
Nonlinear Dyn (2021) 105:931–955
https://doi.org/10.1007/s11071-020-06151-y

ORIGINAL PAPER

Stationary distribution and density function expression for a
stochastic SIQRS epidemic model with temporary immunity

Baoquan Zhou · Daqing Jiang · Yucong Dai · Tasawar Hayat

Received: 3 September 2020 / Accepted: 10 December 2020 / Published online: 8 June 2021
© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract Recently, considering the temporary immu-
nity of individuals who have recovered from certain
infectious diseases, Liu et al. (Phys A Stat Mech Appl
551:124152, 2020) proposed and studied a stochastic
susceptible-infected-recovered-susceptiblemodelwith
logistic growth. For a more realistic situation, the
effects of quarantine strategies and stochasticity should
be taken into account. Hence, our paper focuses on a
stochastic susceptible-infected-quarantined-recovered-
susceptible epidemic model with temporary immunity.
First, by means of the Khas’minskii theory and Lya-
punov function approach, we construct a critical value
RS

0 corresponding to thebasic reproductionnumberR0

of the deterministic system. Moreover, we prove that
there is a unique ergodic stationary distribution ifRS

0 >

1. Focusing on the results of Zhou et al. (Chaos Soli-
ton Fractals 137:109865, 2020), we develop some suit-
able solving theories for the general four-dimensional
Fokker–Planck equation. The key aim of the present
study is to obtain the explicit density function expres-
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sion of the stationary distribution under RS
0 > 1. It

should be noted that the existence of an ergodic station-
ary distribution together with the unique exact prob-
ability density function can reveal all the dynamical
properties of disease persistence in both epidemiologi-
cal and statistical aspects. Next, some numerical simu-
lations together with parameter analyses are shown to
support our theoretical results. Last, through compar-
ison with other articles, results are discussed and the
main conclusions are highlighted.

Keywords Stochastic SIQRS epidemic model ·
Temporary immunity · Ergodic stationary distribution ·
Fokker–Planck equation · Density function

1 Introduction

Over time, an increasing number of people are becom-
ing concerned with health and the desire to improve
the quality of life worldwide. However, major infec-
tious diseases such as Ebola, avian influenza, cholera,
and heptitis B are one of the biggest threats to pub-
lic health [1–3]. Epidemiology, greatly supported by
various mathematical models, is the study of the
spread of diseases and trace factors that give rise to
their occurrence. Following the classical Susceptible-
Infected-Recovered (SIR) epidemic models proposed
by Kermack and McKendrick [4], some authors have
developed a series of reasonable ordinary differen-
tial equations (ODEs) to describe the transmission
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of various epidemics [5–13]. In [5], Liu et al. estab-
lished an Susceptible-Vaccinated-Infected-Recovered
(SVIR) epidemicmodelwith vaccination strategies and
obtained the corresponding global stability of equi-
libria. Hove-Musekwa and Nyabadza [9] considered
a deterministic HIV/AIDS model taking into account
the active screening of disease carriers and seeking of
treatment. They also derived the relevant basic repro-
duction number. Considering the sequence diversity
and highly infectious nature of some contagious dis-
eases, we occasionally need to implement quarantine
strategies to control the spread of disease. For example,
without an effective vaccine, the rapid spread of coro-
navirus disease 2019 (COVID-19) worldwide has had
a serious socioeconomic impact and imposed a poten-
tially great threat to human safety [14]. Hence, many
suitable SIQRepidemicmodels have been developed in
the past few decades [15–19]. In [15], Herbert and Ma
obtained the corresponding basic reproduction num-
ber of a deterministic SIQR model with quarantine-
adjusted incidence. Nevertheless, recovered individu-
als with temporary immunity may be susceptible to the
disease again in the future [20–23]. Zhang et al. [20]
studied the global asymptotic stability of two equilib-
ria to a SIQS epidemic model with the nonlinear inci-
dence rate βSI

f (I ) . Following the above analyses, in this
study, a deterministic SIQRSwith temporary immunity
is developed for further epidemiological investigation.

In our daily life, it is obvious that the spread of
infection, travel of populations and the design of con-
trol strategies are critically perturbed by some environ-
mental variations [24]. For dynamical study and sim-
ulation, by taking the effect of stochastic perturbation
into consideration, some scholars considered and ana-
lyzed various stochastic differential equations (SDEs)
for the spread of epidemics [25–37]. From [25], Zhao
and Jiang established a universal theory of extinction
and persistence in mean based on a stochastic SIS epi-
demic model with vaccination. Han and Jiang [27]
introduced a stochastic staged progressionAIDSmodel
with second-order perturbation and proved the ergod-
icity of the global positive solution if RH

0 > 1. Con-
sidering the delay influence, Caraballo and Fatini [29]
derived the existence of stationary distribution for a
stochastic SIRS epidemicmodel with distributed delay.
For cholera epidemic, a stochastic SIQRB infectious
disease model was researched by Liu and Jiang [32].
Recently, Zhou and Zhang (2020) obtained the explicit
expression of the probability density function for the

three-dimensional avian-only influenza model, which
is described in [33].

