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Abstract Middle East Respiratory Syndrome Coro-
navirus (MERS-CoV) can cause mild to severe acute
respiratory illness with a high mortality rate. As of Jan-
uary 2020, more than 2500 cases ofMERS-CoV result-
ing in around 860 deaths were reported globally. In
the absence of neither effective treatment nor a ready-
to-use vaccine, control measures can be derived from
mathematical models of disease epidemiology. In this
manuscript, we propose and analyze a compartmental
model of zoonotic MERS-CoV transmission with two
co-circulating strains. The human population is consid-
eredwith eight compartments while the zoonotic camel
population consist of two compartments. The expres-
sion of basic reproduction numbers are obtained for
both single strain and two strain version of the pro-
posed model. We show that the disease-free equilib-
rium of the system with single stain is globally asymp-
totically stable under some parametric conditions. We
also demonstrate that both models undergo backward
bifurcation phenomenon, which in turn indicates that
only keeping R0 below unity may not ensure eradica-
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tion. To the best of the authors knowledge, backward
bifurcation was not shown in a MERS-CoV transmis-
sionmodel previously. Further, we perform normalized
sensitivity analysis of importantmodel parameterswith
respect to basic reproduction number of the proposed
model. Furthermore, we perform optimal control anal-
ysis on different combination interventions with four
components namely preventive measures such as use
of masks, isolation of strain-1 infected people, strain-2
infected people and infected camels. Optimal control
analysis suggests that combination of preventive mea-
sures and isolation of infected camels will eventually
eradicate the disease from the community.

Keywords MERS-CoV · Global stability analysis ·
Backward bifurcation · Optimal control analysis

1 Introduction

Anoutbreak ofMiddleEast respiratory syndrome coro-
navirus (MERS-CoV) is ongoing in the Arabian Penin-
sula, with the first case identified in Jeddah, Saudi Ara-
bia, in June 2012 [36]. Phylogenetic analyses have indi-
cated that the virus emerged in July 2011, with a broad
uncertainty range, and that the outbreak results from
multiple introductions of a weakly transmissible virus
that is geographically dispersed [8]. Since Septem-
ber 2012, WHO has been notified of more than 2500
laboratory-confirmed cases of infection with MERS-
CoV and at least 860 deaths related to MERS-CoV.
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Sporadic cases have been imported to Europe, Africa,
Asia and North America via returning travelers from
the Middle East, but no sustained transmission has
been reported in those regions. Sporadic introductions
of MERS-CoV into humans are suspected to involve
bats [15] and/or camels [27] with camels implicated as
the likely source of most zoonotic infections ofMERS-
CoV in Saudi Arabia.Meanwhile, there is considerable
uncertainty about the extent of human-to-human trans-
mission and it is unclear whether MERS-CoV has the
potential for epidemic spread. Transmission appears
limited among family members but may be amplified
in health care settings [8]. An understanding of the
MERS-CoV epidemiology and transmission pathways
are critically needed to devise effective surveillance,
prevention and control strategies.

Mathematical models provide a suitable framework
in this situation to understand the transmission dynam-
ics and design of prevention strategies. There are
few modelling approaches related to MERS-CoV epi-
demics. [6] proposed a data-driven model for MERS-
CoV transmission and they found strong support for
R0 < 1 ( R0 measures the average number of secondary
cases from each infected person) in the initial stage of
the epidemic in Saudi Arabia. [14] used the Richards
model to trace the temporal course of the South Korea
MERS-CoVoutbreak. In 2016, a dynamic transmission
model for the 2015MERS-CoV outbreak in the Repub-
lic of Korea was considered [19]. Later on, an SEIR
type mathematical model for theMERS-CoV outbreak
in SouthKorea was considered to perform optimal con-
trol analysis [18]. A stochastic epidemiological model
of MERS-CoV with zoonotic and human-to-human
transmission was considered by [26] to quantify the
rates of generationof cases from those two transmission
routes. However, these models were based on single a
strain of MERS-CoV. There is strong evidence in the
literature that there are multiple strains of MERS-CoV
co-circulating in the community [5,28,38]. [29], pro-
posed a two strain model of MERS-CoV to understand
the epidemiological characteristics in three affected
provinces of Saudi Arabia. They found that Riyadh
province is likely to have cases from two strains. Moti-
vated by this we consider a two strain model to have
some insight into the intervention strategies. There is,
however, no mathematical analysis considering two
strain models of MERS-CoV as far as our knowledge
is concerned. The objective of this study is to investi-
gate the qualitative effect of both human-to-human and

zoonotic disease transmission on the spread of MERS-
CoV. To achieve this goal, a two-strain mathemati-
cal model for MERS-CoV is proposed and analyzed.
We consider transmission from camels to humans as a
zoonotic infection in our analysis [10,21]. For classical
epidemicmodels, it is common that the basic reproduc-
tion number is a threshold in the sense that a diseasewill
survive if the basic reproductive number is greater than
one, and it will die out if it is less than one. In some
cases, the basic reproduction number may not reflect
the elimination effort required; instead, the value of
the critical parameter represents the effort at the turning
point. This phenomenon is known as backward bifur-
cation. Thus, it is important to examine the occurrence
of backward bifurcations to achieve thresholds for dis-
ease control. The presence of a backward bifurcation
and the circumstances for its appearance in epidemic
models have been extensively studied over the years.
The problem of determining the causes of backward
bifurcation in some standard deterministic models for
the spread of some emerging and re-emerging diseases
were studied by Gumel [13]. Recently, the necessary
and sufficient conditions for the occurrence of back-
ward bifurcation in general epidemicmodels have been
studied by [23]. Backward bifurcation has been studied
for several epidemic diseases [11,24,32]. However, we
have studied this phenomenon here for our proposed
models of MERS-CoV transmission. Our objective is
not only to investigate the qualitative effect of disease
transmission but also to effectively control the disease
as quickly and efficiently as possible. Improving con-
trol and finally eradicating MERS-CoV from the pop-
ulation is one of the key reasons for investigating this
infectious disease. There are various types of control
mechanisms that have been studied in literature over the
years. In the literature, several nonlinear control meth-
ods are also suggested. The rapid growth of Networked
control systems has been followed by some thorny
issues, such as network delay, imperfect communica-
tion links and limited communication bandwidth [31].
They studied the state estimation problem for the set
of switched complex dynamic networks affected by the
quantization, in which the switchingmechanism is pre-
sumed to obey persistent dwell-time switching regula-
tions. Many researchers have studied to unify a vari-
ety of different performance indexes within a uniform
framework.More general performance called extended
dissipative performance, which addressed four com-
mon performance indexes in a detailed manner within
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Fig. 1 Compartmental flow
diagram of the proposed
model. Here green color
indicates the susceptible
compartment and the red
color is for the infected
compartment. The dotted
double arrows denote the
contacts between
susceptible and infected
populations and single sided
blue solid arrows represent
transition from one
compartment to another.
Here the green dotted line
represents the contact
within the human
population and the red
dotted line represents the
contact between the human
and camel population

the same framework [37]. Extended dissipation was
used in several systems analysis. The analyses of the
extended dissipative performance of the closed-loop
PDT SPSSs and a preferable decoupling method deriv-
ing the mode-dependent controller gains are given in
[30]. Time-dependent control strategiesmay be applied
over a finite time interval to prevent a disease. Optimal
control is a powerful mathematical method that can be
used in this situation to make decisions [20]. Here, we
conduct optimal control analysis on various combined
interventions with four components, namely preven-
tive measures such as mask use, isolation of strain-1
infected individuals, strain-2 infected individuals and
infected camels.

