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Abstract In this paper vibrations of the isotropic
micro/nanoplates subjected to transverse and in-plane
excitation are investigated. The governing equations
of the problem are based on the von Kármán plate
theory and Kirchhoff–Love hypothesis. The small-size
effect is taken into account due to the nonlocal elas-
ticity theory. The formulation of the problem is mixed
and employs the Airy stress function. The two-mode
approximation of the deflection and application of the
Bubnov–Galerkin method reduces the governing sys-
tem of equations to the system of ordinary differential
equations. Varying the load parameters and the nonlo-
cal parameter, the bifurcation analysis is performed.
The bifurcations diagrams, the maximum Lyapunov
exponents, phase portraits as well as Poincare maps
are constructed based on the numerical simulations. It
is shown that for some excitation conditions the chaotic
motion may occur in the system. Also, the small-scale
effects on the character of vibrating regimes are illus-
trated and discussed.
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1 Introduction

In recent years, a large number of studies of micro- and
nanoobjects, such as micro/nanobeams, micro/nano-
plates, and micro/nanoshells, have appeared. This is
primarily due to their widespread use in various mod-
ern applications as nano-electromechanical systems
(NEMS), micro-electromechanical systems (MEMS),
nano-optomechanical structures, sensors, resonators,
DNA detectors, energy storage systems and so on [7,
8,16,19,23,50]. In this paper we consider a graphene
sheet subjected to in-plane and transverse excitation.
It is known that this material has excellent mechani-
cal, thermal, electrical and magnetic properties, which
makes it useful in mechanical, chemical and biomed-
ical applications. It should be noted that experimental
and numerical studies helped to find out that the classi-
cal theory for such problems is insufficient, and gives
incorrect outcomes [9,22]. Moreover, in the case of
micro/nanostructures it is needed to pay attention to
small-scale effects appearing when the sizes of plates
are in micro/nanoscale. This fact led to the develop-
ment of higher-order continuum theories: the theory
of micropolar elasticity [10], the couple stress theory
[18,27,38], the nonlocal elasticity theory, the strain gra-
dient theory [22] and the modified couple stress theory
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[49]. The presented investigation is based on the non-
local elasticity theory proposed by Eringen [12] and on
the fact that the stress at a given point is a function of
strains at all other points in the body. The governing
equations, in that case, contain the nonlocal parame-
ter, which depends on the internal characteristic length
(distance between C–C bonds, lattice parameter), and
constant corresponding to thematerial for adjusting the
model to experimental results or molecular dynamics
results [11,12].

A number of studies devoted to the behaviour of
nanotubes based on the nonlocal theory were carried
out. It needs to be mentioned the work of Nematollahi
et al. [30], where fluttering and divergence instability
of functionally graded viscoelastic nanotubes convey-
ing fluid are discussed. The vibrations of carbon nan-
otubes are considered in works of Wang et al. [44–46]
including the cases of viscous fluid loading and the
parametric excitation. Concerning the investigation of
nanoplate vibrations, based on the nonlocal elasticity
theory, most of the researches studied linear vibrations
and analysed the influence of certain parameters on
the linear frequency values. Lu et al. [24] analysed the
vibrations and bending of simply supported plates and
compared the results of the nonlocal theory with cor-
responded local solutions. The classical plate theory
as well as the first-order shear deformation theory are
applied by Pradhan and Phadikar [31] for linear anal-
ysis of nanoplates vibration problems. Vibrations and
buckling of nanoplates are investigated with the finite
strip method by Analooei et al. [2]. Aghababaei and
Reddy [1] used the nonlocal third-order shear deforma-
tion plate theory in the analysis of bending and vibra-
tion of plates. Influence of elasticmediumon the vibrat-
ing process is studied in [6,36,37].

It is worth tomention a number ofworks, where geo-
metrically nonlinear stability and vibrations of plates
are investigated. These works include the paper of
Jomehzadeh et al. [17], where the nonlinear vibra-
tions of isotropic nanoplates are studied. The nonlinear
stability of orthotropic single-layered graphene sheet
is studied by Asemi et al. [3]. Setoodeh et al. [34]
investigated the nonlinear vibrations of the orthotropic
Mindlin plate by the differential quadrature method.
Gholami et al. [14] studied the nonlinear vibrations
of multiferroic composite rectangular nanoplates rest-
ing on an elastic foundation by the generalized differ-
ential quadrature method. The nonlinear vibrations of
viscoelastic double-layered plates with several types

of boundary conditions were studied by Wang et al.
[41,43]. The influence of magnetic and electric excita-
tion on the nonlinear vibrations was studied in [13,25].