Focusing on the temporary immunity phenomenon
of infected people, quarantine strategies and random
perturbations, our study aims to develop a stochastic
SIQRS epidemic system with temporary immunity. As
is well known, the corresponding basic reproduction
number and unique endemic equilibrium can reflect
the disease persistence of a deterministic system. Nev-
ertheless, the positive equilibrium no longer exists in a
stochastic model owing to the effect of unpredictable
environmental noises. Hence, ergodicity theory and
the existence of stationary distribution, which greatly
reflect the stochastic permanence of disease, are gradu-
ally becoming more popular in the transmission of epi-
demics. In practical application, some statistical prop-
erties of epidemic models still need to be estimated
to effectively prevent and control the spread of infec-
tious diseases. Notably, there are relatively few studies
devoted to deriving the explicit expression of probabil-
ity density function due to the difficulty of solving the
high-dimensional Fokker–Planck equation. To the best
of our knowledge, some studies of probability density
functions for stationary distributions are shown in the
present study. As a result, we will concentrate on the
following three aims: (i) construct a reasonable stochas-
tic threshold RS

0 corresponding to the basic reproduc-
tion numberR0; (ii) investigate the disease persistence
of stochastic SIQRS model under RS

0 > 1, namely,
the existence of the uniqueness of an ergodic station-
ary distribution and the exact expression of this unique
probability density function; and (iii) provide the cor-
responding numerical simulations and parameter anal-
yses for our analytical results.

The rest of our study is arranged as follows. For the
later dynamical investigation, Sect. 2 introduces the
corresponding mathematical models, important nota-
tions and necessary lemmas. By constructing a series
of suitable Lyapunov functions, a stochastic critical
value RS

0 involved in the random noises is obtained.
Based on the global positive solution property and
Khas’minskii theory, Sect. 3 shows that there is a
unique ergodic stationary distribution when RS

0 > 1.
In Sect. 4, by developing some solving theories of the
relevant algebraic equations, the corresponding four-
dimensional Fokker–Planck equation is solved for the
explicit expression of log-normal density function to
the stochastic model if RS

0 > 1. Section 5 presents
some empirical examples and parameter analyses to
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validate the above theoretical results. Finally, the rele-
vant results are discussed and the main conclusions are
introduced by comparison with the existing results in
Sect. 6.

2 Mathematical models and necessary lemmas

2.1 Deterministic SIQRS epidemic model and
dynamical properties

Given the above descriptions, we assume that the inves-
tigated population N (t) can be divided into susceptible
S(t), infectious I (t), quarantined Q(t) and recovered
R(t) individuals at time t . A deterministic SIQRS epi-
demic model with temporary (short-term) immunity is
studied herein, which is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)

dt
= Λ − μS(t) − βS(t)I (t) + ωR(t),

dI (t)

dt
= βS(t)I (t) − (μ + α1 + δ + γ )I (t),

dQ(t)

dt
= δ I (t) − (μ + α2 + ε)Q(t),

dR(t)

dt
= γ I (t) + εQ(t) − (μ + ω)R(t),

(2.1)

whereΛ is the recruitment rate of the susceptible indi-
viduals, μ depicts the natural death rate of the popu-
lation, β is the transmission rate, α1, α2 represent the
average disease-induced death rate of the infected and
quarantined individuals, respectively, δ denotes the iso-
lated rate of the infected individuals, γ and ε are the
recovery rate of the infected and quarantined individu-
als, andω denotes the immune loss rate of the recovered
individuals. All the parameters are assumed to be pos-
itive constants.

In the similar methods described by Ma and Zhou
[21], system (2.1) has the corresponding basic repro-
duction number and the invariant attracting set, which
are given by

R0 = Λβ

μ(μ + α1 + δ + γ )
,

Θ =
{
(S, I, Q, R)

∣
∣
∣S ≥ 0, I ≥ 0, Q ≥ 0, R ≥ 0,

S + I + Q + R ≤ Λ

μ

}
.

Additionally, two possible equilibria are shown as fol-
lows. (i) The disease-free equilibrium E0 = (S0,

I0, Q0, R0) = (Λ
μ
, 0, 0, 0). (ii) The endemic equi-

librium E∗ = (S∗, I ∗, Q∗, R∗) = ( Λ
μR0

,
Λ(R0−1)


1R0
,

Λδ(R0−1)

1(μ+α2+ε)R0

,
Λ
2(R0−1)

(μ+ω)(μ+α2+ε)R0
), where 
1 = μ +

α1+ μ[(γ+δ)(μ+α1+ε)+ω(μ+α2)]
(μ+ω)(μ+α1+ε)

> 0, 
2 = γ (μ+α2+
ε) + εδ > 0. These two equilibria have the following
dynamical properties.

• If R0 ≤ 1, then E0 is globally asymptotically
stable inΘ , which means the disease will be eradicated
in a population.

• IfR0 > 1, then E∗ is globally asymptotically sta-
ble, but E0 is unstable in the domainΘ . This indicates
the disease will prevail and persist long-term.

