a plausible

eventuality worthy of investigation. Furthermore,

tiltrotor nacelles with their tilting systems are in some

respects counterparts to wing control surfaces with

their actuation mechanisms. However, the investiga-

tion of freeplay in tiltrotor-nacelle tilting mechanisms

has not been found in existing literature.

Regardless of what measures are taken to delay the

onset airspeed of whirl flutter, nonlinearities in the

system can make linear prediction of this speed

inaccurate through the creation of whirl flutter solution

branches that can exist in supposedly stable parameter

regions. Compared to the aforementioned linear

stability analysis methods, continuation and bifurca-

tion methods (CBM) are much better suited to the

stability analysis of nonlinear systems due to their

output of a complete stability ‘‘picture’’ of the system.

However, CBM is still in the process of proliferation

123

Stability analysis of whirl flutter in rotor-nacelle systems with freeplay nonlinearity 67



within the field of helicopter dynamics and as a result

their application has so far been limited to a small

number of problems [22], such as flight mechanics,

ground resonance and rotor vortex ring state. Their

inclusion in rotary wing studies is steadily becoming

more prevalent as they are powerful when applied to

problems such as the identification of instability

scenarios of rotor blades [23]. Continuation methods

were used in the AW159/Wildcat Release To Service

military certification document to assess the nonlinear

dynamic behaviour of the tail rotor [24].

A significant opening still exists for the application

of CBM to tiltrotor whirl flutter. Whirl flutter requires

analysis methods that respect its intrinsic nonlinear-

ities. However, much of the foregoing literature has

either underestimated the role of nonlinearities in

whirl flutter in its modelling or prevented the full

discovery of their impacts through insufficient stabil-

ity analyses. Eigen analysis of equilibria ignores the

possibility of whirl flutter solutions coexisting with

other solutions. Multibody approaches such as Masar-

ati et al. [11] or Krueger [12] do well to model

nonlinearities although they rely on time-domain

simulations for their stability analyses, which can be

costly. Furthermore, the discoverability of whirl flutter

solutions is not always guaranteed as the simulation’s

initial conditions may be outside of a solution’s basin

of attraction if they are selected arbitrarily. Further-

more, if multiple solutions coexist, different initial

conditions are required to find each solution. Time

marching methods, when applied to high-fidelity

multibody formulations, are able to find some solu-

tions, though others—which may be unstable but still

of relevance from a design perspective—may only be

found by enhanced analytical processes, such as CBM.

Some comprehensive analyses also rely on time-

domain stability analysis and other methods grounded

in linear systems theory, such as eigen analysis (as

used by Acree [25]) or the Prony method (also used by

Masarati et al. [11]), which extracts modal damping

ratios from system time histories. Considering the use

of CBM applied to low-order dynamical models, when

compared to large, high-fidelity models used by

comprehensive solvers, attention is drawn to the

trade-off between the different kinds of insight that

are available. While comprehensive models may fail

to detect some whirl flutter behaviours, as mentioned

previously, they will likely allow more accurate

prediction of some dynamics due to their more precise

and complete representation of the physical phenom-

ena present in the system. While CBM is highly

efficient in revealing solution branches, high-fidelity

models may well be more suitable for the detailed

study of known behaviours. By combining compre-

hensive analysis strategies operating on high-fidelity

models with the CBM analysis laid out in this work, a

comprehensive understanding of the stability of

tiltrotor dynamical systems may be achieved.

Conversely, dedicated research investigating the

aeroelastic impacts of nonlinearities such as freeplay

do not have tiltrotor systems as their context. The body

of such research, typified by such works as Dowell

et al. [26] and Price et al. [27], generally uses simple

systems such as pitch-plunge 2D aerofoils that bear no

resemblance to tiltrotor systems. However, the works

make use of several analysis methods that are highly

suitable for the nonlinear results concerned, such as

CBM and Poincaré sections. This article shows that

applying similar methods to the tiltrotor whirl flutter

problem can give powerful insight beyond existing

approaches.

The research increment provided by this article is to

investigate the effect of a freeplay nonlinearity on the

whirl flutter stability characteristics of tiltrotor aeroe-

lastic systems. There are three main research objec-

tives of this investigation: (1) to establish how the

presence of freeplay alters the whirl flutter behaviour

over a range of design parameters; (2) to assess the

effect of system complexity on the freeplay-induced

behaviour alterations by considering two models of

contrasting complexity; and (3) to investigate the

effect of deadband edge sharpness on the predicted

behaviour. The alterations to the systems’ dynamical

behaviour are found by using CBM to conduct

analysis of two rotor-nacelle models. Of the two

models considered, the basic model depicts classical

whirl flutter, which in the present day pertains to

propellers on turboprop aircraft or more propeller-like

designs on some future tiltrotor aircraft, while the

more advanced gimballed hub model depicts tiltrotor

aeroelasticity, which pertains to larger proprotors and

includes several distinguishing features over the

classical case such as blade and wing flexibility. The

models are adopted from existing literature and have

each formed the basis of several well-known studies.

Their respective equations of motion and parameter

values are publicly available and were implemented

directly in MATLAB. CBM is selected for obtaining
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results as it enables comprehensive exploration of a

range of nonlinear system steady-state behaviours,

while identifying the bifurcations that interlink the

branches of various solution types. The authors have

previously used CBM to explore the effects of

polynomial stiffness nonlinearities on the whirl flutter

stability of a basic rotor-nacelle system [28, 29], and a

higher complexity gimballed rotor-wing model [30].

In all cases, the effects of the nonlinearities were

complex, though a recurring finding was the possibil-

ity of flutter behaviour when linear analysis predicted

stability. Polynomial stiffness is a smooth nonlinearity

that can provide a better representation than linear

expressions of stiffness profiles over large deforma-

tions. It is, however, completely distinct from free-

play, which is a non-smooth nonlinearity that arises

inherently in mechanical interfaces and joints, and is

exacerbated by cyclic loading. A preliminary inves-

tigation of the effects of freeplay on the aforemen-

tioned basic model was presented in [31]. The work

constitutes initial exploratory research and motivates a

more systematic and structured analysis which is

conducted in this work. Crucially, [31] suggested that

model complexity was an axis of investigation that

could provide an understanding of the effects of

freeplay in tiltrotor aeroelastic systems. Although the

basic model’s stability boundary was redrawn to take

account of the whirl flutter behaviours found by CBM,

it is, however, only in this article that both the basic

model and the gimballed hub model are analysed, and

in greater depth: the newly presented analyses of the

gimballed hub model are substantially more compre-

hensive. Furthermore, the effect of the freeplay on the

gimballed hub model’s stability boundary is presented

in this work, and a summarising discussion of the

implications for tiltrotor design is a further contribu-

tion of this paper.

The models are presented and described in Sect. 2.

The original formulations as they appear in their

respective original literature are given, followed by

details of the freeplay adaptation made for this work.

Section 3 describes the stability analysis methods

used, and these are applied to the linear and nonlinear

models as appropriate in Sect. 4. First, the linear

versions of each model are treated with linear stability

analysis to establish their baseline stability bound-

aries. CBM is then applied to the linear version of the

basic model to illustrate the link between linear/eigen

analysis and CBM. Freeplay is then introduced to both

models and bifurcation diagrams are generated for a

variety of parameter value cases for each. The stability

boundaries are revised where possible to summarise

the impact of the freeplay nonlinearity.

2 Whirl flutter models

Two models of contrasting complexity were used for

the present research. To illustrate the influence of

freeplay on classical whirl flutter, a basic 2-DoFmodel

given by Bielawa [32] adapted from an original

formulation by Reed [33] was used. For comparison, a

more advanced 9-DoF model formulated by Johnson

[34] was also used. This model resembles real tiltrotor

rotor-nacelle systems more closely and features a

gimballed hub, rotor blade dynamics and wing degrees

of freedom.