The rest of the paper is organized as follows: in
Sect. 2, we formulate the compartmental model of
MERS-CoV; the single strain version of the proposed
model is analyzed in Sect. 3; optimal control analy-
sis and numerical simulations for the proposed two
strainmodel is presented in Sect. 4; finally, the obtained
results are discussed for prevention strategies in Sect. 5.

2 Model formulation

We consider two heterogeneous population groups as
host and vector population. Time-dependent state vari-
ables are taken to describe the compartments of the two
populations. Let at time t, Nh(t) represents total host
population and Nc(t) represents total camel popula-
tion as vector. We consider an extension of ’SEIR’ type

Table 1 Description of variables used in the model

Variables Interpretation

Sh Susceptible human population

Ei Exposed human population with strain i ,
i = 1, 2

Ii Un-notified infected human population
with strain i , i = 1, 2

Hi Hospitalized and/or notified infected
population with strain i , i = 1, 2

Rh Recovered human population

Sc Susceptible camel population

Ic Infected camel population

model for the host population and a ’SI’ type model for
the vectors.We subdivide the host population into eight
mutually disjoint classes: susceptible, Sh ; Exposed
with strain-i, Ei ; un-notified infected with strain-i, Ii ;
Hospitalized or notifiedwith strain-i, Hi ; recovered, Rh

(i=1,2). Thus, at any time t, the size of the human popu-
lation is given by Nh = Sh +∑2

i=1(Ei + Ii + Ai )+Rh .
The vector population is divided into two classes such
that at time t , there are susceptible, Sc; and infected, Ic
vectors. With this division, the size of the vector pop-
ulation at time t is given by Nc(t) = Sc(t) + Ic(t).
A flow diagram of the proposed model is depicted in
Fig. 1.

We assume all newborn hosts are fully susceptible.
The susceptible host population increases at a constant
rate Πh . The susceptible population decreases due to
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Table 2 Description of parameters used in the model

Parameters Interpretation Value Reference

Πh Recruitment rate of host 1000 week−1 –

Πc Recruitment rate of camel 50 week−1 –

μh Natural death rate of host 2.54 × 10−4 week−1 [35]

μc Natural death rate of camel 0.00048 week−1 [34]

β1 Transmission rate from strain-1 infected humans to susceptible humans 0.75 –

β2 Transmission rate from strain-2 infected humans to susceptible humans 0.56 –

β3 Transmission rate from strain-1 infected humans to susceptible camels 0.7 –

β4 Transmission rate from strain-2 infected humans to susceptible camels 0.3 –

βd Transmission rate from infected camel to susceptible humans 0.75 –

αi Modification parameters 2 [6]

m Modification parameter 0.5 –

1/γi Incubation period 0.7429 week [2,38]

r1 Proportion of strain-1 infected people who are un-notified 0.6 –

r2 Proportion of strain-2 infected people who are un-notified 0.8 –

k1i Recovery rate of un-notified infected human class 0.6 week−1 –

k2i Recovery rate of hospitalized human class 0.7 week−1 –

ηi Transmission rate from infected humans to hospitalized humans 0.001 week−1 –

δi Disease induced mortality rate 2.99 × 10−8 [9,33]

getting infection from infected vectors and infected
hosts and natural mortality at a rate μh , hence the
average life span of the human population in endemic
region is 1

μh
. After getting infection the susceptible

hosts progress to either E1 or E2. From E1, people
may progress to either I1 or H1 after incubation period
is over. Similar progression is assumed for strain-2. The
infected human populations Ii and Hi decreases as a
result of natural death and recovery. We also consider
disease induced mortality in the hospitalized compart-
ment as MERS-CoV has a high case fatality rate. The
average life span of vector population is 1

μc
, that means

μc is the natural mortality rate of camels. The suscep-
tible camel population increases at a constant rate Πc.
All the parameters used in the system are described in
Table 2. The above assumptions lead to the following
set of ordinary differential equations:

dSh
dt

= Πh − β1
Sh
Nh

(I1 + α1H1)

−β2
Sh
Nh

(I2 + α2H2) − βd
Sh
Nh

Ic − μh Sh,

dE1

dt
= β1

Sh
Nh

(I1 + α1H1)

+mβd
Sh
Nh

Ic − μh E1 − γ1E1,

dE2

dt
= β2

Sh
Nh

(I2 + α2H2)

+ (1 − m)βd
Sh
Nh

Ic − μh E2 − γ2E2,

dI1
dt

= r1γ1E1 − (μh + k11 + η1)I1,

dI2
dt

= r2γ2E2 − (μh + k12 + η2)I2,

dH1

dt
= (1 − r1)γ1E1 + η1 I1 − (μh + k21 + δ1)H1,

dH2

dt
= (1 − r2)γ2E2 + η2 I2 − (μh + k22 + δ2)H2,

dRh

dt
= k11 I1 + k12 I2 + k21H1 + k22H2 − μh Rh,

dSc
dt

= Πc − β3
Sc I1
Nh

− β4
Sc I2
Nh

− μcSc,

dIc
dt

= β3
Sc I1
Nh

+ β4
Sc I2
Nh

− μc Ic. (1)

Thevariables and all the parameters and their biolog-
ical interpretation are given in Tables 1 and 2, respec-
tively.
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3 Model analysis for single strain

In this section, we analyze the single starin version of
model 1 mathematically. Here we consider the single
strain model as follows:
dSh
dt

= Πh − β1
Sh
Nh

(I1 + α1H1) − βd
Sh
Nh

Ic − μh Sh,

dE1

dt
= β1

Sh
Nh

(I1 + α1H1) + βd
Sh
Nh

Ic − μh E1 − γ1E1,

dI1
dt

= r1γ1E1 − (μh + k11 + η1)I1,

dH1

dt
= (1 − r1)γ1E1 + η1 I1 − (μh + k21 + δ1)H1,

dRh

dt
= k11 I1 + k21H1 − μh Rh,

dSc
dt

= Πc − β3
Sc I1
Nh

− μcSc,

dIc
dt

= β3
Sc I1
Nh

− μc Ic. (2)

3.1 Mathematical analysis

3.1.1 Positivity and boundedness of the solution

Proposition 1 The system (2) is bounded in the region
Ω = {(Sh, E1, I1, H1, Rh, Sc, Ic) ∈ R7+|Sh + E1 +

I1+H1+ Rh ≤ Πh
μh

, Sc+ Ic ≤ Πc
μc

}, which is positively
invariant.

Proof We observed from the system that

dNh

dt
= Πh − μh Nh − δ1H1 ≤ Πh − μh Nh

�⇒ lim
t→∞ supNh(t) → Πh

μh

and

dNc

dt
= Πc − μcNc

�⇒ lim
t→∞ supNc(t) → Πc

μc

Now the system (2) can be written as

dX

dt
= MX + N

where X = (Sh, E1, I1, H1, Rh, Sc, Ic)T . The matrix
M is given by

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−(θ1 + θ2 + μh) 0 0 0 0 0 0
θ1 + θ2 −(μh + γ1) 0 0 0 0 0

0 r1γ1 −(μh + k11 + η1) 0 0 0 0
0 (1 − r1)γ1 η1 −(μh + k21 + δ1) 0 0 0
0 0 k11 k21 −μh 0 0
0 0 0 0 0 −(θ3 + μc) 0
0 0 0 0 0 θ3 −μc

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where

θ1 = β1(I1 + α1H1)

Nh
, θ2 = βd Ic

Nh
, θ3 = β3 I1

Nh

The vector N = (Πh, 0, 0, 0, 0, 0,Πc, 0)T . Note that
MX is a Metzler matrix for all X ∈ R7+. Since N ≥ 0,
system (2) is positively invariant in R7+ [1]. Therefore,
every trajectory of the system (2) starting froman initial
state in R7+ remains trapped in R7+.