2.2 Stochastic SIQRS epidemic system

In reality, the dynamical behavior of most epidemics
is inevitably affected by random factors in nature.
By means of the relevant assumptions and forms of
stochastic perturbations developed in [25–30,32–34],
in this study, we assume that these stochastic noises are
directly proportional to the groups S(t), I (t), Q(t) and
R(t). Hence, the corresponding stochastic SIQRS epi-
demic model with temporary immunity is described by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t) = [Λ − μS(t) − βS(t)I (t)
+ωR(t)]dt + σ1S(t)dB1(t),

dI (t) = [βS(t)I (t) − (μ + α1 + δ + γ )I (t)]dt
+σ2 I (t)dB2(t),

dQ(t) = [δ I (t) − (μ + α2 + ε)Q(t)]dt
+σ3Q(t)dB3(t),

dR(t) = [γ I (t) + εQ(t) − (μ + ω)R(t)]dt
+σ4R(t)dB4(t),

(2.2)

where B1(t), B2(t), B3(t) and B4(t) are four indepen-
dent standard Brownian motions, and σ 2

i > 0 (i =
1, 2, 3, 4), respectively, denote their intensities.

2.3 Mathematical notations and necessary lemmas

Throughout this study, unless otherwise specified, let
{�,F , {Ft }t≥0,P} be a complete probability space
with a filtration {Ft }t≥0 satisfying the usual conditions
(i.e., it is increasing and right continuous while F0

contains allP-null sets). For detailed descriptions, refer

123
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toMao [36].Moreover, for convenience and simplicity,
all stochastic approaches and theories are based on the
above space.

In order to study the later dynamical behavior of the
stochastic system (2.2), some common notations shall
be defined in the first place. LetRn be an n-dimensional
Euclidean space and

R
k+ = {(x1, . . . , xk)|xi > 0, 1 ≤ i ≤ k},

Uk,4 =
(1

k
, k
)

×
(1

k
, k
)

×
(1

k
, k
)

×
(1

k
, k
)
.

In addition, let Aτ be the transposed matrix of the
inverse matrix A, and A−1 be the relevant inverse
matrix of A.

Next, the corresponding global existence of the pos-
itive solution to the system (2.2) is introduced as fol-
lows.

Lemma 2.1 For any initial value (S(0), I (0), Q(0),
R(0)) ∈ R

4+, there is a unique solution (S(t),
I (t), Q(t), R(t)) of the system (2.2) on t ≥ 0, and the
solution will remain in R4+ with probability one (a.s.).

The detailed proof of Lemma 2.1 is mostly similar to
that in Theorem 3.1 of Liu and Jiang [37], so we omit
it here.

By means of the Khas’minskii theory [38], con-
sidering the following stochastic differential equation
defined in the space Rn ,

dX (t) = ψ(X (t))dt +
n∑

k=1

σk(X)dBk(t),

where the diffusion matrix F(X) = (āi j (X)), and

āi j (X) = ∑n
k=1 σ

i
k (X)σ

j
k (X). Furthermore, the rel-

evant existence theory of the unique ergodic stationary
distribution is shown by the following Lemma 2.2.

Lemma 2.2 (Khas’minskii [38]) The Markov process
X (t) has a unique ergodic stationary distribution�(·)
if there exists a bounded domainD ⊂ R

n with a regular
boundary Γ and

(A1). There is a positive number κ0 such that
∑n

i, j=1 āi j (x)ξiξ j ≥ κ0|ξ |2 for any x ∈ D, ξ ∈ R
n.

(A2). There is a non-negative C2-function V (x)
such that L V (x) is negative for any x ∈ R

n \ D.
Then for all x ∈ R

n and integral function φ(·) with
respect to the measure φ(·), it follows that

P

{

lim
t→∞

1

t

∫ t

0
φ(X (s))ds =

∫

Rn
φ(x)�(dx)

}

= 1.

Now, by the relevant definitions described in Zhou
and Zhang [33], we will develop some solving theo-
ries for the corresponding four-dimensional algebraic
equations, which are described by the following Lem-
mas 2.3–2.5.

Lemma 2.3 Let θ0 be a symmetric matrix in the four-
dimensional algebraic equationG2

0+A0θ0+θ0Aτ
0 = 0,

where G0 = diag(1, 0, 0, 0), and

A0 =

⎛

⎜
⎜
⎝

−a1 −a2 −a3 −a4
1 0 0 0
0 1 0 0
0 0 1 0

⎞

⎟
⎟
⎠ . (2.3)

Assuming that a1 > 0, a3 > 0, a4 > 0, and a1(a2a3 −
a1a4) − a23 > 0, then θ0 is a positive definite matrix.

Lemma 2.4 Let θ1 be a symmetric matrix in the four-
dimensional algebraic equationG2

0+B0θ1+θ1Bτ
0 = 0,

where G0 = diag(1, 0, 0, 0), and

B0 =

⎛

⎜
⎜
⎝

−b1 −b2 −b3 −b4
1 0 0 0
0 1 0 0
0 0 1 b44

⎞

⎟
⎟
⎠ . (2.4)

If b1 > 0, b3 > 0, and b1b2 − b3 > 0, then θ1 is
semi-positive definite.