Both models (as originally presented) are linear in

nature and can therefore be written in the form

M €Xþ C _XþKX ¼ 0 ð1Þ

where M is the mass matrix, C is the damping matrix,

K is the stiffness matrix and X is the vector of

generalised displacements. The C and K matrices

contain both structural and aerodynamic terms. Addi-

tionally, both models received dedicated validation

against experimental data in their original literature.

To facilitate computational implementation in

MATLAB R2015a [35], the models were written in

state space-form, shown in Eqs. (2) and (3):

_Y ¼ f Y; pð Þ; Y 2 <n; p 2 <m ð2Þ

Y ¼ X
_X

� �
ð3Þ

where Y is the state vector, X is the vector of

generalised displacements as before and p is the vector

of parameters. The generalised displacement vector

for each model is provided below in the description of

each.

2.1 Basic model

In this model, an N-bladed rotor of radius R and

moment of inertia about its rotational axis Ix spins with

angular velocityX about the end of a shaft of length aR

pinned at the origin. It is able to move in pitch h and
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yaw w about the origin with moment of inertia In. The

dynamical contributions of the wing structure are

modelled with lumped stiffness K and damping

C properties in the pitching and yawing directions at

the effective pivot point. A schematic of this basic

system is shown in Fig. 2.

The equations of motion governing the system, as

given by Bielawa, are stated in Eq. (4).

In 0

0 In

� �
€h
€w

� �
þ Ch �IxX

IxX Cw

� �
_h
_w

� �

þ Kh 0

0 Kw

� �
h
w

� �

¼ Mh

Mw

� �
ð4Þ

Mh and Mw are aerodynamic moments in pitch and

yaw, respectively, and are defined in Eqs. (5) and (6).

The aerodynamic model may be classed as quasi-

steady blade element theory, as developed by Ribner

[36] in 1945. More advanced and improved models,

such as those used by Kim et al. [37], have been

developed, though the low complexity of Ribner’s

aerodynamics is suitable for the other components of

Bielawa’s model. These equations feature coupling

only in stiffness and not in damping, i.e. proportional

to angular displacement rather than velocity.

Mh ¼
NB

2
KaR � A3 þ a2A1

� � _h
X
� A0

2wþ aA0
1h

" #

ð5Þ

Mw ¼ NB

2
KaR � A3 þ a2A1

� � _w
X
þ A0

2hþ aA0
1w

" #

ð6Þ

Ka ¼
1

2
qcl;aR

4X2

Ka is simply a consolidation of terms for more

concise presentation, with q denoting air density and

cl,a denoting the blade section lift slope. The Ai terms

are aerodynamic integrals that arise from integrating

the force expressions along each blade and summing

the contributions from each and are defined as:

A1 ¼
c

R

Z 1

0

l2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ g2

p dg ð7Þ

A0
1 ¼ lA1 ð8Þ

A0
2 ¼

c

R

Z 1

0

l2g2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ g2

p dg ð9Þ

A3 ¼
c

R

Z 1

0

g4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ g2

p dg ð10Þ

l ¼ V

XR

The A2 integral (without a hyphen) features only in

the original text’s derivation of these expressions [32];

however, the original nomenclature has been retained

here. The generalised displacement vector for this

basic model is therefore:

X ¼ h w½ �T ð11Þ

The parameter values used throughout the investi-

gation were retained where possible from Reed [5] and

are listed in Table 1.Where ranges of parameter values

were used, the midpoint value was chosen for this

investigation. Although these parameters do not

represent an actual tiltrotor model, the results achieved

from the following analyses are qualitatively relevant

for the demonstration of classical whirl flutter

principles.

2.2 Gimballed hub model

In this model, an N-bladed rotor of radius R spins with

angular velocityX at the end of a shaft of length h. The

shaft is attached to the tip of a single cantilever wing of

span yt and chord cw that is rigidly supported at its root.

The motion of the shaft is expressed in terms of the

elastic deformation of the wing to whose tip it is

connected: beamwise/flapwise bending q1, chordwiseFig. 2 Basic whirl flutter model schematic adapted from [33]
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bending q2 and torsion p. The system schematic is

shown in Fig. 3. A modal representation is used for

these degrees of freedom, modelling only the first

mode of each, as higher-frequency modes tend not to

couple with the rotor degrees of freedom. Lumped

damping and stiffness properties are associated with

each wing degree of freedom. A gimballed hub

connects the rotor to the end of the shaft, allowing

the rotor disc to pitch and yaw separately from the

motion of the wing. The flapping and lead-lag motions

of the individual blades are transformed into multi-

blade coordinates using Fourier coefficients, which

enable the whole system to be viewed from the non-

rotating frame of reference. Blade torsion is not

modelled as its natural frequency is usually much

higher than those of blade flapping or lead-lag. The

multi-blade flapping of the blades in the non-rotating

frame constitutes the aforementioned gimbal pitch and

yaw degrees of freedom, b1C and b1S, respectively,
while the cyclic lead-lag is modelled as the position of

the rotor’s centre of gravity within the hub plane that

occurs due to the sum of blade lead-lag motion. This

location is specified with two coordinates: one parallel

to the global y-axis (f1C) and another parallel to the

global x-axis (f1S). The blades are also able to move in

a collective sense: as coning b0 (collective flap) and as
rotor speed perturbations f0 (collective lead-lag).

Modelling in this way allows autorotation/wind-

milling to be depicted by relaxing the collective

lead-lag elastic restraint. The Fourier coordinate

definition allows for any number of rotor modes to

be included; however, only the first mode is retained

for each degree of freedom here, as higher modes only

depict movement of the blades relative to each other

and do not couple with the wing dynamics. The blade

stiffnesses are modelled implicitly: rather than explicit

stiffness values, the natural frequency (per-rev) of

each blade motion is instead specified. Soft in-plane

and stiff in-plane rotors behave significantly differ-

ently, and this representation allows simplified han-

dling of the parameter sets referring to each type. The

various blade degrees of freedom are considered to be

Table 1 Datum parameter values used for the basic model

Description Symbol Value

Rotor radius R 0.152 [m]

Rotor angular velocity X 40 [rad s-1]

Freestream velocity V 6.7 [m s-1]

Pivot length-rotor radius ratio a 0.25 [–]

Number of blades N 4 [–]

Blade chord c 0.026 [m]

Rotor moment of inertia Ix 0.000103 [kg m2]

Nacelle moment of inertia In 0.000178 [kg m2]

Structural pitch damping Ch 0.001

[N m s rad-1]

Structural pitch stiffness Kh 0.4 [N m rad-1]

Structural yaw damping Cw 0.001

[N m s rad-1]

Structural yaw stiffness Kw 0.4 [N m rad-1]

Air density q 1.225 [kgm-3]

Blade section lift slope cl,a 2p [rad-1]

Fig. 3 Gimballed hub model schematic adapted from [34]
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uncoupled. Also neglected are the aircraft’s rigid body

motions, since these typically have low frequency and

are not strongly coupled with the wing and rotor

motions. Modelling the system in this way—as a

cantilever wing with a fixed end—is the configuration

that was generally used in wind tunnel testing of

proprotor models at the time the model was developed.