Therefore, all mathematically and biologically fea-
sible solutions of the model system (2) are attractive
to the region Ω . Of this reason, it is now sufficient to
analyze the dynamic properties of the Model (2) in Ω .

	


3.1.2 Diseases-free equilibrium and basic
reproduction number

The diseases-free equilibrium can be obtained for the
system (2) by putting E1 = 0, I1 = 0, H1 = 0, Ic =
0, which is denoted by P0 = (Sh, 0, 0, 0, Rh, Sc, 0),
where

Sh = Πh

μh
, Sc = Πc

μc
, Rh = 0.
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The basic reproduction number, a key idea in the study
of the spread of infectious diseases, is the threshold
value that specifies the number of infected individuals
generated by one infected individual in a completely
susceptible population. It is denoted by R01 and calcu-
lated as Rd + Rv , where Rd is the direct transmission
reproduction number and Rv is the vector transmission
reproduction number [3]. This dimensionless number
is determined by the next generation operator method
at DFE. For this reason, we assemble the compartments

that are infected from the system (2) and decompose
the right side as F − V , where F is the transmission
part, which expresses the generation of new infections,
and the transition part is V , which describes the change
in state.

F =

⎛

⎜
⎜
⎜
⎝

β1
Sh
Nh

(I1 + α1H1) + βd
Sh
Nh

Ic
0
0

β3
Sc
Nh

Ih

⎞

⎟
⎟
⎟
⎠

,

V =

⎛

⎜
⎜
⎝

μh E1 + γ1E1

−r1γ1E1 + (μh + k11 + η1)

−(1 − r1)γ1E1 − η1 I1 + (μh + k21 + δ1)H1

μc Ic

⎞

⎟
⎟
⎠

Now we calculate the Jacobian of F and V at DFE
P0

F = ∂F
∂X

=

⎛

⎜
⎜
⎝

0 β1 α1β1 βd

0 0 0 0
0 0 0 0
0 β3

Πcμh
Πhμc

0 0

⎞

⎟
⎟
⎠ ,

V = ∂V
∂X

=

⎛

⎜
⎜
⎝

μh + γ1 0 0 0
−r1γ1 μh + k11 + η1 0 0

−(1 − r1)γ1 −η1 μh + k21 + δ1 0
0 0 0 μc

⎞

⎟
⎟
⎠ .

Now the V−1 is given by

V−1 =

⎛

⎜
⎜
⎜
⎝

1
μh+γ1

0 0 0
r1γ1

(μh+γ1)(μh+k11+η1)
1

μh+k11+η1
0 0

r1γ1η1+(1−r1)γ1(μh+k11+η1)
(μh+γ1)(μh+k11+η1)(μh+k21+δ1)

η1
(μh+k11+η1)(μh+k21+δ1)

1
μh+k21+δ1

0

0 0 0 1
μc

⎞

⎟
⎟
⎟
⎠

Thus, the matrix FV−1 is given as

FV−1 =

⎛

⎜
⎜
⎜
⎝

β1r1γ1
m1m2

+ α1β1[r1γ1η1+(1−r1)γ1m2]
m1m2m3

β1
m2

+ α1β1η1
m2m3

α1β1
m3

βd
μc

0 0 0 0
0 0 0 0

β3
Πcμh
Πhμc

r1γ1
m1m2

β3
Πcμh
Πhμc

1
m2

0 0

⎞

⎟
⎟
⎟
⎠

,

where m1 = μh + γ1, m2 = μh + k11 + η1 and m3 =
μh + k21 + δ1.

To find Rd we use βd = 0 and β3 = 0 in F , then
the direct transmission reproduction number Rd for the
Model (2) is given by

F1 =

⎛

⎜
⎜
⎝

0 β1 α1β1 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ ,

V =

⎛

⎜
⎜
⎝

μh + γ1 0 0 0
−r1γ1 μh + k11 + η1 0 0

−(1 − r1)γ1 −η1 μh + k21 + δ1 0
0 0 0 μc

⎞

⎟
⎟
⎠ .

Now the direct transmission reproduction number Rd

is the spectral radius of F1V−1, therefore
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Rd = β1r1γ1
(μh + γ1)(μh + k11 + η1)

+ α1β1r1γ1η1
(μh + γ1)(μh + k11 + η1)(μh + k21 + δ1)

+ α1β1(1 − r1)γ1
(μh + γ1)(μh + k21 + δ1)

To find Rv we use βh = 0 in F . Therefore, the vector
transmission reproduction number Rv is given by

F2 =

⎛

⎜
⎜
⎝

0 0 0 βd

0 0 0 0
0 0 0 0
0 βc

Πcμh
Πhμc

0 0

⎞

⎟
⎟
⎠ ,

V =

⎛

⎜
⎜
⎝

μh + γ1 0 0 0
−r1γ1 μh + k11 + η1 0 0

−(1 − r1)γ1 −η1 μh + k21 + δ1 0
0 0 0 μc

⎞

⎟
⎟
⎠ .

Now the vector transmission reproduction number Rv

is the spectral radius of F2V−1, therefore

Rv =
√

β3βdr1γ1Πcμh

μ2
cΠh(μh + γ1)(μh + k11 + η1)

In this calculation, the transition is considered as two
generations. In studying vector transmitted diseases it
is common to consider this as one generations and use
the value by direct approach

Rv = β3βdr1γ1Πcμh

μ2
cΠh(μh + γ1)(μh + k11 + η1)

Therefore, the basic reproduction number is

R01 = Rd + Rv

= β1r1γ1
(μh + γ1)(μh + k11 + η1)

+ α1β1r1γ1η1
(μh + γ1)(μh + k11 + η1)(μh + k21 + δ1)

+ α1β1(1 − r1)γ1
(μh + γ1)(μh + k21 + δ1)

+ β3βdr1γ1Πcμh

μ2
cΠh(μh + γ1)(μh + k11 + η1)

3.1.3 Stability of DFE

Theorem 1 The diseases free equilibrium(DFE) P0 =
(
Πh
μh

, 0, 0, 0, 0, Πc
μc

, 0) of the system (2) is locally
asymptotically stable if R01 < 1 and unstable if
R01 > 1.

Proof We calculate the Jacobian of the system (2) at
DFE, and is given by

JP0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−μh 0 −β1 −α1β1 0 0 −βd

0 −(μh + γ1) β1 α1β1 0 0 βd

0 r1γ1 −(μh + k11 + η1) 0 0 0 0
0 (1 − r1)γ1 η1 −(μh + k21 + δ1) 0 0 0
0 0 k11 k21 −μh 0 0
0 0 −β3

Πcμh
Πhμc

0 0 −μc 0

0 0 β3
Πcμh
Πhμc

0 0 0 −μc

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

Let λ be the eigenvalue of the matrix JP0 . Then the
characteristic equation is given by det (JP0 − λI ) = 0.

which implies

β1r1γ1μc(μh + k21 + δ1 + λ) + α1β1r1γ1μc

+α1β1γ1μc(1 − r1)(μh + k11 + η1 + λ)

+βdβcraγ1(μh + k21 + δ1 + λ)
Πcμh

Πhμc

− (μh + γ1 + λ)(μh + k11 + η1 + λ)

(μh + k21 + δ1 + λ) = 0
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Which can be written as

β1r1γ1
(μh + γ1 + λ)(μh + k11 + η1 + λ)

+ α1β1r1γ1η1
(μh + γ1 + λ)(μh + k11 + η1 + λ)(μh + k21 + δ1 + λ)

+ α1β1(1 − r1)γ1
(μh + γ1 + λ)(μh + k21 + δ1 + λ)

+ β3βdr1γ1Πcμh

μ2
cΠh(μh + γ1 + λ)(μh + k11 + η1 + λ)

= 1.