Lemma 2.5 Let θ2 be a symmetric matrix in the four-
dimensional algebraic equationG2

0+C0θ2+θ2Cτ
0 = 0,

where G0 = diag(1, 0, 0, 0), and

C0 =

⎛

⎜
⎜
⎝

−c1 −c2 −c3 −c4
1 0 0 0
0 0 c33 c34
0 0 c43 c44

⎞

⎟
⎟
⎠ . (2.5)

If c1 > 0 and c2 > 0, then θ2 is semi-positive definite.

Remark 2.6 For convenience, A0, B0 and C0 are,
respectively, called standard R1, R2, R3 matrices in this
study. The corresponding proofs of Lemmas 2.3–2.5
are separately shown in subsections (I), (II) and (III) of
“Appendix A”.
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3 Stationary distribution and ergodicity of system
(2.2)

In this section, by Lemmas 2.1 and 2.2, we are devoted
to obtain the sufficient conditions for ergodicity of the
global positive solution and the existence of stationary
distribution. First, we define

RS
0 = Λβ

(
μ + σ 2

1
2

)(
μ + α1 + γ + δ + σ 2

2
2

) .

Theorem 3.1 Assuming that RS
0 > 1, for any ini-

tial value (S(0), I (0), Q(0), R(0)) ∈ R
4+, then the

solution (S(t), I (t), Q(t), R(t)) of the system (2.2) is
ergodic and has a unique stationary distribution�(·).
Proof By Lemma 2.1, we derive that there is a unique
global positive solution (S(t), I (t), Q(t), R(t)) ∈ R

4+.
Hence, the proof of Theorem 3.1 is divided into the
following three steps: (i) construct a series of Lyapunov
functions to derive a suitable non-negativeC2-function
V (S, I, Q, R) and a stochastic critical valueRs

0 related
to R0; (ii) establish a reasonable bounded domain D
and prove the assumption (A2) of Lemma 2.2; and (iii)
validate the condition (A1) of Lemma 2.2.

Step 1 Define an important C2-function Ṽ (S, I, Q, R)
by

Ṽ (S, I, Q, R) = M0
(−c0 ln S − ln I

)− ln S − ln Q

− ln R + 1

1 + θ
(S + I + Q + R)1+θ ,

where c0 = Λβ

(μ+ σ21
2 )2

> 0, M > 0, and θ ∈ (0, 1)

satisfy

ρ := μ − θ

2

(
σ 2
1 ∨ σ 2

2 ∨ σ 2
3 ∨ σ 2

4

)
> 0,

−M0

(
μ + α1 + γ + δ + σ 2

2

2

)(
RS

0 − 1
)

+λ̄ = −2, (3.1)

with λ̄ = λ + 3μ + α2 + ω + ε + σ 2
1 +σ 2

3 +σ 2
4

2 and λ :=
sup(S,I,Q,R)∈R4+

{
Λ(S+ I +Q+ R)θ − ρ

2 (S+ I +Q+
R)1+θ

}
.

For simplicity, we let

V1 = −c0 ln S − ln I, V2 = − ln S − ln Q − ln R,

V3 = 1

1 + θ
(S + I + Q + R)1+θ .

Bymeans of Itô’s formulawhich is shown in “Appendix
C”, the function V1 satisfies

L V1 = c0
[
−Λ

S
+ β I − ωR

S

+
(
μ + σ 2

1

2

)]

+
[
−βS +

(
μ + α1 + γ + δ + σ 2

2

2

)]

≤
(
μ + α1 + γ + δ + σ 2

2

2

)
+ c0

(
μ + σ 2

1

2

)

+ c0β I −
(c0Λ

S
+ βS

)

≤
(
μ + α1 + γ + δ + σ 2

2

2

)
+ c0

(
μ + σ 2

1

2

)

+ c0β I − 2
√
c0Λβ

= −
(
μ + α1 + γ + δ

+ σ 2
2

2

)(
RS

0 − 1
)

+ c0β I. (3.2)

Employing Itô’s formula to V2, one has

L V2 =
(
−Λ

S
+ β I − ωR

S
+ μ + σ 2

1

2

)

+
(
−δ I

Q
+ μ + α2 + ε + σ 2

3

2

)
+
(
−γ I

R

− εQ

R
+ μ + ω + σ 2

4

2

)

≤ −Λ

S
− δ I

Q
− γ I

R
+ β I + 3μ + α2

+ ω + ε + σ 2
1 + σ 2

3 + σ 2
4

2
. (3.3)

Similarly, by the definition of λ, we have

L V3 = (S + I + Q + R)θ
[
Λ − μS − (μ + α1)I − (μ + α2)Q − μR

]

+ θ

2

(
S + I + Q + R

)θ−1(
σ 2
1 S

2

+ σ 2
2 I

2 + σ 2
3 Q

2 + σ 2
4 R

2)

≤ Λ(S + I + Q + R)θ − μ(S + I + Q + R)1+θ

+ θ

2

(
σ 2
1 ∨ σ 2

2 ∨ σ 2
3 ∨ σ 2

4

)(
S + I + Q + R

)1+θ

≤ λ − ρ

2

(
S + I + Q + R

)1+θ

≤ λ − ρ

2

(
S1+θ + I 1+θ + Q1+θ + R1+θ

)
, (3.4)
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936 B. Zhou et al.

where λ := sup(S,I,Q,R)∈R4+
{
Λ(S + I + Q + R)θ −

ρ
2 (S + I + Q + R)1+θ

}
.