The aerodynamics of both the blades and the wing

are modelled using the same quasi-steady strip theory

[36] as in the basic model. The derivation uses

integrals along each blade, summed and named

according to their origin and the direction of their

action. Johnson mentions that proprotor dynamics

wind tunnel tests at the time of writing frequently

operated the rotor in autorotation and uses it as the first

point of reference in his results [34]. The present work

uses the data pertaining to the powered condition for

the purposes of consistency with the basic model and

maintaining relevance to real operation of tiltrotor

aircraft.

A simplified matrix equation of motion governing

the system is given in [34, Eq. (198)] which omits any

terms containing the wing sweep angle and neglects

blade structural damping. The full equations of

motion, as used in the present work, are obtained by

re-deriving the constituent matrices with inclusion of

wing sweep and blade damping terms. Though these

full equations are too long to write here, they can be

written in the compact form given in Eq. (1).

With separate rotor and wing degrees of freedom,

this model provides higher modelling fidelity without

excessive computational cost. The inclusion of the

gimballed hub is key for representing tiltrotor systems

and makes it a meaningful counterpart to the Reed

model. The generalised displacement vector for this

model is

X ¼ b1C b1S f1C f1S b0 f0 q1 q2 p½ �T

ð12Þ

The parameter values used for this model were

retained from Johnson [34], and a selection of

particularly relevant parameters is listed in Table 2.

All dimensionless quantities have been normalised in

the same manner as in [34]: rotor quantities with blade

inertia Ib and wing quantities with Ib.N/2. Johnson

gives the parameter values for a wing and two different

full-size rotors: a gimballed stiff in-plane rotor and a

hingeless soft in-plane rotor. Those describing the

former, a 25-ft Bell rotor related to the XV-15, have

been used here.

2.3 Freeplay adaptation

In their original literature, both models use linear

stiffness for all structural elements, that is, structural

deflection and the resulting restoring force or moment

are always in the same proportion. Their deflection-

force/moment profile therefore has a constant slope,

i.e. constant stiffness. To obtain a freeplay stiffness

adaptation of each model, the arctangent expression

[14] shown in Eq. (13) was implemented. While some

freeplay investigations employ a bilinear stiffness

profile to achieve ‘‘true’’ freeplay, an arctangent

profile was chosen here to avoid gradient discontinu-

ities at the deadband edges as these may cause

difficulties for continuation solvers. Furthermore,

deadbands in real freeplay systems are unlikely to be

truly non-smooth [14].

Table 2 Datum parameter values used for the gimballed hub

model

Description Symbol Value

Rotor radius R 3.82 [m]

Rotor angular velocity X 48.0 [rad s-1]

Freestream velocity V 129 [m s-1]

Rotor shaft length h 1.31 [m]

Number of blades N 3 [–]

Wing beamwise bending stiffness Kq1 18.72 [–]

Wing chordwise bending stiffness Kq2 50.7 [–]

Wing torsional bending stiffness Kp 3.595 [–]

Wing beamwise damping constant Cq1 0.880 [–]

Wing chordwise damping constant Cq2 2.670 [–]

Wing torsional damping constant Cp 0.093 [–]

Blade dimensional inertia Ib 142 [kg m2]

Blade cyclic flapping inertia I*b 1 [–]

Blade collective flapping inertia I*b0 0.779 [–]

Blade cyclic lead-lag inertia I*f 0.670 [–]

Blade collective lead-lag inertia I*f0 1 [–]

Blade section lift slope a 5.7 [rad-1]
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M ¼ K

p
aþ dð Þ p

2
þ tan�1 � aþ dð Þ

e

� ��

þ a� dð Þ p
2
þ tan�1 a� dð Þ

e

� �� ð13Þ

For some deflection quantity a that ordinarily has

associated with it some linear restoring force or

moment M = Ka, there instead exists a deadband of

highly reducedM, centred about a = 0 and with width

2d. The tuning parameter e primarily controls the

turning radius of the line at the edges of the deadband.

The width (in a) of the transition between the

deadband and the rest of the stiffness profile is

approximately 2e; a smaller e results in sharper edges.
Additionally, e influences the gradient within the

deadband, with the gradient approaching zero as e
tends to zero. Outside of this region, the stiffness,

hereafter termed ‘‘out-of-deadband gradient’’, asymp-

totically approaches the original linear gradient

K. Therefore, this smooth arctangent function con-

verges asymptotically on representing ‘‘true’’ freeplay

as e tends to 0, in the sense of having perfectly sharp

discontinuous edges and zero in-deadband stiffness.

Furthermore, it is more intuitive to consider the ratio e/
d rather than e by itself. The ratio e/d more usefully

gives an indication of what proportion of the deadband

is used up in turning and is therefore of non-negligible

gradient.

As zero e cannot in practice be used due to its

presence in the denominator, a non-zero deadband

gradient is inevitable, though it can be minimised by

using as small a value of e as possible. As will be

shown later, the sensitivity to e/d of the two models

exhibited varies in both nature and severity, and

therefore the value chosen in each case requires

dedicated discussion. Following consultation of other

freeplay studies which are informed by the examina-

tion of real-world systems, a value of 0.1� for the

deadband half-width d is, though small, deemed to be

representative of wear accrued during the service life

of an aerospace system [16, 38] and is therefore

suitable for use in the present work. While the matrix

format of the equations is retained in both models

through their adaptation, the arctangent expression is

integrated by calculating its value separately and

adding the result into the relevant element of the

matrix product KX, where K has had the original

linear term (Kp) removed so that it does not feature in

the multiplication. As the two models’ parameter sets

differ by orders of magnitude, example profiles are

shown in Fig. 4, with equivalent linear stiffness also

included for comparison.

The objective of this research is to investigate the

impact of freeplay at the rotor tilting mechanism,

where, as explained earlier, there is a strong case for it

to exist. In the basic model, there is only one degree of

freedom for nacelle pitch, h, and therefore the freeplay
adaption is applied in place of the associated stiffness.

In the gimballed hub model, the wing torsion degree of

freedom p has an assumed mode shape for the entire

span of the wing, although it is only the resultant

rotation in pitch at the tip that the quantity p represents.

The wing torsion at any other point on the wing is not

used anywhere in the model, for aerodynamic, struc-

tural or any other purposes. As the nacelle is mounted

and rotated at the tip, any freeplay in the nacelle

mechanism manifests within the wing torsion degree

of freedom and it is therefore the most suitable part of

the model to receive the freeplay adaptation. The

Fig. 4 Example freeplay stiffness profiles as described by Eq. (13), with K = 1, e = [2, 1, 0.01], d = 2
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original linear models were used as a baseline for

comparison with the nonlinear stiffness adaptations.

3 Stability analysis methods

3.1 Linear methods

Initially, eigenvalue analysis was used to assess the

stability of the baseline linear version of each model.

This well-known method operates on the system’s

Jacobianmatrix J, which, when the system’s equations

of motion are placed in linear state space form, is

defined as

_Y ¼ JY ð14Þ

where Y, the state vector, is defined as in Eq. (3).

The eigenvalues of the Jacobian matrix contain

information about the decay rate (i.e. stability) and

frequency of the system’s modes, and the correspond-

ing right eigenvectors contain the mode shapes. An

eigenvector is ordered in the same manner as the state

vector, and the relative magnitudes of the eigenvector

components and their relative arguments in the

complex plane provide the relative amplitudes and

relative phasing of each state’s participation in the

mode in question. The undamped natural frequency x
and damping ratio f for a given mode are calculated

using their standard contemporary definitions, as

shown in Eqs. (15) and (16), respectively.

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re kð Þ2þIm kð Þ2

q
ð15Þ

f ¼ �Re kð Þ
x

ð16Þ

In the present work, this analysis was written in

MATLAB so that a direct interface with the model was

possible.