Denote

G(λ) = β1r1γ1
(μh + γ1 + λ)(μh + k11 + η1 + λ)

+ α1β1r1γ1η1
(μh + γ1 + λ)(μh + k11 + η1 + λ)(μh + k21 + δ1 + λ)

+ α1β1(1 − r1)γ1
(μh + γ1 + λ)(μh + k21 + δ1 + λ)

+ β3βdr1γ1Πcμh

μ2
cΠh(μh + γ1 + λ)(μh + k11 + η1 + λ)

.

We rewriteG(λ) asG(λ) = G1(λ)+G2(λ)+G3(λ)+
G4(λ)

Now if Re(λ) ≥ 0, λ = x + iy, then

|G1(λ)| ≤ β1r1γ1
|μh + γ1 + λ||μh + k11 + η1 + λ|

≤ G1(x) ≤ G1(0)

|G2(λ)| ≤ α1β1r1γ1η1
|μh + γ1 + λ||μh + k11 + η1 + λ||μh + k21 + δ1 + λ|

≤ G2(x) ≤ G2(0)

|G3(λ)| ≤ α1β1(1 − r1)γ1
|μh + γ1 + λ||μh + k21 + δ1 + λ|

≤ G3(x) ≤ G3(0)

|G4(λ)| ≤ β3βdr1γ1Πcμh

μ2
cΠh |μh + γ1 + λ||μh + k11 + η1 + λ|

≤ G4(x) ≤ G4(0)

Then G1(0) + G2(0) + G3(0) + G4(0) = G(0) =
R01 < 1, which implies |G(λ)| ≤ 1.

Thus for R01 < 1, all the eigenvalues of the charac-
teristics equation G(λ) = 1 has negative real parts.

Therefore, if R01 < 1, all eigenvalues are negative
and hence DFE P0 is locally asymptotically stable.

Now if we consider R01 > 1 i.e G(0) > 1, then

lim
λ→∞G(λ) = 0.

Then there exist λ∗
1 > 0 such that G(λ∗

1) = 1.
That means there exists positive eigenvalue λ∗

1 > 0
of the Jacobian matrix.

Hence, DFE P0 is unstable whenever R01 > 1. 	


3.1.4 Global stability of DFE:

Now set X1 = (Sh, Rh, Sc) and X2 = (I1, H1, I1, E1).
Then the system can be written on the set Ω , in a
pseudo-triangular form

Ẋ1 = A1(X)(X1 − X∗
1) + A12(X)X2

Ẋ2 = A2(X)X2 (3)

We express the sub-system Ẋ1 = A1(X)(X1 − X∗
1) +

A12(X)X2

Ṡh = Πh − μh Sh

Ṙh = −μh Rh

Ṡc = Πc − μcSc (4)

This is a linear systemwhich is globally asymptotically
stable at the equilibrium (

Πh
μh

, 0, Πc
μc

) corresponding to
the DFE which satisfies H1 and H2 [17].

The matrix A2(X) is given by A2(X) =⎛

⎜
⎜
⎜
⎝

−μc 0 β3
Sc
Nh

0
0 −(μh + k21 + δ1) η1 (1 − r1)γ1
0 0 −(μh + k11 + η1) r1γ1

βd
Sh
Nh

α1βh
Sh
Nh

βh
Sh
Nh

−(μh + γ1)

⎞

⎟
⎟
⎟
⎠

which is an irreducible matrix.
The upper bound for X ∈ Ω is given by Ā2 =

⎛

⎜
⎜
⎝

−μc 0 β3
Πc(μh+δ1)

Πhμc
0

0 −(μh + k21 + δ1) η1 (1 − r1)γ1
0 0 −(μh + k11 + η1) r1γ1
βd α1βh βh −(μh + γ1)

⎞

⎟
⎟
⎠

which is not attained on Ω and which is not the corre-
sponding block in Jacobian matrix of the system at the
DFE. Thus we obtain only sufficient condition.

It is straightforward to check that all hypothesis of
Theorem 4.3 of [17] are satisfied. Hence, we obtained
the condition

R01 + β3βdr1γ1Πcδ1

μ2
cΠh(μh + γ1)(μh + k11 + η1)

< 1

Which implies

R01 < 1 − β3βdr1γ1Πcδ1

μ2
cΠh(μh + γ1)(μh + k11 + η1)

= Rc
01 ≤ 1

Obviously R01 < Rc
01 and this condition is stronger.
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Theorem 2 The diseases free equilibrium(DFE) P0 =
(Sh, 0, 0, 0, Rh, Sc, 0) of the system (1) is globally sta-
ble if R01 < Rc

01.

3.1.5 Endemic equilibrium

In this section we discuss the existence of endemic
equilibria and its stability conditions. Let P∗ =
(S∗

h , E
∗
h , I

∗
h , H∗

h , R∗
h , S

∗
c , I

∗
c ) be an arbitrary endemic

equilibrium of the system (1). Therefore, equating the
right hand sides of the equations of system (1) to zero,
we have

S∗
h = 1

μh

[
Πh − (γ + μh)E

∗
h

]

I ∗
h = rγh

μh + k1 + η1
E∗
h

H∗
h = 1

b

{
(1 − r)γh + η1rγh

μh + k1 + η1

}
E∗
h

R∗
h = 1

μh

[ k1rγh
μh + k1 + η1

+ k2
b

{
(1 − r)γh + η1rγh

μh + k1 + η1

}]
E∗
h

S∗
c =

Πc
μh

[
Πh − δ

b

{
(1 − r)γh + η1rγh

μh+k1+η1

}
E∗
h

]

βcrγh
μh+k1+η1

E∗
h + μc

μh

[
Πh − δ

b

{
(1 − r)γh + η1rγh

μh+k1+η1

}
E∗
h

]

I ∗
c =

βcΠcrγh
μc(μh+k1+η1)

E∗
h

βcrγh
μh+k1+η1

E∗
h + μc

μh

[
Πh − δ

b

{
(1 − r)γh + η1rγh

μh+k1+η1

}
E∗
h

]

N∗
h = 1

μh

[
Πh − δ

b

{
(1 − r)γh + η1rγh

μh + k1 + η1

}
E∗
h

]

and E∗
h comes from the equation

f (E∗
h ) = Q1E∗

h
2 + Q2E∗

h + Q3 = 0 (5)

where,

Q1 = cβh

μh

(rγh
a

+ dα
)(μcδd

μh
− βcrγh

a

)

− c

μh

(μcδd

μh
− βcrγh

a

)
δd

Q2 = βhΠh

μh

(rγh
a

+ dα
)[(βcrγh

a
− μcδd

μh

)
− cμc

μh

]

−βdβcΠcrγhc

μhμca
− Πhc

μh

(βcrγh
a

− μcδd

μh

)

+Πhcμcδd

μ2
h

Q3 = Π2
h cμc

μ2
h

(R01 − 1)

Here

a = μh + k1 + η1,
b = μh + k2 + δ,
c = μh + γh ,

d = 1
b

{
(1 − r)γh + η1rγh

μh+k1+η1

}
.

Therefore, if R01 > 1, then endemic equilibriumexists.