In addition,

lim inf
k→∞,(S,I,Q,R)∈R4+\Uk,4

Ṽ (S, I, Q, R) = +∞.

Consequently, we can construct a suitable non-negative
C2-function V (S, I, Q, R) in the following form

V (S, I, Q, R) = Ṽ (S, I, Q, R)− Ṽ (S0, I 0, Q0, R0),

where Ṽ (S0, I 0, Q0, R0) is the minimum value of
Ṽ (S, I, Q, R).

Combining (3.1)–(3.4) and the definition of λ̄, one
can see that

L V ≤ M0

[
−
(
μ + α1 + γ + δ + σ 2

2

2

)(
RS

0 − 1
)

+ c0β I
]

+ λ + 3μ + α2 + ω + ε

+ σ 2
1 + σ 2

3 + σ 2
4

2
− Λ

S
− δ I

Q

q − γ I

R
+ β I − ρ

2

(
S1+θ + I 1+θ + Q1+θ

+ R1+θ
) = −M0

(
μ + α1 + γ + δ

+ σ 2
2

2

)(
RS

0 − 1
)

+ λ̄ +
[(
c0M0 + 1

)
β I − ρ

2
I 1+θ

]

− Λ

S
− δ I

Q
− γ I

R
− ρ

2

(
S1+θ + Q1+θ + R1+θ

)

= −2 +
[(
c0M0 + 1

)
β I

− ρ

2
I 1+θ

]
− Λ

S
− δ I

Q
− γ I

R

− ρ

2

(
S1+θ + Q1+θ + R1+θ

)
. (3.5)

Step 2 Consider the following bounded set

Dε =
{
(S, I, Q, R) ∈ R

4+
∣
∣
∣ε ≤ S ≤ 1

ε
, ε ≤ I

≤ 1

ε
, ε2 ≤ Q ≤ 1

ε2
, ε2 ≤ R ≤ 1

ε2

}
,

where ε > 0 is a sufficiently small constant such that
the following inequalities hold.

−2 + K1 − ρ

2εθ+1 ≤ −1. (3.6)

−2 + (c0M0 + 1
)
βε ≤ −1. (3.7)

−2 + K2 − ρ

4εθ+1 ≤ −1. (3.8)

−2 + K1 − min(Λ, δ, γ )

ε
≤ −1. (3.9)

with K1 = supI∈R+
{(
c0M0 + 1

)
β I − ρ

2 I
1+θ
}
and

K2 = supI∈R+
{(
c0M0 + 1

)
β I − ρ

4 I
1+θ
}
.

For simplicity, let X (t) = (S(t), I (t), Q(t), R(t))τ .
Consider the following seven subsets of R4+ \ D

D1,ε =
{
X (t) ∈ R

4+
∣
∣
∣S < ε

}
, D2,ε

=
{
X (t) ∈ R

4+
∣
∣
∣I < ε

}
, D3,ε

=
{
X (t) ∈ R

4+
∣
∣
∣S >

1

ε

}
,

D4,ε =
{
X (t) ∈ R

4+
∣
∣
∣I

>
1

ε

}
, D5,ε =

{
X (t) ∈ R

4+
∣
∣
∣Q

>
1

ε
or R >

1

ε

}
.

D6,ε =
{
X (t) ∈ R

4+
∣
∣
∣I ≥ ε, Q < ε2

}
, D7,ε

=
{
X (t) ∈ R

4+
∣
∣
∣I ≥ ε, R < ε2

}
.

Clearly, R4+ \ D = ⋃7
k=1 Dk,ε . By (3.6)–(3.9), we can

derive

L V ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2 + K1 − Λ

S
− δ I

Q

−γ I

R
< −2 + K1

−min(Λ, δ, γ )

ε
≤ −1, if X (t) ∈ D1 ∪ D6 ∪ D7,

−2 + K2 − ρ

4
I 1+θ

≤ −2 + K2 − ρ

4εθ+1 ≤ −1, if X (t) ∈ D4,

−2 + (c0M0 + 1
)
β I

≤ −2 + (c0M0 + 1
)
βε ≤ −1, if X (t) ∈ D2,

−2 + K1

−ρ

2

(
S1+θ + Q1+θ + R1+θ

)

≤ −2 + K1 − ρ

2εθ+1 ≤ −1, if X (t) ∈ D3 ∪ D5.

Given the above, we can therefore obtain a pair of suf-
ficiently small ε > 0 and closed domain Dε such that

L V ≤ −1, for any (S, I, Q, R) ∈ R
4+ \ Dε .

Hence, the assumption (A2) of Lemma 2.2 holds.

Step 3 System (2.2) has the corresponding diffusion
matrix

F =

⎛

⎜
⎜
⎝

σ 2
1 S

2 0 0 0
0 σ 2

2 I
2 0 0

0 0 σ 2
3 Q

2 0
0 0 0 σ 2

4 R
2

⎞

⎟
⎟
⎠ .