3.2 Nonlinear methods

For nonlinear systems, CBM is used. Continuation is a

numerical method that, given a starting solution

associated with a particular parameter set, calculates

the steady-state solution values of a dynamical system

as one or more of its parameters, called the continu-

ation parameter(s), is/are varied [22]. This constructs

solution branches or ‘‘continues’’ the set of solutions.

There are two kinds of solution found by continuation:

fixed points and periodic solutions. At a fixed point

(also known as an equilibrium), the system remains

still, while periodic solutions—also known as limit

cycle oscillations (LCOs)—are closed loops in the

phase space that constitute motions that repeat

periodically.

For each solution point calculated, its stability is

also computed. For fixed points, an eigenvalue anal-

ysis of the type described in Sect. 3.1 can be used,

requiring local linearization in the case of a nonlinear

system. Periodic solutions require Floquet theory to

determine stability [39], which views an arbitrary

point on an LCO as a fixed point on a plane

intersecting the LCO at that point. The stability of

solutions determines the system’s behaviour when it is

nearby; stable solutions attract the system within some

neighbourhood around them, while unstable ones

repel.

A bifurcation is a qualitative point change in the

system stability or behaviour due to the variation of a

parameter. In other words, when the stability of a

system changes, or the type (fixed/periodic) or number

of solutions changes, the system is said to bifurcate.

The points at which these stability changes happen are

called bifurcation points, and furthermore the techni-

cal definition of a bifurcation is the intersection of two

or more solution branches [42]. Bifurcations are

identified through characteristic changes in the Jaco-

bian’s eigenvalues or the Floquet multipliers. If the

system is nonlinear, new solution branches may

emerge from the bifurcation points, leading to the

coexistence of multiple solutions for a given set of

system parameter values. Where this happens, the

system’s behaviour may be dependent on the magni-

tude of a perturbation: a hallmark phenomenon of

nonlinear systems. Additionally, nonlinearities may

cause bending of solution branches within the param-

eter space, which may not be detected by linear

analysis. The identification of these different solution

branches helps to uncover the global dynamics of the

system.

The results of continuation analysis are displayed

on bifurcation diagrams, where the solution branches

are shown as the continuation parameter value varies.

The type (fixed/periodic) of each solution branch,

along with the locations of any bifurcations it

encounters, is also indicated. The typical form of a

bifurcation diagram is a 2D graph with a chosen state
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on the y-axis and the continuation parameter on the x-

axis. A plot of this kind is known as a ‘‘projection’’ or a

‘‘plane’’, e.g. ‘‘h projection’’ or ‘‘Kh-h plane’’. As

some solution branches may connect with each other

at unlikely or even impossible parameter values, it is

typical in bifurcation analysis to allow continuations

to enter such parameter value ranges, and this practice

will prove vital later in the present work. Additionally,

CBM does not give much reliable indication of

transient behaviour and therefore continuation results

are frequently complemented with time simulations,

i.e. numerical integration of the equations of motion.

The analysis methods discussed here and in

Sect. 3.1 were employed according to the version of

the system (linear/nonlinear) in question. Bifurcation

diagramswere produced using the Dynamical Systems

Toolbox by Coetzee [40], which is a MATLAB

framework for an implementation of the AUTO-07P

[41] continuation software. While a precise descrip-

tion of the various continuation methods is best left to

the substantial body of dedicated literature, it is

sufficient here to state that the AUTO-07P software

employs the pseudo-arclength method [41]. Rather

than taking steps only in the continuation parameter,

the pseudo-arclength method moves along the solution

curve in the phase space. This method contrasts with

natural parameter continuation, where the solution of

one point is used as the initial estimate for the next

point, and simplicial/piecewise linear continuation,

which uses simplexes within the solution-parameter

space. The pseudo-arclength method used here is a

predictor–corrector method, using the tangent at the

last solution found to estimate the next solution point,

before using Newton’s method or similar to refine the

solution to within specified tolerances [42]. The

stability of fixed points is determined through eigen

analysis of a linearization about the point in question,

while the monodromy matrix is calculated for periodic

solutions whose eigenvalues describe the solution’s

stability. These eigenvalues are more commonly

known as Floquet multipliers. Time simulations were

also used to corroborate the predictions of both

stability methods using the ode45 solver within

MATLAB, which uses an explicit Runge–Kutta (4,5)

formula known as the Dormand–Prince pair. Differing

magnitudes of the various gimballed hub model datum

parameter values, shown in Table 2, mean that it is

most convenient to deal with normalized quantities for

this model’s results. Therefore, for the remainder of

the present work all stiffness parameter values

discussed for this model refer to their normalised

values without a change in notation.

Two bifurcation types that are prevalent in the

following results are Hopf bifurcations and pitchfork

bifurcations. A Hopf bifurcation is the birth of a

periodic solution branch from a fixed-point branch.

The bifurcation manifests mathematically as a pair of

complex conjugate eigenvalues crossing the complex

plane imaginary axis, and the stability of the fixed

point also changes. At a pitchfork bifurcation, two

additional fixed-point branches emerge from an exist-

ing fixed-point branch which itself changes stability.

The mathematical manifestation is the crossing of a

single real eigenvalue over the complex plane imag-

inary axis. For more information on the subject, the

reader is referred to [42].

4 Results and discussion

4.1 Linear analysis

The original literature of the two models both contain

sufficiently complete presentation of results to allow

validation of the present work’s corresponding com-

putational implementations. A good agreement is

found with both models, and the most likely source of

discrepancies is the process of digitising of the original

Fig. 5 Variation of modal frequency (top) and damping ratio

(bottom) with rotor speed X of the implemented basic model

(black dots) and results from [34] (solid coloured lines)
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figures. Shown in Fig. 5 are frequency and damping

plots of the basic model’s modes as the rotor angular

velocity X is swept, compared to the corresponding

figure [33], Fig. 6]. The ‘‘backward’’ whirl mode

(BW)—where the whirl direction is in the opposite

sense to the rotor spin direction—becomes progres-

sively more unstable. The forward whirl mode (FW) is

not capable of instability in this model. While the

original axis labels are retained from the original

figure, the scales shown here are adjusted to conform

to the contemporary definitions of modal frequency

and damping.

A similar comparison is made for the gimballed hub

model in Fig. 6. Corresponding to [34], [Fig. 38] in the

original work, plots of modal frequency and damping

ratio for 7 of the 9 system modes over a sweep of

airspeeds from 25 to 600 kts are shown. Johnson’s

naming of the modes (as preserved in Fig. 6) closely

follows the naming of the degrees of freedom.

Johnson’s naming is based both on prominence of

participation of the system’s degrees of freedom and

on proximity of a mode’s natural frequency to the

uncoupled natural frequencies of the system. Also

shown on the right side of Fig. 6 are the mode shapes

of the two modes that become unstable within the

airspeed range considered: the q1 mode at approxi-

mately 500 kts and the q2 mode at approximately 575

kts.

It is prudent to establish the basic stability charac-

teristics of the original linear systems prior to the

nonlinear analysis. This is achieved most straightfor-

wardly by using the linear analysis methods described

in Sect. 3.1 to construct stability boundaries between

parameters of interest to the designer. A range of

values is considered for each of the parameters, and

the resulting area is partitioned according to the

stability of the system when configured with the

combination of parameter values corresponding to

each point. Additionally, the stability boundary will

serve as a medium of comparison later in the present

work, when assessing the impact of the freeplay

nonlinearities introduced.

Baseline linear stability boundaries for the basic

model (between pitch and yaw stiffnesses) and the

gimballed hub model (between wing torsion and

chordwise bending stiffnesses) are shown in Fig. 7.