In the above-mentioned works devoted to the micro/
nanoplates dynamics, the regular vibrations are anal-
ysed. However, as shown in works [5,15,21,35] vibrat-
ing process in dissipative systems under certain loading
conditions can change its character and transition from
periodic regimes to chaos is possible. The detection of
such chaotic zones is a very important study, by rea-
son of the fact, that in the case of chaotic vibrations,
the behaviour of a dynamic systembecomes poorly pre-
dicted, whichmay have undesirable consequences. The
complicated nonlinear dynamics inmicro/nanosystems
has not been studied sufficiently until now. There is a
small number of such works among which the paper of
Krysko et al. [20], where chaotic vibrations based on
the modified couple stress theory are considered and
the effect of the material length-scale parameter on
nanoshell vibrations is studied. Wang et al. [42] per-
formed the nonlocal chaotic and homoclinic investiga-
tion of double-layered viscoelastic nanoplates.

In the present work, the nonlinear vibrations of
micro/nanoplates are studied. The formulation of the
problem is based on the nonlocal elasticity theory, von
Kármán plate theory, and employs the Airy stress func-
tion. The proposed algorithm implies double mode
approximation of deflection and presentation of stress
function as a solution of nonlocal compatibility equa-
tion. The application of Bubnov–Galerkin method
reduces the governing system to the system of the ordi-
nary differential equations, where coefficients contain
the nonlocal parameter. The numerical simulation of
the problem is performed for isotropic simply sup-
ported graphene sheet. The approaches of nonlinear
dynamics for detection of chaotic regimes are applied
[4,28,29]. Therefore, the bifurcation diagrams, phase
plots, Poincare maps and the largest Lyapunov expo-
nents are presented and the obtained results are dis-
cussed.

The manuscript consists of five sections. Following
the introduction, Sect. 2 describes themathematical for-
mulation of the problem. Themethod of investigation is
discussed in Sect. 3. The validation of the problem and
the results of the numerical investigation are included
in Sect. 4. . The last section is aimed at the conclusion
of the study.
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Fig. 1 Rectangular plate subjected to in-plane loads and trans-
verse periodic force

2 Mathematical formulation

For geometrically nonlinear vibrations analysis of the
isotropic micro/nanoplates the von Kármán theory, the
Kirchhoff’s hypotheses and the nonlocal elasticity the-

ory are employed. Based on the nonlocal theory of elas-
ticity the constitutive relation for the nonlocal stress
tensor at a point x is presented in integral form as fol-
lows:

σ =
∫
V
K

(|X ′ − X |, τ)
σ ′(X ′)dX ′, (1)

where σ , σ ′ are nonlocal and local stress tensors,
K

(||X ′ − X ||, τ)
is the nonlocal modulus, τ = e0α/ l,

α stands for the internal characteristic length, e0 is a
constant appropriate to material and l is external char-
acteristics length. The differential form [12] of the non-
local constitutive relation, which is more often used,
has the following form:(
1 − μ∇2

)
σ = σ ′, (2)

whereμ = (e0α)2 is nonlocal parameter, and∇2 is theLapla-
cian operator. For isotropic micro/nanoplate the relation (2)
is transformed to the form:

Fig. 2 Bifurcation
diagrams for y1 (a), y2 (b)
with bifurcation parameter
ξp and fixed parameters
μ = 0, σ = 2
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⎡
⎣σxx

σyy
σxy

⎤
⎦ − μ∇2

⎡
⎣σxx

σyy
σxy

⎤
⎦ =

⎡
⎢⎣

E
1−ν2

νE
1−ν2

0
νE
1−ν2

E
1−ν2

0

0 0 E
2(1+ν)

⎤
⎥⎦

⎡
⎣εxx

εyy
εxy

⎤
⎦ .

(3)

In (3) E is Young’s modulus and ν is Poisson’s ratio.
As follows from the von Kármán nonlinear theory, the
components of strain tensor for Kirchhoff’s plate are
presented as follows [40]:

εxx = ε0xx + zkxx , εyy = ε0yy + zkyy,

εxy = ε0xy + zkxy,

ε0xx = ∂u

∂x
+ 1

2

(
∂w

∂x

)2

, kxx = −∂2w

∂x2
,

ε0yy = ∂v

∂y
+ 1

2

(
∂w

∂y

)2

, kyy = −∂2w

∂y2
,

ε0xy = ∂u

∂y
+ ∂v

∂x
+ ∂w

∂x

∂w

∂y
, kxy = −2

∂2w

∂x∂y
.