Obviously, for any (S, I, Q, R) ∈ Dε , F is a pos-
itive definite matrix. In other words, we can deter-
mine a positive constant κ0 := inf X (t)∈Dε

{σ 2
1 S

2, σ 2
2 I

2,

σ 2
3 Q

2, σ 2
4 R

2} such that
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Stationary distribution and density function expression 937

4∑

i=1

4∑

j=1

āi j (S, I, Q, R)ξiξ j = σ 2
1 S

2ξ21

+ σ 2
2 I

2ξ22 + σ 2
3 Q

2ξ23 + σ 2
4 R

2ξ24 ≥ κ0|ξ |2
for any ξ = (ξ1, ξ2, ξ3, ξ4) ∈ R

4.
Then the condition (A1) of Lemma 2.2 also holds.
Given the above three steps, system (2.2) admits
a unique ergodic stationary distribution �(·) with
respect to the solution (S(t), I (t), Q(t), R(t)). The
proof of Theorem 3.1 is confirmed. ��
Remark 3.2 From the expressions of R0 and RS

0 , we
can easily obtain thatRS

0 ≤ R0. As we know, the exis-
tence of an ergodic stationary distribution denotes the
stochastic positive equilibrium state. Hence, RS

0 > 1
can be regarded as the unified criterion which guaran-
tees the disease persistence of the deterministic model
(2.1) and stochastic system (2.2). Furthermore, RS

0 =
R0 while σ1 = σ2 = 0. This means that the disease
persistence is critically affected by the random fluctua-
tions of susceptible and infected individuals rather than
quarantined and recovered individuals.

4 Density function analyses of stationary
distribution �(·)

By Theorem 3.1, we obtain that system (2.3) has a
unique stationary distribution which has ergodic prop-
erty if RS

0 > 1. For further development of infectious
disease dynamics, in this section, we will study the cor-
responding probability density function of the distribu-
tion �(·) to derive all statistical properties of system
(2.3). Before this, two equivalent differential equations
of system (2.2) should be firstly introduced.

4.1 Two important transformations of system (2.2)

(I) (Logarithmic transformation) Let x1 = ln(S),
x2 = ln(I ), x3 = ln(Q), and x4 = ln(R). By means of
Itô’s formula, system (2.2) can be transformed into the
following equation:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dx1 = (�e−x1 − μ1 − βex2 + ωex4−x1)dt + σ1dB1(t),

dx2 = [βex1 − (μ2 + α1 + δ + γ )] + σ2dB2(t),

dx3 = [δex2−x3 − (μ3 + α2 + ε)]dt + σ3dB3(t),

dx4 = [γ ex2−x4 + εex3−x4 − (μ4 + ω)]dt + σ4dB4(t),

(4.1)

where μk = μ + σ 2
k
2 (k = 1, 2, 3, 4).

Assuming that RS
0 > 1 and following the descrip-

tion of Zhou and Zhang [33], we similarly define a
quasi-endemic equilibrium E∗+ = (S∗+, I ∗+, Q∗+, R∗+) =
(ex

∗
1 , ex

∗
2 , ex

∗
3 , ex

∗
4 ) ∈ R

4+, which is determined by the
following algebraic equations:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Λe−x∗
1 − μ1 − βex

∗
2 + ωex

∗
4−x∗

1 = 0,

βex
∗
1 − (μ2 + α1 + δ + γ ) = 0

δex
∗
2−x∗

3 − (μ3 + α2 + ε) = 0,

γ ex
∗
2−x∗

4 + εex
∗
3−x∗

4 − (μ4 + ω) = 0.

(4.2)

By detailed calculation, we obtain that S∗+ = Λ

μ1RS
0
,

I ∗+ = Λ(RS
0 −1)


̄1RS
0

, Q∗+ = δΛ(RS
0 −1)


̄1(μ3+α2+ε)RS
0
, R∗+ =

Λ
̄2(RS
0 −1)

(μ4+ω)(μ3+α2+ε)RS
0

with 
̄1 = μ2 + α1 + μ4+γ
μ4+ω

+
δ[(μ4+γ )(μ3+α2)+μ4ε]

(μ4+ω)(μ3+α2+ε)
and 
̄2 = γ (μ3 + α2 + ε) + εδ.

In fact, the quasi-endemic equilibrium E∗+ is the same
as E∗ if there is no stochastic perturbation. This is the
reason why the quasi-endemic equilibrium is defined.
(II) (Equilibriumoffset transformation)Next, by let-
ting Y = (y1, y2, y3, y4)τ = (x1 − x∗

1 , x2 − x∗
2 , x3 −

x∗
3 , x4− x∗

4 )
τ , then the corresponding linearized differ-

ential equation of system (4.1) is given by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dy1 = (−a11y1 − a12y2 + a14y4)dt + σ1dB1(t),

dy2 = a21y1dt + σ2dB2(t),

dy3 = (a32y2 − a32y3)dt + σ3dB3(t),

dy4 = [a42y2 + a43y3 − (a42 + a43)y4]dt + σ4dB4(t),

(4.3)

where

a11 = Λ + ωR∗+
S∗+

, a12 = β I ∗+,

a14 = ωR∗+
S∗+

, a21 = βS∗+, a32 = δ I ∗+
Q∗+

,

a42 = γ I ∗+
R∗+

, a43 = εQ∗+
R∗+

. (4.4)