The pitch and yaw stiffnesses (Kh and Kw, respec-

tively) are chosen for the basic model as they are the

only two stiffness parameters characterising the

nacelle/wing structure. Furthermore, of the parameters

Fig. 6 Variation of modal frequency (top) and damping ratio (bottom) of the implemented gimballed hub model’s modes as airspeed V

is varied (black dots), with results from [34] (solid coloured lines)
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present in the model they are likely the most control-

lable in practice by a designer. For consistency, the

equivalent parameters in the gimballed hub model (Kp

and Kq2) are chosen for the stability boundary. As

previously described, the p degree of freedom in the

gimballed hub model (wing torsion) is analogous to

the h degree of freedom (pitch) in the basic model, and

the q2 degree of freedom (wing chordwise bending) is

similarly analogous to the w degree of freedom (yaw).

4.2 Nonlinear analysis of the basic model

Continuation methods are now applied to the linear

version of the basic model. The undeformed position

of the nacelle at rest (i.e. Y = 0) is intuitively an

equilibrium that may be used as the initial solution for

continuations. Setting yaw stiffness Kw (y-axis in

Fig. 7a) to 0.3 N m rad-1 and performing a continu-

ation in Kh (x-axis) produces the bifurcation diagram

in b) of Fig. 8, showing the pitch h projection. A key to

the symbols and line colours used in the bifurcation

diagrams in this paper is provided in Table 3. To show

the relationship between eigen analysis and CBM, an

Fig. 7 Baseline (linear

variant) stability boundaries

for the basic model (a) and
the gimballed hub model (b)

Fig. 8 Stability results for the basic model, linear version, as Kh is varied for Kw = 0.3. Root locus (a), bifurcation diagram, pitch

projection, fixed points only (b) and modal damping ratio (c). BP: branch point, HB: Hopf bifurcation
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Argand plot of the system’s eigenvalues over this

sweep is shown on the left, with the corresponding

damping ratios plotted in the bottom right.

The changes in the system’s eigenvalues as Kh is

varied between 0 and 0.5 can be seen on the complex

plane (a). Considering this sweep from the perspective

of decreasing Kh, the complex conjugate pair of roots

pertaining to the backward whirl mode temporarily

dips into the positive real half-plane before meeting on

the real axis and diverging from each other, with one

root gaining a positive real part. As a positive real part

signifies instability, the damping plot (c) shows that

the oscillatory instability happens between approxi-

mately Kh = 0.09 and Kh = 0.28, and the non-oscilla-

tory instability happens below approximately

Kh = 0.03. The crossing of this single non-oscillatory

root causes the damping ratio of the root in question to

change from 1 to - 1 instantly. In terms of overall

system behaviour, the parameter range Kh = [0.09,

0.28] allows oscillatory behaviour growing to

unbounded amplitude, while Kh\ 0.03 will see first-

order ‘‘blow-up’’ of the solutions. The bifurcation

diagram in b) indicates that these key eigenvalue

crossings and their associated changes in system

behaviour are detected by CBM as bifurcations. The

crossings of the complex conjugate root pair over the

imaginary axis are manifested as Hopf bifurcations

(hollow squares) at the according Kh values, and these

are labelled HB1 and HB2. In general, Hopf bifurca-

tions constitute the emergence of a periodic solution

from an equilibrium branch. The crossing of the single

real root manifests as the pitchfork bifurcation (black

star). The forward whirl roots do not experience

instability at any point in the sweep. The bifurcation

Table 3 Key to symbols and line colours used in bifurcation diagrams herein

Graphic Symbol Descrip�on

Solid green line Stable equilibrium branch

Dashed magenta line Unstable equilibrium branch

Solid blue line Stable periodic solu�on branch

Do�ed red line Unstable periodic solu�on branch

Hollow square Hopf bifurca�on

Black star Branch point bifurca�on

Black circle Limit point (fold) bifurca�on

Black triangle Homoclinic bifurca�on

Hollow circle Torus bifurca�on

123

78 C. Mair et al.



diagram also shows that the solution remains at 0�
pitch for the whole continuation. Furthermore, if

Fig. 8 is compared to Fig. 7, it can be noted that the

bifurcations and regions of instability are directly

linked to the stability boundary: the locations of the

bifurcations in Kh are the same as the intersections of a

horizontal line at Kw = 0.3 with the boundary.

The freeplay nonlinearity discussed in Sect. 2.3

may now be introduced. In this variant of the model,

the undeformed at-rest position Y = 0 is uniformly

unstable within the Kh domain of analysis, due to the

near-zero stiffness at h = 0� causing a negative level

of damping. For non-trivial continuation results, a

new, stable equilibrium must be found for the initial

solution. Intuitively, the nacelle must lie stably at

some pitch angle outside of the deadband, where the

structural restoring moment is non-zero and able to

oppose the aerodynamic moments that act to push the

nacelle further away from the undeflected position.

Being deflected in pitch, the nacelle in turn experi-

ences an aerodynamic yaw moment pushing it further

away from Y = 0 that must be countered by yaw

structural stiffness. Two such non-zero equilibria exist

due to the structural symmetry of the system, mirrored

in h andw about 0. These new equilibria were found by

solving the equations of motion with all time deriva-

tives set to zero. Due to the presence of the arctangent

terms, iterative numerical methods were employed.

Using a deadband half-width d of 0.1� (see

Sect. 2.3), a continuation in Kh similar to that shown

for the linear system is now performed and is

presented in Fig. 9, left side. An e/d value of 10–4

was used as it provides suitably sharp deadband edges

without causing numerical difficulties for the AUTO

solver. The periodic solution branches emanating from

the Hopf bifurcations are also shown. The maxi-

mum/peak value of the state of interest within the LCO

at each continuation parameter value is indicated with

a thick line, and the minimum value with a thin line.

As the freeplay deadband exists within the projection

shown, it is indicated with black dash-dot lines. A

phase plane taken at a cut of Kh = 0.15 is shown on the

right of the figure. The maximum andminimum values

of the flutter LCOs on the bifurcation diagram can be

cross-referenced with the full LCO in the phase plane,

along with the positions of the zero and non-zero main

branches which are indicated with ‘X’s, magenta to

denote their instability.

The first notable feature of Fig. 9 is that for most of

the range of the continuation parameter, three main

solution branches exist instead of one as in the linear

model. Either side of the uniformly unstable zero main

branch (Y = 0), the two new non-zero main equilibria

described earlier have appeared as branches either side

of the zero main branch. These branches diverge to

infinitely large solution values with decreasing Kh.

Fig. 9 Bifurcation diagram of basic model with freeplay in pitch h for Kw = 0.3, d = 0.1�, pitch projection, Kh as the continuation

parameter
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The divergence to infinity is asymptotic to theKh value

of the pitchfork bifurcation in the linear system

(* 0.03), indicated on the figure as a dashed vertical

line. With increasing Kh, the non-zero main branches

converge asymptotically on the boundaries of the

deadband. This occurs as the structural restoring

moments require non-zero deflection (beyond the

deadband) in order to exist, regardless of the value of

Kh, to which the out-of-deadband stiffness tends. The

Hopf bifurcations on the two new branches are the

same as those observed in Fig. 8 and are unchanged in

their Kh location, and therefore their labels are

retained.