Now E∗
h = −Q2±

√
Q2
2−4Q1Q3

2Q1

Case I If Q2
2 − 4Q1Q3 > 0, there may exist two

endemic equilibrium
Case II If Q2

2 − 4Q1Q3 = 0, there may exists
unique endemic equilibrium.
Case III IfQ2

2−4Q1Q3 < 0, there exist no endemic
equilibrium..

Now from theTables 3 and4, it is clear fromCase (II)
of both table that, the model (2) has a unique endemic
equilibrium whenever R01 > 1 and R01 < 1. In case
(I) in Table 4, we observed that, if Q1 < 0, Q2 > 0
and Q3 < 0 then the model (2) may have the possibil-
ity of backward bifurcation where stable disease-free
equilibrium coexists with a stable endemic equilibrium
whenever the basic reproduction number R01 is less
than unity. We explore the details analysis of back-
ward bifurcation in the next section. This phenomenon
is illustrated numerically by simulation of the model
(2)(See Fig. 2).

3.1.6 Backward bifurcation analysis

In this section, we explore the phenomenon of back-
ward bifurcation in system (1). First, we carry out
bifurcation analysis by applying the Center Manifold
Theorem [4]. Let x = (x1, x2, x3, x4, x5, x7)T =
(Sh, E1, I1, H1, Rh, Sc, Ic)T . Thus, the model (2) can
be re-written in the form dx

dt = f (x), with f (x) =
( f1(x), ..., f7(x)), as follows:

dx1
dt

= f1 = Πh − β1x1(x3 + α1x4)

x1 + x2 + x3 + x4 + x5

− βd x1x7
x1 + x2 + x3 + x4 + x5

− μhx1

dx2
dt

= f2 = β1x1(x3 + α1x4)

x1 + x2 + x3 + x4 + x5

− βd x1x7
x1 + x2 + x3 + x4 + x5

− (μh + γ1)x2,

dx3
dt

= f3 = r1γ1x2 − (μh + k11 + η1)x3,

dx4
dt

= f4 = (1 − r1)γ1x2 + η1x3 − (μh + k21 + δ1)x4,
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Table 3 When R01 > 1

Case Q1 Q2 Q3 Number of endemic equilibrium

1 + + + No endemic equilibrium

+ − + Two endemic equilibrium

− + + Unique endemic equilibrium

− − + Unique endemic equilibrium

2 + + + No endemic equilibrium

+ − + Unique endemic equilibrium

− + + Unique endemic equilibrium

− − + No endemic equilibrium

Table 4 When R01 < 1

Case Q1 Q2 Q3 Number of endemic equilibrium

1 + + − Unique endemic equilibrium

+ − − Unique endemic equilibrium

− + − Two endemic equilibrium

− − − No endemic equilibrium

2 + + − No endemic equilibrium

+ − − Unique endemic equilibrium

− + − Unique endemic equilibrium

− − − No endemic equilibrium

Fig. 2 Backward bifurcation diagram and related time series for
the single strain model 2. The region in the box is the bistable
zone. The following set of hypothetical parameter values are

used: Πh=0.007, Πc =0.4817, μh = 0.00154, μc = 0.009, βh =
0.200, βd = 0.0025, βc = 0.17, α = 0.005, γh =0.035, r = 0.98,
k1 = 0.001, k2 = 0.0039, η1 = 1.01 and δ =0.04

dx5
dt

= f5 = k11x3 + k21x4 − μhx5,

dx6
dt

= f6 = Πc − β3x6x3
x1 + x2 + x3 + x4 + x5

− μcx6,

dx7
dt

= f7 = β3x6x3
x1 + x2 + x3 + x4 + x5

− μcx7. (6)

The Jacobian of the system (6) at the DFE P0 is given
as,
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JP0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−μh 0 −β1 −α1β1 0 0 −βd

0 −(μh + γ1) β1 α1β1 0 0 βd

0 r1γ1 −(μh + k11 + η1) 0 0 0 0
0 (1 − r1)γ1 η1 −(μh + k21 + δ1) 0 0 0
0 0 k11 k21 −μh 0 0
0 0 −β3Πcμh

Πhμc
0 0 −μc 0

0 0 β3Πcμh
Πhμc

0 0 0 −μc

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

Choose β1 as the bifurcation parameter, then setting
R01 = 1 gives

β1 = β∗
1

= abc(μ2
cΠhac − β3βdr1γ1Πcμh)

μ2
cΠhac(r1γ1b + α1r1γ1η1 + α1(1 − r1)γ1a)

(7)

The system (6) at the DFE P0 evaluated for β1 = β∗
1

has a simple zero eigenvalue and all other eigenvalues
having negative real parts. Hence, we apply the Center
Manifold Theorem to analyze the dynamics of (6) near
β1 = β∗

1 .
The Jacobian of (6) at β1 = β∗

1 denoted by
JP0 |β1 = β∗

1 has a right eigenvector (associated with
the zero eigenvalue) givenbyw = (w1, w2, w3, w4, w5,

w6, w7)
T , where

w1 = − (μh + γ1)

μh
w2, w2 = w2 > 0,

w3 = r1γ1
(μh + k11 + η1)

w2,

w4 = (1 − r1)γ1(μh + k11 + η1) + η1r1γ1
(μh + k11 + η1)(μh + k21 + δ1)

w2,

w5 = k11w3 + k21w4

μh
,

w6 = − β3Πcμhr1γ1
Πhμ2

c(μh + k11 + η1)
w2,

w7 = β3Πcμhr1γ1
Πhμ2

c(μh + k11 + η1)
w2. (8)

Similarly, from JP0 |β1 = β∗
1 , we obtain a left eigen-

vector v = (v1, v2, v3, v4, v5, v6, v7)
T (associated

with the zero eigenvalue), where

v1 = 0, v2 = v2 > 0, v3

= 1

(μh + k11 + η1)

[
β1 + α1β1η1

(μh + k21 + δ1)

+ βdΠcμh

Πhμ2
c

]
v2,

v4 = α1β1

(μh + k21 + δ1)
v2, v5 = 0, v6 = 0, v7 = βd

μc
v2.

(9)

To show the existence of backward bifurcation, we
calculate the following second-order partial derivatives
of fi at the disease-free equilibrium ε0 and obtain

∂ f2
∂x3∂x2

= ∂ f2
∂x2∂x3

= ∂ f2
∂x5∂x3

= ∂ f2
∂x3∂x5

= −β1μh

Πh
,

∂ f2
∂x7∂x2

= ∂ f2
∂x7∂x3

= ∂ f2
∂x7∂x4

= ∂ f2
∂x7∂x5

= ∂2 f2
∂2x2∂x6

= ∂2 f2
∂x3∂x6

= ∂2 f2
∂x4∂x6

= ∂2 f2
∂x5∂x6

= −βdμh

Πh
,

∂2 f2
∂x3∂x3

= − 2β1μh

Πh
,

∂2 f2
∂x4∂x2

= ∂2 f2
∂x2∂x4

= ∂2 f2
∂x5∂x4

= ∂2 f2
∂x4∂x5

= −α1β1μh

Πh
,

∂2 f2
∂x4∂x4

= − 2α1β1μh

Πh
,

∂2 f2
∂x4∂x3

= −
(β1μh

Πh
+ α1β1μh

Πh

) ∂2 f7
∂x3∂x1

= ∂2 f7
∂x3∂x2

= ∂2 f7
∂x1∂x3

= ∂2 f7
∂x2∂x3

= ∂2 f7
∂x4∂x3

= ∂2 f7
∂x5∂x3

= −β3Πcμh

Πhμc
,

∂2 f7
∂x3∂x3

= − 2β3Πcμh

Πhμc
,

∂2 f7
∂x6∂x3

= ∂2 f7
∂x3∂x6

= β3μh

Πh
,

∂2 f7
∂x3∂x4

= ∂2 f7
∂x3∂x5

= −β3Πcμh

Πhμc
(10)

Now we calculate the coefficients a and b defined in
Theorem 4.1 [4] of Castillo-Chavez and Song as follow
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a =
6∑

k,i, j=1

vkwiw j
∂2 fk(0, β∗)

∂xi∂x j

= 2Πcμhv7β3

Πhμc

× (w3w6 − w3(w1 + w2 + w3 + w4 + w5))

− 2β1v2μh

Πh
(w2w3 + w3w3

+ w2w4 + (1 + α1)w3w4 + w3w5

+ α1w4w4 + +α1w4w5)

− 2v2μh

Πh
βdw7(w2 + w3 + w4 + w5) (11)

and

b =
6∑

k,i=1

vkwi
∂2 fk(0, 0)

∂xi∂β
= v2(w3 + α1w4) > 0.