By the definition of E∗+, we easily obtain that all the
parameters in (4.4) are positive constants. Next, wewill
study the corresponding probability density function
around the quasi-endemic equilibrium E∗+.
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4.2 Density function expression of stationary
distribution �(·)

Theorem 4.1 Assuming that RS
0 > 1, for any ini-

tial value (S(0), I (0), Q(0), R(0)) ∈ R
4+, the solu-

tion (S(t), I (t), Q(t), R(t)) of the system (2.2) fol-
lows theunique log-normal probability density function
Φ(S, I, Q, R) around the quasi-endemic equilibrium
E∗+, which is described by

Φ(S, I, Q, R) = (2π)−2|�|− 1
2

e
− 1

2

(
ln S

S∗+
,ln I

I∗+
,ln Q

Q∗+
,ln R

R∗+

)
�−1
(
ln S

S∗+
,ln I

I∗+
,ln Q

Q∗+
,ln R

R∗+

)τ

,

where � is a positive definite matrix, and the special
form of � is given as follows.
(1) If w1 = 0, w2 = 0 and w3 = 0, then

� = ρ2
1 (M1H1)

−1�0[(M1H1)
−1]τ

+ ρ2
2 (M2H2P2 J2)

−1�0[(M2H2P2 J2)
−1]τ

+ ρ2
3 (M3 J3)

−1�0[(M3 J3)
−1]τ

+ ρ2
4 (M4 J4)

−1�0[(M4 J4)
−1]τ .

(2) If w1 = 0, w2 = 0 and w3 = 0, then

� = ρ2
1 (M1H1)

−1�0[(M1H1)
−1]τ

+ ρ2
2w3

(M2w3H2P2 J2)
−1�̃0[(M2w3H2P2 J2)

−1]τ
+ ρ2

3 (M3 J3)
−1�0[(M3 J3)

−1]τ
+ ρ2

4 (M4 J4)
−1�0[(M4 J4)

−1]τ .

(3) If w1 = 0 and w2 = 0, then

� = ρ2
1 (M1H1)

−1�0[(M1H1)
−1]τ

+ ρ2
2w2

(M2w2 P2 J2)
−1�0[(M2w2 P2 J2)

−1]τ
+ ρ2

3 (M3 J3)
−1�0[(M3 J3)

−1]τ
+ ρ2

4 (M4 J4)
−1�0[(M4 J4)

−1]τ .

(4) If w1 = 0 and w2 = 0, then

� = ρ2
1w1

(Mw1H1)
−1�̂0[(Mw1H1)

−1]τ
+ ρ2

2w1
(Mw1 J P2 J2)

−1�̂0[(Mw1 J P2 J2)
−1]τ

+ ρ2
3 (M3 J3)

−1�0[(M3 J3)
−1]τ

+ ρ2
4 (M4 J4)

−1�0[(M4 J4)
−1]τ .

(5) If w1 = 0 and w2 = 0, then

� = ρ2
1w1

(Mw1H1)
−1�̂0[(Mw1H1)

−1]τ
+ ρ2

2w12
(M2w12 P2 J2)

−1�̄0[(M2w12 P2 J2)
−1]τ

+ ρ2
3 (M3 J3)

−1�0[(M3 J3)
−1]τ

+ ρ2
4 (M4 J4)

−1�0[(M4 J4)
−1]τ ,

with

w1 = (a42 + a43)(a32 − a42)

a32
,

w2 = a11a12 + a14a42
a32

− a12,

w3 = a14 + (a42 + a43 − a11)w2

w1
,

ρ1 = a21a32w1σ1,

ρ1w1 = a21a32σ1, ρ2 = a32w1w3σ2,

ρ2w1 = a32w2σ2, ρ2w2 = a32w1σ2,

ρ2w12 = a32σ2, ρ2w3 = a32w1σ2,

ρ3 = a14a21a43σ3, ρ4 = a14a21a32σ4,

J1 =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞

⎟
⎟
⎠ , J2 =

⎛

⎜
⎜
⎝

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎞

⎟
⎟
⎠

, J3 =

⎛

⎜
⎜
⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞

⎟
⎟
⎠ , J4 =

⎛

⎜
⎜
⎝

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎞

⎟
⎟
⎠ ,

P2 =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 − a42

a32
1 0

0 a12
a32

0 1

⎞

⎟
⎟
⎠ , H1 =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 − a42

a32
1

⎞

⎟
⎟
⎠

, H2 =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 −w2

w1
1

⎞

⎟
⎟
⎠ .

Moreover, the standardized transformation matrices
M1,M1w1 ,M2,M2w1 ,M2w2 ,M2w12 ,M2w3 ,M3,M4

and �0, �̂0, �̃0, �̄0 are described in (4.10), (4.13),
(4.17), (4.24), (4.22), (4.26), (4.19), (4.30), (4.33),
(4.12) ,(4.14), (4.21), (4.28), respectively.