(4)

Differentiation and transformation of the relations (4)
give the compatibility equation for strains in themiddle
surface:

∂2ε0xx

∂y2
+ ∂2ε0yy

∂x2
− ∂2ε0xy

∂x∂y
=

(
∂2w

∂x∂y

)2

− ∂2w

∂x2
∂2w

∂y2
.

(5)

The system of the governing equations is employed
based on the Hamilton’s principle:

∂Nx

∂x
+ ∂Nxy

∂y
= ρh

∂2u

∂t2
,

∂Nxy

∂x
+ ∂Ny

∂y
= ρh

∂2v

∂t2
, (6)

∂2Mx

∂x2
+ 2

∂2Mxy

∂x∂y
+ ∂2My

∂y2
=

− ∂

∂x

(
Nx

∂w

∂x
+ Nxy

∂w

∂y

)

− ∂

∂y

(
Nxy

∂w

∂x
+ Ny

∂w

∂y

)
+

+δ0
∂w

∂t
+ ρh

∂2w

∂t2
− qt , (7)

where h is the thickness of the micro/nanoplate, ρ

stands for the density of the plate, δ0 is damping coeffi-
cient, whereas qt is the transverse force. The resultant
in-plane forces andmoments are derived by the follow-
ing formulas:

Nx =
∫ h

2

−h
2

σxxdz, Ny =
∫ h

2

−h
2

σyydz,

Nxy =
∫ h

2

−h
2

σxydz,

(8)

Mx =
∫ h

2

−h
2

σxx zdz, My =
∫ h

2

−h
2

σyyzdz,

Mxy =
∫ h

2

−h
2

σxyzdz.

(9)

Taking into account relations (3) and (8), (9) one can
obtain the following equations:

⎡
⎣ Nx

Ny

Nxy

⎤
⎦ − μ∇2

⎡
⎣ Nx

Ny

Nxy

⎤
⎦

= h

⎡
⎢⎣

E
1−ν2

νE
1−ν2

0
νE
1−ν2

E
1−ν2

0

0 0 E
2(1+ν)

⎤
⎥⎦

⎡
⎣ε0xx

ε0yy
ε0xy

⎤
⎦ ,

(10)

⎡
⎣ Mx

My

Mxy

⎤
⎦ − μ∇2

⎡
⎣ Mx

My

Mxy

⎤
⎦ =

= h3

12

⎡
⎢⎣

E
1−ν2

νE
1−ν2

0
νE
1−ν2

E
1−ν2

0

0 0 E
2(1+ν)

⎤
⎥⎦

⎡
⎣kxx
kyy
kxy

⎤
⎦ .

(11)

The formulas (4) allow to rewrite equations (11) into
the following counterpart form:

Mx − μ∇2Mx = −D(
∂2w

∂x2
+ ν

∂2w

∂y2
),

My − μ∇2My = −D(ν
∂2w

∂x2
+ ∂2w

∂y2
),

Mxy − μ∇2Mxy = −D(1 − ν)
∂2w

∂x∂y
, (12)

where D = Eh3

12(1−ν2)
acts as flexural nanoplate rigidity.

Following the study [21,35,40], let us introduce the
Airy stress function F as follows:

Nx = ∂2F

∂y2
, Ny = ∂2F

∂x2
, Nxy = − ∂2F

∂x∂y
. (13)

Assuming that the in-plane inertia terms are neglected
and considering formulas (12), the governing equation
(7) for plate under in-plane uniform forces N1, N2 as
well as transverse periodic force qt = q cosωt (see
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Fig. 1) can be transformed to the following mixed form
including the deflection w and stress function F :

D�2w =
(
1 − μ∇2

)
(−N1

∂2w

∂x2
− N2

∂2w

∂y2
+

+ L (w, F) − ρh
∂2,w

∂t2
− δ0

∂w

∂t
+ q cosωt),

(14)

where

L (w, F) = ∂2w

∂x2
∂2F

∂y2
+ ∂2F

∂x2
∂2w

∂y2
− 2

∂2w

∂x∂y

∂2F

∂x∂y
,

(15)

and�2 = ( ∂2

∂x2
+ ∂2

∂y2
)2. The additional equation linking

unknown functionsw, F is yieldedby the compatibility
equation (5) and the relations (10), i.e. we have