(12)

Since the coefficient b is always positive, system (1)
undergoes backward bifurcation at R01 = 1, if a > 0,
namely if

β3 >
μcβ1v2(w2w3 + w3w3 + w2w4 + (1 + α1)w3w4 + w3w5 + α1w4w4 + α1w4w5) + μcv2βdw7(Zw − w1)

v7β3Πc(w3w6 − w3Zw)
,

(13)

where, Zw = w1 + w2 + w3 + w4 + w5.
We have established the following conclusion.

Theorem 3 System (1) undergoes a backward bifur-
cation at R01 = 1 whenever the inequality 13 holds.

We numerically shown the existence of backward
bifurcation for themodel (2), which verifies our analyt-
ical finding. The bifurcation diagram and related time
series is presented in Fig. 2.

This implies that even if the basic reproduction num-
ber is less than unity, the diseasemay not be eradicated.
To ensure the global stability of DFE one must reduce
R01 below a certain threshold namely, Rc

01.

4 Two strain model analysis

4.1 Diseases-free equilibrium and basic reproduction
number

The diseases-free equilibrium can be obtained for the
system (2) by putting E1 = 0, E2 = 0, I1 = 0, I2 =
0, H1 = 0, H2 = 0, Ic = 0, which is denoted by P01 =
(Sh, 0, 0, 0, 0, 0, 0, Rh, Sc, 0), where

Sh = Πh

μh
, Sc = Πc

μc
, Rh = 0.

4.1.1 Basic reproduction number

The basic reproduction number has been computed by
next generation approach [16]. It is defined as the aver-
age number of secondary infections produced by a sin-
gle infected individual in a susceptible population and
it is given as

R0 = max{R01, R02}

where

R0i = βi riγi
(μh + γi )(μh + k1i + η1)

+ αiβi riγiηi
(μh + γi )(μh + k1i + ηi )(μh + k2i + δi )

+ αiβi (1 − ri )γi
(μh + γi )(μh + k2i + δi )

+ βi+2βdriγiΠcμh

μ2
cΠh(μh + γi )(μh + k1i + ηi )
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Fig. 3 Time series for the full model 1 showing bistability of the equilibrium values

Table 5 Normalized sensitivity indices

Xβ1
R0

Xβ3
R0

Xβd
R0

Xr1
R0

Xk11
R0

Xk21
R0

0.0431 0.9569 0.9568 0.9392 −0.9797 −0.0183

4.2 Backward bifurcation analysis of the full model

We could not analytically find the conditions for the
existence of backward bifurcation in case of the full
model. Thus, we checked numerically whether this
phenomenon occurs for the full model or not. Inter-
estingly, we find parameters for which the full model
undergoes bistable dynamics even if the basic repro-
duction number is below unity. The time series of bista-
bility is depicted in Fig. 3.

The following set of hypothetical parameter values
are used: Πh=0.007, Πc =0.4817, m = 0.5, α1 = α2 =
0.0005; γ1 = γ2 = 0.035; μh = 0.00154, μc = 0.009,
β1 = 0.2; β2 = 0.17; β3 = 0.2; β4 = 0.17; βd=0.0025;
r1 = 0.98, r2=0.7; k11 = k21 = 0.001, k12 = 0.0039,
k22 = 0.0017 η1 = η2 = 1.01 and δ1 = δ2 =0.04. For
this parameter values, the basic reproduction number is
found to be 0.7941 < 1. This indicates that backward
bifurcation or existence of bistability for R0 < 1 is an
inherent property of MERS-CoV transmission dynam-
ics. In turn, this point out that the control efforts will
need more careful considerations.

4.3 Normalized sensitivity analysis

Due to the complex dynamical behavior of the model,
we calculate the normalized sensitivity indices of the
model parameters with respect to R0 in order to find the
most influential parameters. We consider the following
parameters for this analysis: β1, β2, β3, β4, βd , r1, r2,
k11, k12, k21 and k22. We use the parameter values from
Table 2 for the baseline values. However, the mathe-
matical definition of the normalized forward sensitiv-
ity index of a variable z with respect to a parameter
τ (where z depends explicitly on the parameter τ ) is
given as:

X τ
z = ∂z

∂τ
× τ

z
.

It is important to note that we used the following
expression for R0: R0 = R01+R02+|R01−R02|

2 . The sensi-
tivity indices of R0 with respect to the most important
parameters are given in Table 5.

All other parameters have sensitivity indices less
than0.001.However, the fact that Xβ1

R0
= 0.0431means

that if we increase 1% in β1, keeping other parameters
fixed, will produce 0.0431% increase in Rc. Similarly,
Xk21
R0

= −0.0183 means increasing the parameter k21
by 1%, the value of R0 will be decreased by 0.0183%
keeping the value of other parameters be fixed. Bio-
logically, this indicates that the transmission rate from

123



2986 I. Ghosh et al.

strain-1 infected humans to susceptible camels and
transmission rate from camels to susceptible humans
are very crucial. These two quantities can be decreased
by using personal protection measures. On the other
hand, the recovery rate of un-notified infected with
strain-1 should be increased to reduce the R0 below
unity. This can be achieved by tracing and treating un-
notified infected humans with strain-1.

4.4 Optimal control analysis

In countries such as Saudi Arabia, Republic of Korea,
United Arab Emirates etc, MERS-CoV is of great con-
cern. For MERS-CoV transmission dynamics we for-
mulate an optimal control problem [25]. The goal here
is to demonstrate that time-dependent anti-MERS con-
trol strategies that can be implemented while minimiz-
ing the cost of implementing these measures. There are
several controlmechanisms that are put in place tomin-
imize disease transmission. We consider four types of
individual controlmechanisms tomitigateMERS-CoV
in the community. These single strategies are explained
below:

1. Personal protection (u1(t)): Preventing transmis-
sion of MERS-CoV in society requires the appli-
cation of personal protective measures such as the
use of face masks [7]. In this strategy, the suscep-
tible humans are expected to reduce contacts with
infected humans and camels.

2. Isolationof strain-1 infectednotifiedpeople (u2(t)):
In this control mechanism, the strain-1 infected
people who are notified are isolated from the other
patients. These patients are given special attention
so as to reduce contact with other people.

3. Isolationof strain-2 infectednotifiedpeople (u3(t)):
Similarly, strain-2 infected people who are notified
are specially isolated.

4. Isolationof infected camels (u4(t)): Infected camels
are to be found and are to be isolated in a special
healthcare setting.