Here, periodic solution branches link HB1 and HB2

together on each non-zero branch. At eachKh value, an

LCO exists: a trajectory within the state space that

repeats periodically. Furthermore, these non-trivial

solution branches may transcend their mathematical

context and can be interpreted in terms of real-world

phenomena. Specifically, these periodic solutions

constitute the whirl flutter motion that the present

work concerns, and they are almost entirely stable (i.e.

attracting). Pitch stiffness decreases from the right side

of the diagram to the left, so at HB2 the pylon has

become loose enough to begin to oscillate, while at

HB1 the stiffness has reduced to a level where it is not

able to store sufficient potential energy when deflected

for flutter motion to be sustained. Where each flutter

branch joins HB2 at * 0.28, it first overhangs the

stable non-zero main branch by a small amount, as

shown in the zoomed inset box in the left plot. In plain

terms, this means that flutter is possible for a slightly

larger range of parameter values than the linear

analysis predicts. The phase plane in h and w at

Kh = 0.15 shown on the right side of the figure shows

the path in this plane taken by the two LCOs found at

this point on the bifurcation diagram.

Before any further analysis is conducted, some

validation of the choice to use e/d = 10–4 is prudent.

The bifurcations HB1 and HB2 define the topology of

Fig. 9, and using two-parameter continuation in Kh

and e/d, the location in Kh of these bifurcations can be

tracked over a range of e/d values to detect any

variation, indicating sensitivity to e/d. More specifi-

cally, it can be said that e/d = 10–4 is a suitable choice

if the bifurcations do not exhibit a sensitivity to further

decreasing e/d. This two-parameter continuation is

shown in Fig. 10. The value of e/d = 10–4 as used in

Fig. 9 is also indicated. With the exception of a very

slight increase in the Kh location of HB2 at e/d = 10–3

(right line, top of figure), the variation in either Hopf

bifurcation is imperceptible below the chosen value of

10–4, and therefore it may be concluded that this e/
d value is sufficient for the purposes of the present

work.

As stated earlier, CBM does not indicate transient

behaviour beyond a measure of stability close to the

solution branches, and time simulations may be

employed to this end. Figure 11 shows the same

bifurcation diagram as in Fig. 9; however, time

simulations in the pitch state h are shown for two

selected points. For this and the remaining figures,

only the upper half of each figure (i.e. the positive

Fig. 10 Two-parameter continuation of Hopf bifurcations at

Kw = 0.3, d = 0.1� within the Kp-e plane

Fig. 11 Bifurcation diagram of basic model with freeplay in

pitch h for Kw = 0.3, d = 0.1�, pitch projection, Kh as the

continuation parameter. Time simulations are shown in inset

plots, with initial conditions indicated by red dots
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pitch branch) is shown as the system is symmetrical

about the origin in all states, and therefore so are any

solution branches. Convergence on the stable flutter

branch attached to the positive non-zero main branch

is shown on the left of the figure (Kh = 0.15). Diver-

gence away from the unstable zero (equilibrium) main

branch and convergence on the stable non-zero main

branch is shown on the right (Kh = 0.4).

The foregoing results exist only at Kw = 0.3 and

further exploration of the Kh-Kw plane is required. As

Kw is lowered, the Hopf bifurcations HB1 and HB2

move apart from each other (see Fig. 7, left, for

reference). Furthermore, the flutter branches grow in

amplitude, reaching towards the unstable zero branch.

Their eventual collision with the zero branch happens

simultaneously due to the symmetry of the system. At

this collision point, the two flutter LCOs make contact

with each other at the unstable zero branch. The

resulting orbit of infinite period that is created links the

central fixed point to itself and is known as a

homoclinic trajectory [42]. The fusing of orbits to

form such a trajectory is known as a homoclinic

bifurcation. It occurs below Kw = 0.28, when HB1 is

no longer present to re-attach the flutter branches (that

have emanated from HB2) to the non-zero main

branches. A continuation in Kh with Kw now set to 0.2

is shown in Fig. 12, accompanied by a phase plane

showing the trajectories before (Kh = 0.346), at (Kh-

= 0.366) and after (Kh = 0.389) fusing. At Kh values

above the homoclinic collision point (* 0.366), the

homoclinic trajectory opens up into a new LCO of

finite period which, near the collision, resembles a

bowtie. It is a product of the fusing of the two flutter

branches and is of comparatively large amplitude.

As Fig. 12 shows, the ‘‘bowtie’’ LCO branch folds

back and forth between Kh = 0.32 and 0.62 as it

increases in amplitude. However, it can also be seen

that throughout this parameter range, the non-zero

main (equilibrium) branches are stable, and in liter-

ature employing linear stability analysis methods it is

effectively only equilibrium branches that are consid-

ered when determining overall system stability. The

linear methods discussed earlier only show the

parameter values at which periodic solution branches

emanate from fixed point. Any bending of periodic

solution branches back into fixed-point-stable regions

due to nonlinearities—as has happened here—is not

captured by linear theory and therefore goes unde-

tected. Linear stability analysis declares the system to

be stable for Kh[ 0.32 based on the location of HB2,

though clearly this is not correct. The hazard posed by

the ‘‘bowtie’’ LCO branch is therefore threefold: it is

largely stable (and therefore attracts), has a compar-

atively large amplitude and overhangs the non-zero

main branches at Kh values as high as 0.62: well into

the supposedly stable region of the stability boundary.

The fact that part of the overhanging bowtie branch

is stable means that the system can be attracted to it

following a sufficient perturbation. In practice, such a

perturbation might be supplied by a gust, or by

Fig. 12 Bifurcation diagram (a) of basic model with freeplay in pitch h for Kw = 0.2, d = 0.1�, pitch projection, Kh as the continuation

parameter. Selection of phase planes (b) at the cuts indicated in the inset plot of (a)
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manoeuvring of the aircraft. Figure 13a shows two

time simulations with Kw = 0.2, Kh = 0.55, showing

one insufficient perturbation causing the system to join

the upper non-zero main equilibrium branch (green

line), and a similar but sufficient perturbation causing

the system being attracted to the bowtie LCO (blue

line). For comparison, a phase plane of the system is

shown on the right side, b). Two parts of this LCO

branch are present at Kh = 0.55; in addition to the

stable LCO of pitch amplitude * 0.3� shown in the

time simulation, a smaller unstable LCO with a pitch

amplitude of * 0.25� is also present, surrounded by

the stable LCO.

The existence of the bowtie LCO—specifically

created by the presence of the freeplay nonlinearity—

is a significant problem. In practical terms, a whirl

flutter oscillation is possible in parameter ranges

declared safe by linear stability analysis, a commonly

used standard prediction tool. Strictly speaking, this

new parameter range cannot really be termed ‘‘unsta-

ble’’ as the danger lies in attraction to stable solutions,

and so ‘‘unsafe’’ is a more suitable term. The extent (in

Kh) of the bowtie LCO’s overhang can be tracked in

the Kh - Kw plane to see what range of Kw it occurs at.

This adds a new ‘‘unsafe’’ region to the stability

boundary and is presented in Fig. 14.

The discontinuity in the boundary of the new unsafe

region at approximately Kh = 0.6 is caused by a rapid

distension of one of the features on the bowtie LCO.

The overhang extent is mostly defined by the position

of the fold seen at Kh = 0.65, h = 0.2� in Fig. 12,

marked ‘F10. However, the second fold underneath it

marked ‘F20, at Kh = 0.41, h = 0.15�, begins to move

rightward with decreasing Kw. By Kw = * 0.18 , it

emerges from underneath the first fold and becomes

the furthest-right feature on the bifurcation diagram,

defining the extent of the unsafe region.