(1 − μ∇2)
1

E
�2F = −h

2
L (w,w) , (16)

where

L (w,w) = 2

(
∂2w

∂x2
∂2w

∂y2
−

(
∂2w

∂x∂y

)2
)

. (17)

We consider the simply supported plate, and hence, the
following relations are satisfied:

w = 0,
∂2w

∂x2
+ ν

∂2w

∂y2
= 0,

∂2F

∂x∂y
= 0,

∫ b

0

∂2F

∂y2
dy = 0, x = 0, a,

w = 0,
∂2w

∂y2
+ ν

∂2w

∂x2
= 0,

∂2F

∂x∂y
= 0,

∫ a

0

∂2F

∂x2
dx = 0, y = 0, b.

(18)

3 Method of solution

To apply the Bubnov–Galerkin method, we present the
deflection of the micro/nanoplatew (x, y, t) as follows
[21,35]:

w (x, y, t) = w1(t) sin
πx

a
sin

πy

b
+

+ w2(t) sin
2πx

a
sin

2πy

b
,

(19)

wherew1, w2 are bi-modal amplitudes, and sin πx
a sin πy

b

and sin 2πx
a sin 2πy

b are shape functions, which satisfy
the chosen boundary conditions. In order to get the

expression for stress function, the substitution of the
deflection (19) into (16) is performed:

(1 − μ∇2)�2F = Eh((w1
π2

ab
cos

πx

a
cos

πy

b
+

+ w2
4π2

ab
cos

2πx

a
cos

2πy

b
)2−

− (w1
π2

a2
sin

πx

a
sin

πy

b

+ w2
4π2

a2
sin

2πx

a
sin

2πy

b
)×

× (w1
π2

b2
sin

πx

a
sin

πy

b

+ w2
4π2

b2
sin

2πx

a
sin

2πy

b
)),

(1 − μ∇2)�2F =

= Eh(w2
1

π4

a2b2
(cos2

πx

a
cos2

πy

b

− sin2
πx

a
sin2

πy

b
)+

+ w2
2
16π4

a2b2
(cos2

2πx

a
cos2

2πy

b

− sin2
2πx

a
sin2

2πy

b
)+

+ w1w2
8π4

a2b2
(cos

πx

a
cos

πy

b
cos

2πx

a
cos

2πy

b
−

− sin
πx

a
sin

πy

b
sin

2πx

a
sin

2πy

b
)),

and application of trigonometric formulas yields

(1 − μ∇2)�2F =

= Eh(w2
1

π4

4a2b2
((1 + cos

2πx

a
)(1 + cos

2πy

b
)−

− (1 − cos
2πx

a
)(1 − cos

2πy

b
))+

+ w2
2
4π4

a2b2
((1 + cos

4πx

a
)(1 + cos

4πy

b
)−

− (1 − cos
4πx

a
)(1 − cos

4πy

b
))+

+ w1w2
2π4

a2b2
((cos

πx

a

+ cos
3πx

a
)(cos

πy

b
+ cos

3πy

b
)−

− (cos
πx

a
− cos

3πx

a
)(cos

πy

b
− cos

3πy

b
))),
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Performing some transformation the following equa-
tion is obtained:

(1 − μ∇2)�F= hEπ4

2a2b2
(w2

1 cos
2πx

a
+w2

1 cos
2πy

b

+ 16w2
2 cos

4πx

a
+ 16w2

2 cos
4πy

b

+ 8w1w2(cos
3πx

a
cos

πy

b
+ cos

πx

a
cos

3πy

b
)).

(20)

The equation (20) was solved, as it was done based
on the classical theory in [21,47]. Solution of the non-
local equation (20) gives us the stress function in the
following form:

F = f1 cos
2πx

a
+ f2 cos

2πy

b
+ f3 cos

4πx

a

+ f4 cos
4πy

b
+ f5 cos

3πx

a
cos

πy

b

+ f6 cos
πx

a
cos

3πy

b
+ p1x

2 + p2y
2,

(21)

where

f1 = w2
1Eha

4

32b2(a2 + 4μπ2)
, f2 = w2

1Ehb
4

32a2(b2 + 4μπ2)
,

f3= w2
2Eha

4

32b2(a2+16μπ2)
, f4= w2

2Ehb
4

32a2(b2 + 16μπ2)
,

f5 = 4w1w2Eha4b4

(a2 + 9b2)2(a2b2 + μπ2(a2 + 9b2))
,

f6 = 4w1w2Eha4b4

(9a2 + b2)2(a2b2 + μπ2(9a2 + b2))
.