Note that for bounded Lebesgue measurable con-
trols and non-negative initial conditions, non-negative
bounded solutions to the state system exist [22]. The
control functions u1(t), u2(t), u3(t) and u4(t) are
bounded and Lebesgue integrable functions, where the
associated force of infection in the human population
is reduced by a factor of (1 - u1(t)), where u1(t) mea-
sures the level of successful prevention efforts and the

control functions u2(t), u3(t) and u4(t) represent the
isolation of notified humans infected with strain-1 or
strain-2 and isolation of infected camels, respectively.

Taking the above-mentioned interventions into
account, the model (1) takes the following form

dSh
dt

= Πh − β1
(1 − u1)Sh

Nh
(I1 + α1H1)

−β2
(1 − u1)Sh

Nh
(I2 + α2H2)

−βd
(1 − u1)Sh

Nh
Ic − μh Sh,

dE1

dt
= β1

(1 − u1)Sh
Nh

(I1 + α1H1)

+mβd
(1 − u1)Sh

Nh
Ic − μh E1 − γ1E1,

dE2

dt
= β2

(1 − u1)Sh
Nh

(I2 + α2H2)

+(1 − m)βd
(1 − u1)Sh

Nh
Ic − μh E2 − γ2E2,

dI1
dt

= r1γ1E1 − (μh + k11 + η1)I1,

dI2
dt

= r2γ2E2 − (μh + k12 + η2)I2,

dH1

dt
= (1 − r1)γ1E1 + η1 I1

−(μh + k21 + δ1)H1 − u2H1,

dH2

dt
= (1 − r2)γ2E2 + η2 I2

−(μh + k22 + δ2)H2 − u3H2,

dRh

dt
= k11 I1 + k12 I2 + k21H1 + k22H2 − μh Rh,

dSc
dt

= Πc − β3
Sc I1
Nh

− β4
Sc I2
Nh

− μcSc,

dIc
dt

= β3
Sc I1
Nh

+ β4
Sc I2
Nh

− μc Ic − u4 Ic. (14)

The problem is to minimize the cost function [12,
20,25] given as follows:

J (u1, u2, u3, u4)

=
∫ T

0
(C1H1 + C2H2 + C3 Ic + 1

2
C4u

2
1

+ 1

2
C5u

2
2 + 1

2
C6u

2
3 + 1

2
C7u

2
4)dt (15)

subject to the state system given by (14). The goal is to
minimize the hospitalized infected human populations,
infected camel population and the cost of implement-
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ing the control. Basically, we assume that the costs are
proportional to the square of the corresponding control
function. Our goal is to find optimal control functions
(u∗

1, u
∗
2, u

∗
3, u

∗
4) such that

J (u∗
1, u

∗
2, u

∗
3, u

∗
4)

= min{J (u1, u2, u3, u4)|(u1, u2, u3, u4) ∈ Γ }

subject to the system of equations given by (14), where

Γ = {(u1, u2, u3, u4)|ui (t) is Lebesgue measurable

on [0, T ], 0
≤ ui (t) ≤ bi , i = 1, 2, 3, 4} (16)

is the control set.
Pontryagin’smaximumprinciple [20] can be applied

to find the optimal rates of different interventions and
layered combinations. This principle converts system
(14) into a minimizing problem. The Hamiltonian H ,
with respect to u1, u2, u3 and u4, can be written as:

H = (C1H1 + C2H2 + C3 Ic + 1

2
C4u

2
1 + 1

2
C5u

2
2

+ 1

2
C6u

2
3 + 1

2
C7u

2
4)

+ λ1

[
Πh − β1

(1 − u1)Sh
Nh

(I1 + α1H1)

− β2
(1 − u1)Sh

Nh
(I2 + α2H2)

− βd
(1 − u1)Sh

Nh
Ic − μh Sh

]

+ λ2

[
β1

(1 − u1)Sh
Nh

(I1 + α1H1)

+ mβd
(1 − u1)Sh

Nh
Ic − μh E1 − γ1E1

]

+ λ3

[
β2

(1 − u1)Sh
Nh

(I2 + α2H2)

+ (1 − m)βd
(1 − u1)Sh

Nh
Ic − μh E2 − γ2E2

]

+ λ4[r1γ1E1 − (μh + k11 + η1)I1]
+ λ5[r2γ2E2 − (μh + k12 + η2)I2]
+ λ6[(1 − r1)γ1E1 + η1 I1

− (μh + k21 + δ1)H1 − u2H1]
+ λ7[(1 − r2)γ2E2 + η2 I2

− (μh + k22 + δ2)H2 − u3H2]
+ λ8[k11 I1 + k12 I2 + k21H1 + k22H2 − μh Rh]

+ λ9

[
Πc − β3

Sc I1
Nh

− β4
Sc I2
Nh

− μcSc
]

+ λ10

[
β3

Sc I1
Nh

+ β4
Sc I2
Nh

− μc Ic − u4 Ic
]

(17)

where λi , i = 1, ...., 10 are the adjoint variables. In the
following theorem, we present the adjoint system and
control characterization. To simplify notation, we let
h̄ = 1

Nh
.

Theorem 4 Given an optimal control (u∗
1, u

∗
2, u

∗
3, u

∗
4),

and corresponding state solutions Sh, E1, E2, I1, I2,
H1, H2, Rh, Sc, Ic of the corresponding state system
(14), there exists adjoint variables,λi ,for i = 1, ..., 10,
satisfying

∂λ1

∂t
= −(λ2 − λ1)[β1(1 − u1(t))(I1 + α1H1)(h̄ − Sh h̄

2)]
− (λ3 − λ1)[β2(1 − u1(t))(I2 + α2H2)(h̄ − Sh h̄

2)]
− (λ2m + λ3(1 − m) − λ1)

[βd (1 − u1(t))Ic(h̄ − Sh h̄
2)] + λ1μh,

∂λ2

∂t
= −(λ1 − λ2)[β1(1 − u1(t))Sh(I1 + α1H1)h̄

2]
− (λ1 − λ3)[β2(1 − u1(t))Sh(I2 + α2H2)h̄

2]
− (λ1 − λ2m + λ3(1 − m))[βd (1 − u1(t))Sh Ich̄

2]
+ λ2(μh + γ1) − (λ4 − λ6)r1γ1 − λ6γ1,

∂λ3

∂t
= −(λ1 − λ2)[β1(1 − u1(t))Sh(I1 + α1H1)h̄

2]
− (λ1 − λ3)[β2(1 − u1(t))Sh(I2 + α2H2)h̄

2]
− (λ1 − λ2m + λ3(1 − m))[βd (1 − u1(t))Sh Ich̄

2]
+ λ3(μh + γ2) − (λ5 − λ7)r2γ2 − λ7γ2,

∂λ4

∂t
= −(λ2 − λ1)[β1(1 − u1(t))Sh(h̄ − (I1 + α1H1)h̄

2)]
− (λ1 − λ3)[β2(1 − u1(t))Sh(I2 + α2H2)h̄

2]
− (λ1 − λ2m − λ3(1 − m))[βd (1 − u1(t))Sh Ich̄

2]
+ λ4(μh + k11 + η1) − λ6η1 − λ8k11

− (λ10 − λ9)[β3Sc(h̄ − I1h̄
2) − β4Sc I2h̄

2]
∂λ5

∂t
= −(λ1 − λ2)[β1(1 − u1(t))Sh(I1 + α1H1)h̄

2]
− (λ3 − λ1)[β2(1 − u1(t))Sh(h̄ − (I2 + α2H2))h̄

2]
− (λ1 − λ2m + λ3(1 − m))[βd (1 − u1(t))Sh Ich̄

2]
+ λ5(μh + k12 + η2) − λ7η2 − λ8k12

− (λ9 − λ10)[β3Sc I1h̄
2 − β4Sc(h̄ − I2h̄

2)]
∂λ6

∂t
= −C1 − (λ2 − λ1)