Fig. 13 Time simulations with Kw = 0.2, Kh = 0.55 (a).
Starting from two different initial conditions, the system can

join one of the non-zero main branches (green) or join the

bowtie LCO (blue). The various solutions nearby are shown in a

phase plane (b). (Color figure online)

Fig. 14 Redrawn stability boundary for the basic model, based

on overhang of bowtie LCO
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4.3 Nonlinear analysis of the gimballed hubmodel

Kq2 = 0.4 (that is, 40% of the datum value used in

[34]) is selected as the level on the stability boundary

at which to conduct the gimballed hub model’s

analysis. The freeplay nonlinearity now exists in the

wing torsion degree of freedom p as this represents the

pitch of the wingtip and therefore the wingtip. A

deadband half-width d of 0.1� was used, as with the

basic model. However, reprising e/d = 10–4 for the

deadband edge sharpness introduces intricate compli-

cations into the periodic solution branches that cause

great difficulties for the AUTO solver.

An alternate method to obtain a bifurcation diagram

for the gimballed hub model is to employ a similar

method to the e/d sensitivity analysis shown in Fig. 10.
The strategy is to start with a value of e that is too large
to represent freeplay fairly but is amenable to the

application of AUTO, and subsequently sweep e
downwards, noting how the bifurcation diagram

changes as the stiffness profile becomes more repre-

sentative of freeplay. This approach not only allows

numerical complexities to be circumvented but also

lends further insight into how the freeplay nonlinearity

alters the system’s solution branch structure. Fig-

ure 15 shows bifurcation diagrams with e/d set to

0.010, 0.007 and 0.005, continuing in Kp. The

boundaries of the deadband are once again indicated

with dash-dot lines.

Some of the changes seen here caused by the

nonlinearity are similar to those in the basic model.

For instance, the zero branch becomes unstable, two

non-zero equilibrium branches are created, mirrored

about the zero (undeflected) branch, and a bowtie LCO

is spawned. However, the zero branch is only

unstable at Kp values below a Hopf bifurcation,

labelled ‘HB00, which is the source of the bowtie

LCO. The bowtie LCO exists over the rest of the

domain of analysis and reaches unbounded amplitude

as Kp tends to 0. It is stable over its entire extent. The

zero branch also has a pitchfork bifurcation, labelled

‘BP’, between Kp = 0 and HB0, from which the two

double main branches emanate. When e/d\ = 0.007,

a region of stability exists on both, bounded by a pair

of Hopf bifurcations (‘HBR’ and ‘HBL’) that attach a

small unstable LCO (i.e. whirl flutter) branch. HBR,

BP and HB0 all move rightward as e/d is lowered,

while HBL moves slightly leftward. While Fig. 15

bears several similarities to Fig. 11 and Fig. 12,

crucially both the bowtie LCO and the double main

branches are attached to the zero main branch, and

there is no homoclinic bifurcation connecting the

bowtie LCO to the whirl flutter branch from each

double main branch. In [31], this bowtie LCO was

demonstrated through time simulations though no

analysis of any kind was conducted.

With the basic topology of the bifurcation diagram

established, further lowering of e/d is achieved by

conducting two-parameter continuations in e/d and Kp

on each of the aforementioned topology-defining

bifurcations (HB0, etc.). Their loci in the Kp-e/
d plane as e/d is lowered down to 0.001 are shown in

Fig. 16a. The positions in Kp of the bifurcations can be

cross-referenced with the relevant diagrams in Fig. 15.

A plot of the stiffness at p = 0 when Kp = 1 is also

shown in b).

The double main branch Hopf bifurcations HBL

and HBR are coincident with each other slightly above

e/d = 0.007 and do not exist above this value. Mean-

while, the distance moved leftward by HBL decreases

Fig. 15 Bifurcation diagram for gimballed hub model, Kq2 = 0.4, d = 0.1�, e/d = [0.010, 0.007, 0.005]
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with each further downward increment of e/d; how-
ever, the rightward movement of HB0, BP and HBR

increases. For clarity, a logarithmic scale is used for

the Kp axis.

Physically speaking, this runaway occurs due to the

flattening of the gradient within the deadband: as the

structure becomes softer in-deadband, the out-of-

deadband stiffness (Kp in this case) becomes less and

less influential as a stabilising influence. Outside the

deadband, Kp still controls the amplitude of the bowtie

LCO, and at the Hopf bifurcation HB0 it has increased

to a level sufficient to prevent oscillatory motion. An

interesting effect is the lowering of e/d causing a

stabilisation of a portion of the double main branches.

This region is around the deadband edge and at low

values of Kp, which flatten the stiffness profile. A

sufficient edge sharpness, however, can introduce

enough curvature into the profile so as to produce a

stable point. The unstable flutter LCOs attached to the

Hopfs bounding these portions act as separatrices in

the phase space between the basins of attraction of

these stable double main branch portions and of the

bowtie LCO.

The movement of the bifurcations HBR, BP and

HB0 to infinity in Kp as e/d tends to 0 is intuitive as no
amount of out-of-deadband stiffening would be able to

stabilise a truly zero-stiffness deadband. The form of

the bifurcation diagram for bilinear or ‘‘true’’ freeplay,

within a physically reasonable range of analysis, is

already provided by that for e/d = 0.005 shown in

Fig. 15 (right). Specifically, the e/d = 0 diagram

would resemble the e/d = 0.005 diagram for Kp-

\ * 1.2, that is, up to but not including HBR on

the double main branches. The diagram therefore

comprises two non-zero equilibrium branches which

are stable except below HBL, the uniformly unsta-

ble zero main branch, all surrounded by the bowtie

LCO.

Figure 16 tracks the positions of HBR, BP and HB0

as far as e/d = 0.001. However, time simulations

reveal that, as this value is approached, complex

dynamical structures begin to surround the nominal

bowtie LCO branch. At first, patches of quasiperiodic

behaviour caused by the creation of torus bifurcations

Fig. 16 Two-parameter continuation of bifurcations found at Kq2 = 0.4, d = 0.1�, within the Kp-e plane (a), with plot of torsional

stiffness at deadband centre (p = 0)

Fig. 17 Subsection of bowtie LCO for e/d = 0.001 within the

region of Kp = [0 2.5], pitch projection. The inset windows

contain p-b1C phase planes. The hollow circles indicate

Neimark–Sacker (torus) bifurcations
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emerge at various points on the bowtie branch. Further

obfuscation of the torus structures with decreasing e/
d leads to the collapse of some precipitating pockets of

chaotic behaviour. Other pockets of chaos in the

region may exist due to other onset mechanisms, such

as period doubling cascades or intermittency [43, 44].

A subsection of the bifurcation diagram for e/
d = 0.001 is shown in Fig. 17, overlaid with a

selection of phase planes showing the various

steady-state behaviours present at some points on the

bowtie LCO branch. The flutter branch attached to the

double main branch shown could not be computed in

full due to strong numerical issues prevalent at this

value of e/d (0.001), and it is therefore not shown.

Each phase plane shows the wing torsion p and gimbal

pitch b1C coordinates of the various forms of the

bowtie LCO. These states are chosen to give simul-

taneous insight into how the bowtie LCO manifests in

both the rotor and the wing, the two macro-compo-

nents of the system. An ordinary period-1 oscillation is

present at Kp = 1.468, while a period-2 variation is at

Kp = 0.636 where the trajectory approaches its start-

ing point but completes another similar cycle before

closing as a loop. A well-formed torus can be seen at

Kp = 0.918 and a chaotic trajectory is found at

Kp = 0.646.

Some torus bifurcations were sufficiently well-

defined for AUTO to detect and they are indicated with

hollow circles. However, efforts in the present work to

create a complete behaviour map of this branch region

proved to be impossible due to its fractal nature: no

amount of ‘‘zooming in’’ revealed a fundamental

structure or resolution for the intervals in which these

behaviours exist. Fractal structuring of this kind is a

common feature of chaotic regimes [44].