(22)

Considering simply supported movable boundary con-
ditions (18) allows to find the coefficients p1 = 0 and
p2 = 0 occurring in formula (21).

According to Bubnov–Galerkin procedure, we sub-
stitute the deflection of the plate (19) and Airy stress
function (21) into the equation (14), multiply the
obtained equation by shape functions and integrate over
considered domain [21,26,40]:∫ a

0

∫ b

0
X (x, y) sin(

πx

a
) sin(

πy

b
)dxdy = 0,

∫ a

0

∫ b

0
X (x, y) sin(

2πx

a
) sin(

2πy

b
)dxdy = 0,

(23)

where

X = D�w −
(
1 − μ∇2

)
(−N1

∂2w

∂x2
− N2

∂2w

∂y2
+

+ L (w, F) − ρh
∂2w

∂t2
− δ0

∂w

∂t
+ q cosωt).

(24)

Implementation of the listed operations yields the sys-
tem of the following nonlinear ordinary differential
equations (ODEs):

w
′′
1 + δ̄w

′
1 + α0w1 − αpw1 + α1w1w

2
2 + α2w

3
1+

+ q̄ cosωt = 0,

w
′′
2 + δ̄w

′
2 + β0w2 − βpw2 + β1w2w

2
1 + β2w

3
2 = 0,

(25)

where

α0 = π4D(a2 + b2)2

ρha2b2(a2b2 + μπ2(a2 + b2))
,

β0 = 16π4D(a2 + b2)2

ρha2b2(a2b2 + 4μπ2(a2 + b2))
,

αp = 1

ρh
(N1

π2

a2
+ N2

π2

b2
),

βp = 4

ρh
(N1

π2

a2
+ N2

π2

b2
),

α1 = β1

= 16a2b2Eπ4

ρ

( 1

(9a2 + b2)2(a2b2 + μπ2(9a2 + b2))
+

+ 1

(a2 + 9b2)2(a2b2 + μπ2(a2 + 9b2))

)
, (26)

α2 = a2b2Eπ4

16ρ

( 1

a6(b2 + 4μπ2)
+ 1

b6(a2 + 4μπ2)

)
,

β2 = a2b2Eπ4

ρ

( 1

a6(b2 + 16μπ2)
+ 1

b6(a2 + 16μπ2)

)
,

δ̄ = δ0

ρh
, q̄ = − 16a2b2q

ρhπ2(a2b2 + μπ2(a2 + b2))
.

It is worth to mention that taking the nonlocal coef-
ficient as μ = 0 in (25), (26) leads to the system
discussed in [21] for plates in the framework of the
classical theory, which validates our approach. Also, it
should be added that in case of one-mode approxima-
tion (w2 = 0) the system (25) is reduced to theDuffing-
type equation, where coefficient α0 stands for squared
fundamental linear frequency of the micro/nanoplate.

By introducing the dimensionless parameters as fol-
lows:

y1 = w1

h
, y2 = w2

h
, τ = ωt, (27)

theODEs (25) are recast to the following dimensionless
form

y
′′
1 + δy

′
1+(ξ0 − ξp)y1 + ξ1y1y

2
2+ξ2y

3
1+σ cos τ =0,

y
′′
2 + δy

′
2 + (η0 − ηp)y2 + η1y2y

2
1 + η2y

3
2 = 0,

(28)

with the following dimensionless coefficients:
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Fig. 3 The largest
Lyapunov exponent as a
function of in-plane load
parameter ξp , μ = 0, σ = 2

Fig. 4 Bifurcation
diagrams for y1 (a), y2 (b)
with bifurcation parameter
ξp and fixed parameters
μ = 2 nm2, σ = 2
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Fig. 5 The largest
Lyapunov exponent as a
function of in-plane load
parameter ξp ,
μ = 2 nm2, σ = 2

Fig. 6 Bifurcation
diagrams for y1 (a), y2 (b)
with bifurcation parameter
ξp and fixed parameters
μ = 5 nm2, σ = 2
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Fig. 7 The largest
Lyapunov exponent as a
function of in-plane load
parameter ξp ,
μ = 5 nm2, σ = 2

Fig. 8 Bifurcation
diagrams for y1 (a), y2 (b)
with bifurcation parameter
σ and fixed parameters
μ = 2 nm2, ξp = 2.5.
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Fig. 9 The largest
Lyapunov exponent as a
function of transverse load
parameter σ ,
μ = 2 nm2, ξp = 2.5.