[β1(1 − u1(t))Sh(α1h̄ − (I1 + α1H1)h̄
2)] − (λ1 − λ3)

[β2(1 − u1(t))Sh(I2 + α2H2)h̄
2]

− (λ1 − λ2m − λ3(1 − m))[βd (1 − u1(t))Sh Ich̄
2]
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+ λ6[(μh + k21 + δ1) + u2(t)] − λ8k21

− (λ9 − λ10)[β3Sc I1h̄
2 + β4Sc I2h̄

2]
∂λ7

∂t
= −C2 − (λ1 − λ2)[β1(1 − u1(t))Sh(I1 + α1H1)h̄

2]
− (λ3 − λ1)[β2(1 − u1(t))Sh(α2h̄ − (I2 + α2H2))h̄

2]
− (λ1 − λ2m − λ3(1 − m))[βd (1 − u1(t))Sh Ich̄

2]
+ λ7[(μh + k22 + δ2) + u3(t)] − λ8k22

− (λ9 − λ10)[β3Sc I1h̄
2 + β4Sc I2h̄

2]
∂λ8

∂t
= −(λ1 − λ2)[β1(1 − u1(t))Sh(I1 + α1H1)h̄

2]
− (λ1 − λ3)[β2(1 − u1(t))Sh(I2 + α2H2)h̄

2]
− (λ1 − λ2m − λ3(1 − m))[βd (1 − u1(t))Sh Ich̄

2]
+ λ8μh − (λ9 − λ10)[β3Sc I1h̄

2 + β4Sc I2h̄
2]

∂λ9

∂t
= −(λ10 − λ9)

[β3 I1(h̄ − Sch̄
2) + β4 I2(h̄ − Sch̄)]

∂λ10

∂t
= −C3 − (λ3(1 − m) + λ2m − λ1)

[βd (1 − u1(t))Shh̄] + λ10(μc + u4(t)). (18)

The terminal conditions are

λi (T ) = 0 for i = 1, ......, 10. (19)

Furthermore, the optimal controls u∗
1, u

∗
2, u

∗
3, u

∗
4 and

are represented by

u∗
1 = max

{
0,min

{
1,

1

C4
[β1Shh̄(I1 + α1H1)(λ2 − λ1)

+ β2Shh̄(I2 + α2H2)(λ3 − λ1)

+ βd Sh Ich̄(λ3(1 − m) + λ2m − λ1)]
}}

u∗
2 = max

{
0,min

{
1,

1

C5
λ6H1

}}

u∗
3 = max

{
0,min

{
1,

1

C6
λ7H2

}}

u∗
4 = max

{
0,min

{
1,

1

C7
λ10 Ic

}}
(20)

Proof The adjoint system results from Pontryagin’s
maximum Principle [20]

∂λ1

∂t
= − ∂H

∂Sh
,
∂λ2

∂t
= − ∂H

∂E1
, .....,

∂λ10

∂t
= −∂H

∂ Ic

with zero final time conditions (transversality).
To get the characterization of the optimal control

given by (20), we solve the equations on the interior of

Table 6 Cost effectiveness of control strategies

Strategies ACER IAR

u1 + u4 0.2793 0.0268

u1 + u2 + u3 57.6686 0.0126

u1 + u2 + u4 0.2798 0.0264

u1 + u3 + u4 0.2815 0.0261

u2 + u3 + u4 36.4612 0.0152

u1 + u2 + u3 + u4 35.9899 0.0153

the control set,

∂H

∂u1
= 0,

∂H

∂u2
= 0,

∂H

∂u3
= 0,

∂H

∂u4
= 0

Using the bounds on the controls, we obtain the desired
characterization. 	


The optimality system consists of the state system
(14) with the initial conditions, the adjoint system with
the terminal conditions and the control characteriza-
tion.

We now numerically study the optimal strategies for
the effect of combined control interventions by using
a forward backward sweep fourth order Runge–Kutta
method. The objective is to optimize the controls, u1,
u2, u3 and u4. The values for the parameters used are
given in Table 2 and the cost coefficients are taken as
C1 = 300, C2 = 300, C3 = 100, C4 = 50, C5 = 400,
C6 = 400 and C7 = 200. We consider six scenar-
ios combining the four individual controls. We calcu-
late two quantities to distinguish between interventions
strategies, Infection Averted Ratio (IAR) and Average
Cost-Effectiveness Ratio (ACER) [25]. IAR andACER
are defined as follows:

IAR = Number of infection averted

Number of successfully recovered
,

ACER = Total cost of intervention

Number of infection averted
.

These two measures are reported in the Table 6.
These values indicate that combination of u1 and u4
is the best strategy to apply. We further give the graph-
ical representation of the cases and control profiles in
Figs. 4 and 5 respectively.

These results indicate that reducing the contactswith
infected people as well as infected camels along with
isolation of infected camels is a very useful control
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Fig. 4 Time series in presence of optimal control and without
control for aUn-notified cases with strain-1, bUn-notified cases
with strain-2, cNotified cases with strain-1, dNotified cases with

strain-1 and e infected camels. The optimal control strategy is the
combination of U1(t) and U4(t)
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Fig. 5 Time evolution of optimal control profiles a u1(t) and b u4(t)

strategy. This strategy is themost cost effective in terms
of ACER and IAR.

5 Discussion and conclusion

In this paper, we introduce a general autonomous
model that considers human and camel populations
and probe further to understand the effect of optimal
control strategies on the MERS-CoV infected popu-
lations. We mathematically analyze the single strain
model to derive the basic reproduction number R01 for
the model and show that the disease-free equilibrium
of the proposedmodel is globally asymptotically stable
if R01 < Rc

01 < 1. Further, we prove the existence of
backward bifurcation phenomenon for the single strain
version of the proposed model under some paramet-
ric conditions. We also numerically showed the exis-
tence of backward bifurcation, see Fig. 2. The basic
reproduction number (R0) of the full model is obtained
and we numerically depicted the bistability even if
R0 < 1, see Fig. 3. Thus, the existence of bistabil-
ity may be an inherent property of the MERS-CoV
transmission dynamics. This phenomenon also indi-
cates that the control interventions will require addi-
tional efforts to eradicate the disease from the commu-
nity. To find the most influential parameters on R0, we
performed the normalized sensitivity analysis. Results
indicate that, transmission rate from strain-1 infected
humans to susceptible camels and transmission rate
from camels to susceptible humans cam be decreased
by using personal protection measures to reduce the

epidemic potential. Additionally, the recovery rate of
un-notified infected with strain-1 should be increased
to reduce the R0 below unity. This can be achieved by
finding and treating un-notified infected humans with
strain-1.

Timedependent intervention strategies canbe imple-
mented to curtail a disease on a finite time interval.
Using optimal control analysis, we further investigated
the effects of intervention strategies on infected human
and camel populations in the model (1). We consider
four types of control, i.e. effect of self-protection mea-
sures by susceptible humans, the isolation of notified
humans infected with strain-1 or strain-2 and isola-
tion of infected camels. Optimal control policy sug-
gests that the combination of self-protection measures
by susceptible humans and isolation of infected camels
give cost-effective and efficient results for reducing dis-
ease prevalence. From Fig. 4, it can be observed that
this combination strategy significantly reducesMERS-
CoV cases. Finally, we conclude that cutting the trans-
mission cycle between camels and humans is the key
factor to eradicate the disease from the community.
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