A well-known tool for analysing chaotic behaviour

is to use a Poincaré section. This stroboscopic method

places a plane in the phase space where the trajectories

are known to pass and simulates the system in the

time-domain, recording a dot at each point that the

system’s state intersects the plane. In this way, some

insight into the underlying structure of the chaotic

attractor can be gained. Figure 18 shows a Poincaré

section defined by p = 0�, monitoring transitions from

positive to negative p, for the chaotic trajectory found

in Fig. 17. Created by the folding and mixing of the

state space [44], the chaotic attractor’s layered struc-

ture is clearest in the f1S–f0 plane.
Although the presence of freeplay creates plenty of

overhanging bowtie LCO, it is not possible to redraw

the stability boundary for the ‘‘true’’ freeplay case of

e = 0. The position in Kp of HB0 may at first seem like

a robust definition of the new boundary: it bounds the

Fig. 18 Poincaré section at

p = 0� for chaotic trajectory
found at Kp = 0.646

showing values of rotor CG

lateral offset f1S and rotor

collective lead-lag f0 upon
intersecting the section over

the period of 5 9 107 rotor

revolutions
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extent of the bowtie LCO and its overhang of the

double main branches, the zero branch is stable there-

after and its position is in theory always finite and

findable for e[ 0. However, as previously discussed,

for e = 0 it lies at infinity and therefore the overhang is

unbounded in Kp. Attracting solution structures of

various kinds (i.e. periodic, quasiperiodic and chaotic)

are therefore predicted to exist on the bowtie branch at

all values of Kp, constituting a risk of whirl flutter

without the possibility of restabilising usingKq2 or any

other parameter. The runaway effect of HB0 and the

correspondingly growing ‘‘unsafe’’ region on the

stability boundary is shown in Fig. 19. The Kp values

of the three boundaries at the level Kq2 = 0.4 can be

cross-referenced with Fig. 16.

Even if a real-world system’s deadband has appre-

ciable edge smoothness, the associated HB0 is most

likely to exist at a value of Kp so extreme that it is not

physically realisable, if it even exists at all. For

instance, at e/d = 0.001 it exists at Kp = 1856; recall-

ing thatKp has been normalised by its datum value, the

wing structure would need to be stiffened by a factor of

at least 1856 in order to obviate the possibility of whirl

flutter of any of the kinds shown in Fig. 17. In practical

terms, no safe region is predicted to exist, and

therefore some responsibilities exist surrounding pre-

ventative measures. The designer must ensure that the

structure has sufficient strength and stiffness for the

tiltrotor to fulfil its required performance envelope. If

possible, it must also be resistant to the fatigue-

induced stresses of the components that may undergo

very small whirl flutter LCOs in the course of ordinary

operation. As the amplitude of these small whirl flutter

oscillations is not reduced meaningfully by increasing

the out-of-deadband gradient Kp to large values, a

design optimum may be reached by a structure that

fulfils its required performance envelope but is not

excessively strong (and therefore needlessly heavy).

From an operational perspective, a preventative

approach may be adopted, involving periodic moni-

toring of the deadband width and conducting compo-

nent replacement as appropriate when the deadband

width reaches some critical value. The selection of this

critical value could be based on the growth rate of the

deadband as a function of its width and would benefit

from practical investigation via experimental testing.

As mentioned previously, freeplay oscillations induce

their own deadband to widen through cyclic wear, and

such monitoring would prevent whirl flutter oscilla-

tions reaching a size that could lead to structural

failure. Preloading of the tilting mechanism could also

be employed, to reduce the effects of the deadband’s

presence.

5 Summary

This article demonstrated the use of continuation and

bifurcation methods to provide nonlinear dynamic

analysis of whirl flutter in two rotor-nacelle system

models of contrasting complexity. Both linear and

freeplay nonlinearity stiffness profiles were used for

the nacelle pitch degree of freedom in both models.

The freeplay expression used arctangent terms to

create a smooth-edged deadband in an otherwise

quasi-linear profile that via its tuning parameter can

approximate a sharp-edged profile. Appropriate sta-

bility analysis methods were described and employed

for both the linear and nonlinear models. Bifurcation

diagrams were generated for a number of pitch

stiffness cases for both models.

The primary impact of the freeplay’s presence, for

both models, is to create new whirl flutter behaviours

in parametric regions that are predicted to be stable by

linear analysis methods applied to the main equilib-

rium branches. Specifically, the linear stability meth-

ods are not able to predict these new whirl flutter

behaviours, as the nonlinear model variants appear

linear to them. The zero branch present in the linear

version of both models becomes unstable, and two

Fig. 19 Redrawn stability boundaries for gimballed hub model,

based on overhang of bowtie LCO for e/d = [0.010, 0.009,

0.008]. The original linear boundary is shaded grey
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non-zero equilibrium branches are created, mirrored

about the zero (undeflected) branch, just outside of the

freeplay deadband. In both models, a large, mostly

attracting LCO that was termed ‘‘the bowtie LCO’’

was created which, through overhanging of the non-

zero equilibrium branches, existed over large para-

metric regions that the linear analysis claimed to be

stable. Regions overhung in this manner were termed

‘‘unsafe’’ on account of the possibility of the system

experiencing whirl flutter following a gust or other

perturbation.

Regarding the differences caused by the model

complexity, the extent of the overhang was finite in the

basic model but unbounded in the gimballed hub

model. Furthermore, the bowtie LCO in each case was

created by different mechanisms. In the basic model, it

was created through a homoclinic collision between

the individual flutter branches connected to each of the

non-zero equilibrium branches, while in the gimballed

hub model it originates from a Hopf bifurcation on the

zero main branch, located at high stiffness values.

Furthermore, the complexity of the two models’

results scales with the complexity of the models

themselves. The gimballed hub model’s results feature

quasiperiodicity and chaotic behaviour, which were

not observed in the basic model. Increasing the

sharpness of the deadband edges (via the tuning

parameter e) caused the gimballed hub model’s

dynamical behaviours to complicate, spawning

quasiperiodic and chaotic regions, while such an

effect was not observed in the basic model.

6 Conclusions

Regarding the ramifications of this work for real-world

systems, the large oscillation amplitudes of the LCO

or the other attracting structures in the system (torus/

chaos) would likely cause a rapid degradation in the

structural properties of the aircraft, most likely leading

to structural failure. Even if this degradation were not

to occur immediately, the oscillations would present a

fatigue hazard to aircraft nacelle mounts and degrade

the ride quality for any onboard the aircraft.

Furthermore, the only way to remove the bowtie

LCO is to remove the freeplay entirely, as the bowtie

originates from a Hopf bifurcation at infinite stiffness.

A more practical adjustment to the design approach is

to make the tiltrotor structure as fatigue-resistant as

possible. A design optimum may be reached by a

structure that fulfils its required performance envelope

but is not excessively strong (and therefore needlessly

heavy). From an operational perspective, periodic

monitoring of the deadband width is advisable, with

component replacement to be conducted as appropri-

ate when the deadband width reaches some critical

value. Preloading of the tilting mechanism could also

be employed, to reduce the effects of the deadband’s

presence.

The findings also show that the presence of freeplay

in a system can invalidate previous guidance regarding

structural stiffness. Several publications on classical

whirl flutter explain that the elongation of the Hopf-

bulge (as seen in Fig. 7) along its axis of symmetry

means that a design point with particularly dissimilar

values of pitch and yaw stiffness will have a greater

stability margin (in speed) than one with similar or

equal values. However, in the case of low yaw

stiffness, very much the opposite was found in the

present work and therefore following the guidance in

this manner could prove to be ruinous.
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