δ = δ̄

ω
, ξ0 = α0

ω2 , ξ1 = α1h2

ω2 ,

ξp = αp

ω2 , ξ2 = α2h2

ω2 , η0 = β0

ω2 , ηp = βp

ω2 ,

η1 = β1h2

ω2 , η2 = β2h2

ω2 , σ = q̄

ω2h
.

(29)

4 Numerical simulations

In order to test and validate the proposed approach, we
compared results with those published in [1]. On par-
ticular, we calculated the linear frequency for graphene
sheet with the following material properties:

E = 30MPa, ν = 0.3, ρ = 1220 kg/m3,

a = 10 nm, b = a, h = a/10.
(30)

In Table 1 the dimensionless frequency parameters cor-
responded to two modes taken in approximation of
deflection (19) are presented for various values of the
nonlocal parameter μ:

Table 1 Dimensionless linear frequency of isotropic simply
supported square micro/nanoplate for various values of the non-
local parameter μ(nm2)

μ λ1 λ2

0 0.09632 0.38527

1 0.08802 0.28799

2 0.08156 0.23990

3 0.07633 0.20991

4 0.07200 0.18893

5 0.06833 0.17320

λ1 = h

√
α0ρ

G
, λ2 = h

√
β0ρ

G
. (31)

In (31) the shear modulus is determined as G =
E

2(1+ν)
. Obviously, these results totally coincide with

ones received in [1], which validates the developed
approach.

Another validation task is the nonlinear vibrations
problem for simply supported isotropic plate, consid-
ered in the works [32,33,39]. To carry out this study,
we took into account one mode in the expansion of
the plate deflection (19), while ignoring the nonlocal
parameter, damping and load parameters as well. It
should be noted that the comparison of the results is
carried out for a immovable plate [25,48]; in this case,
p1, p2 in (21) can be found as in [43,48]. The nonlin-
ear ratio ωn/ωl is calculated and presented in Table 2,
where ωl = √

α0 and ωn stand for linear and nonlinear
frequencies, respectively.

In the following numerical simulations it is assumed
that the parameters values (30) are fixed. Moreover, it
is assumed that the damping parameter δ = 1, and the
exciting frequency of the transverse load coincideswith
natural frequency of the nanoplate ω = √

α0, i.e. we
consider resonance case. Bifurcation dynamics of the
system (28) is then investigated for variations of the
transverse load parameter σ , in-plane load parameter
ξp (ηp = 4ξp) and the nonlocal parameter μ, observe
that occurrence of small-size effect can significantly
change the character of the vibration regime.

Bifurcation diagrams and Poincaré sections pre-
sented in this paper are based on sampling the system
state at instances τ = 2π i (i ∈ N). Each bifurca-
tion diagram consists of 600 Poincaré sections com-
puted for 600 constant values of the bifurcation param-
eter, spanned equally in the range of its changes. Each
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Fig. 10 Bifurcation
diagrams for y1 (a), y2 (b)
with bifurcation parameter
μ and fixed parameters
ξp = 2.5, σ = 2

Poincaré section of the bifurcation diagram consists of
300 points of steady state motion shown in the dia-
gram, after ignoring the initial 100 points of the tran-
sient motion starting from the final state of the previous
Poincaré section.

The presented in this work results of computation
of the largest Lyapunov exponent are based on the
classical algorithm utilizing numerical solution of ana-
lytical form of the linearized differential equations of
motion describing behaviour of infinitesimal perturba-
tions from the nominal trajectory. The system of per-
turbations is periodically re-orthonormalized based on
the Gram–Schmidt algorithm. In this work the period
of re-orthonormalization is chosen as 0.2T , where T is
period of forcing. Note that in our algorithm we have
omitted computation of the Lyapunov exponent, which
is always equal to zero and corresponds to the phase of
external forcing (perturbation along the trajectory).

The bifurcation diagrams for variables y1 and y2
obtained as a result of numerical simulation with
increasing bifurcation parameter ξp in the range 112,
for constant parameters μ = 0 (without small-scale
effect), σ = 2, are presented in Fig. 2, respectively.
It is observed that for ξp < 8.75 the coordinate y2
tends to zero, while the variable y1 undergoes a rich
bifurcation scenario in the range ξp ∈ (1.8, 2.7). In
the zone ξp ∈ (8.75, 10.3) both the coordinates y1 and
y2 behave in a complicated manner, including chaotic
motion. For ξp > 10.3 the systembehaves periodically.
Figure 3 exhibits the bifurcation diagram of the largest
Lyapunov exponent corresponding to the bifurcation
diagram presented in Fig. 2, computed for each attrac-
tor over 1200 periods of forcing. One can observe inter-
vals of negative and positive values of the largest Lya-
punov exponent corresponding to periodic and chaotic
zones of the system behaviour, with good agreement
of the results reported in Fig. 2. The same analysis for
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Fig. 11 The largest
Lyapunov exponent as a
function of the nonlocal
parameter μ, ξp = 2.5,
σ = 2

Table 2 Nonlinear frequency ratio ωn/ωl for simply supported rectangular isotropic plate (ν = 0.3, h/a = 0.1)

A 0.2 0.4 0.6 0.8 1

b/a = 1

[33] 1.0261 1.1009 1.2162 1.3624 1.5314

[32] 1.0195 1.0752 1.1601 1.2667 1.3881

[39] 1.0185 1.0717 1.1534 1.2566 1.3753

Present 1.0195 1.0757 1.1625 1.2733 1.4024

b/a = 0.5

[33] 1.0324 1.1252 1.2682 1.4403 1.6613

[32] 1.0246 1.0946 1.2011 1.3344 1.4872

[39] 1.0239 1.0918 1.1957 1.3264 1.4758

Present 1.0241 1.0927 1.1975 1.3293 1.4808

A is amplitude of nonlinear vibrations

the same parameters as in Figs. 2, 3, but with small-
scale effect for μ = 2 nm2, is shown in Figs. 4, 5. It
is now observed that ξp < 2.32 the variable y2 tends
to zero and simultaneously the variable y1 undergoes a
rich bifurcation scenario consisting, among others, of
period doubling bifurcation cascade leading to chaotic
behaviour of only one part of the dynamical system.
This chaotic zone is then interrupted by 3-periodic win-
dow. Further increase in bifurcation parameter leads to
second chaotic zone, initially observed only for y1 vari-
able, but starting from ξp = 2.32 also for the coordinate
y2. This chaotic window ends with inverse period dou-
bling cascade. For higher values of ξp one can observe
two more narrow chaotic zones for both variables y1
and y2. This distinction between periodic and chaotic
zones is confirmed by the diagram of the largest Lya-
punov exponent shown in Fig. 5. Zero values of the
exponent correspond to bifurcation points. Behaviour
of the system in the same bifurcation parameter ξp

range 1, , 12 for higher value of the small-scale param-
eter μ = 5 nm2 and σ = 2 can be observed in Figs. 6,
7. First of all one can notice that the coordinate y2 tends
to zero for ξp < 1.7, while the variable y1 behaves in a
periodical manner. For ξp > 1.7 one can observe rich
bifurcation dynamics including periodic and chaotic
motion in both the coordinates y1 and y2. Moreover,
there are many more areas of chaotic motion than in
the case of system dynamics for smaller values of ξp,
which is also confirmed in the diagram of the largest
Lyapunov exponent in Fig. 7.

The influence of transverse load parameter σ (in the
range 1 . . . 5) is analysed for fixed nonlocal parameter
μ = 2 nm2 and ξp = 2.5. The corresponding bifur-
cation diagrams for increasing parameter σ are pre-
sented in Fig. 8. One can observe one wide chaotic
zone interrupted by some periodic windows. Again, for
σ < 1.76, one can see the variable y2 tending to zero.
This bifurcation scenario is confirmed by the corre-
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Fig. 12 Phase plots and Poincaré sections for y1 (a) and y2 (b) with fixed parameters μ = 0, ξp = 9.9 and σ = 2

sponding bifurcation diagram of the largest Lyapunov
exponent presented in Fig. 9.

Bifurcationdiagramswith increasingnonlocal param-
eter μ in the range 0...5 (nm2) there are presented
in Fig. 10. The corresponding bifurcation diagram of
the largest Lyapunov exponent as a function of μ is

depicted in Fig. 11. For these numerical simulations
the following parameters are fixed: ξp = 2.5, σ = 2.
The obtained results allow for observation that small-
scale effects crucially influence the behaviour of the
nanoplate. If for classical theory (μ = 0) one observes
the periodic regimes, for some other values of the non-
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Fig. 13 The largest
Lyapunov exponent as a
function of number of
periods of external forcing n
for μ = 0, ξp = 9.9 and
σ = 2

Fig. 14 Phase plots and
Poincar sections for y1 (a)
and y2 (b) with fixed
parameters
μ = 2 nm2, ξp = 2.4 and
σ = 2
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Fig. 15 The largest
Lyapunov exponent as a
function of number of
periods of external forcing n
for μ = 2 nm2, ξp = 2.4
and σ = 2

Fig. 16 Phase plots and
Poincar sections for y1 (a)
and y2 (b) with
μ = 2 nm2, ξp = 3.47 and
σ = 2
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Fig. 17 The largest
Lyapunov exponent as a
function of number of
periods of external forcing n
for μ = 2 nm2, ξp = 3.47
and σ = 2

Fig. 18 Phase plots and
Poincar sections for y1 (a)
and y2 (b) with
μ = 2 nm2, ξp = 2.5 and
σ = 2.8
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Fig. 19 The largest
Lyapunov exponent as a
function of number of
periods of external forcing n
for μ = 2 nm2, ξp = 2.5
and σ = 2.8

Fig. 20 Phase plots and
Poincar sections for y1 (a)
and y2 (b) with
μ = 3.7 nm2, ξp = 2.5 and
σ = 2
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Fig. 21 Phase plots and
Poincar sections as a
function of number of
periods of external forcing n
for μ = 3.7 nm2, ξp = 2.5
and σ = 2

local parameter the complex chaoticmotion is detected.
One can see two intervals of bifurcation parameter cor-
responding to chaotic regimes separated by intervals of
periodicity. The two main chaotic zones are connected
by two period adding cascades. Also, on can observe
that for higher values of the nonlocal parameter starting
from μ ≈ 3.8 nm2 the periodic regimes play a crucial
role. In Fig. 12 there are presented projections of phase
plot and Poincaré section of a chaotic attractor without
the small-scale effect and corresponding to the bifur-
cation diagrams seen in Figs. 2, 3 for in-plane force
parameter ξp = 9, 9. The chaotic character of the solu-
tion is confirmed by positive largest Lyapunov expo-
nent with computation process presented in Fig. 13,
where n is the number of periods of external forcing.
Figure 14 exhibits the projections of phase plot and
Poincaré section of exemplary chaotic attractor associ-
ated with bifurcation diagram presented in Fig. 4, for
in-plane force parameter ξp = 2.4. The corresponding
largest Lyapunov exponent, as a function of the num-
ber of periods of forcing, there is presented in Fig. 15.
Analysis of another example of chaotic attractor cor-
responding to bifurcation diagram shown Fig. 4, for
ξp = 3.47, there is presented in Fig. 16 (phase plots and
Poincaré sections) and in Fig. 17 (the largest Lyapunov
exponent). Analogously, Figs. 18–21 exhibit analysis
of two chaotic attractors corresponding to bifurcation
diagrams presented in Fig. 8 (for σ = 2.8, see Figs. 18-
19) and in Fig. 10 (for μ = 3.7 nm2, see Figs. 20–21).
In all cases, the character of phase plots and Poincaré
sections, as well as positive Lyapunov exponents, con-
firm chaotic nature of the detected attractors.

5 Conclusions

The geometrically nonlinear dynamics of the isotropic
simply supported micro/nanoplate is considered in the
present work. In order to take into account the small-
scale effects, the nonlocal elasticity theory is used. The
studied plate is supposed to be under the action of trans-
verse periodic force and uniform in-plane forces. The
base of the developed approach is the application of the
Bubnov–Galerkin method with a two-mode approxi-
mation of the plate deflection. The employed bifurca-
tion diagrams, the largest Lyapunov exponents, phase
portraits as well as Poincare sections allowed to detect
chaotic vibrations of the studied mechanical object. It
is shown a significant influence of the excitation param-
eters on the vibrations regimes. Another work achieve-
ment is an indication of the nonlocal parameter influ-
ence on vibration regimes, which means that the small-
scale effects can change the character of the vibrations
and provoke chaotic behaviour of the object that can
give undesirable consequences for the nanostructure
used in engineering applications. It is shown that in-
plane load (ξp > 0) is necessary for oscillations of
the coordinate y2. Moreover, an increase in the small-
scale effect lowers the threshold for the onset of the
coordinate y2 oscillations. Finally, this bifurcation and
chaotic dynamics are detected and validated via classi-
cal apparatus of nonlinear dynamics systems.
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