Proof For the sake of convenience, by letting G =
diag(σ1, σ2, σ3, σ4), B(t) = (B1(t), B2(t), B3(t),
B4(t))τ , and
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Stationary distribution and density function expression 939

A =

⎛

⎜
⎜
⎝

−a11 −a12 0 a14
a21 0 0 0
0 a32 a32 0
0 a42 a43 −(a42 + a43)

⎞

⎟
⎟
⎠ ,

then the linearized system (4.3) can be simplified to
dY = AYdt +GdB(t). According to the relevant the-
ory of Gardiner [39], there exists a unique probabil-
ity density functionΦ(y1, y2, y3, y4) around the quasi-
endemic equilibrium E∗+, which is determined by the
following Fokker–Planck equation

−
4∑

i=1

σ 2
i

2

∂2Φ

∂y2i
+ ∂

∂y1

[
(−a11y1 − a12y2 + a14y4)Φ

]

+ ∂

∂y2

(
a21y1Φ

)+ ∂

∂y3

[
(a32y2 − a32y3)Φ

]

+ ∂

∂y4

[(
a42y2 + a43y3 − (a42 + a43)y4

)
Φ
] = 0.

(4.5)

Considering the diffusionmatrixG is a constantmatrix,
from the results of Roozen [40], Φ(y1, y2, y3, y4) can
be described by aGaussian distribution. In otherwords,

Φ(y1, y2, y3, y4) = φ0e
− 1

2 (y1,y2,y3,y4)Q(y1,y2,y3,y4)τ ,

whereφ0 is a positive constant, which is obtained by the
normalized condition

∫

R4 Φ(Y )dy1dy2dy3dy4 = 1.
The real symmetricmatrix Q satisfies QG2Q+Aτ Q+
QA = 0. If Q is still a inverse matrix, let Q−1 = �.
Then it is equivalent to the following equation

G2 + A� + �Aτ = 0. (4.6)

By the finite independent superposition principle, we
only need to consider the corresponding solutions of
the following four algebraic sub-equations:

G2
i + A�i + �i A

τ = 0 (i = 1, 2, 3, 4),

whereG1 = diag(σ1, 0, 0, 0), G2 = diag(0, σ2, 0, 0),
G3 = diag(0, 0, σ3, 0), G4 = diag(0, 0, 0, σ4).

Finally, we can obtain that� = �1+�2+�3+�4

and G2 = G2
1 + G2

2 + G2
3 + G2

4.
Before proving the positive definiteness of�, we firstly
verify that all the eigenvalues of A have negative real
parts. The corresponding characteristic polynomial of
A is defined by

ϕA(λ) = λ4 + a1λ
3 + a2λ

2 + a3λ + a4, (4.7)

where
(i) a1 = a11 + a32 + a42 + a43 > 0, a2 = (a11 +

a32)(a42 + a43) + a11a32 + a12a21 > 0,
(ii) a3 = (a42+a43)(a11a32+a12a21)+a12a21a32−

a14a21a42, a4 = a21a32(a12 − a14)(a42 + a43).
From the expressions of a11, a12 and a14, one can see
that

a11 − a14 = Λ

S∗+
> 0, a12 − a14 = β I ∗+

−ωR∗+
S∗+

= βS∗+ I ∗+ − ωR∗+
S∗+

= Λ − μ1S∗+
S∗+

= μ1

(
RS

0 − 1
)
> 0.

Therefore, it implies

(1) a3 = a11a32(a42 + a43) + a12a21(a32 + a43)

+a21a42(a12 − a14) > 0,

(2) a4 = a21a32(a12 − a14)(a42 + a43) > 0.

Moreover, by the corresponding simplicity, we have

(3) a1(a2a3 − a1a4) − a23
= a14a21a32(a42 + a43)(a11 + a32 + a42 + a43)

+ a14a21a42[a11a32a42
+ 2(a42 + a43)(a11a32 + a12a21)]
+ a11(a11a32 + a12a21 + a232)[a12a21a32
+ (a42 + a43)(a11a32 + a12a21) + (a42

+ a43)
2(a11 + a32 + a42 + a43)] − a214a

2
21a

2
42

− a14a21a42(a11 + a32)(a42

+ a43)(a11 + a32 + a42 + a43)

− a14a21a42(a11a32 + a12a21)(a42

+ a43)(a11 + a32 + a42 + a43)

> a11(a11a32 + a12a21 + a232)[(a42 + a43)

(a11a32 + a12a21) + a21a32(a12 − a14)]
+ a11(a11 + a32 + a42 + a43)(a42 + a43)

[(a42 + a43)(a11 + a32 + a232) + a12a21a43]
+ a14a21a32(a11 + a32 + a42

+ a43)(a42 + a43)(a11 + a32 + a43)

+ a14a21a42[a43(a11a32
+ a12a21) + a11a32a42] > 0, (4.8)
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which indicates that a1a2 − a3 >
a21a4
a3

> 0. In view
of the Routh–Hurwitz stability criterion [41], we can
obtain that A has all negative real-part eigenvalues.
According to the matrix similar transformation theory,
we realize that ϕA(λ) is a similarity invariant, which
means that a1, a2, a3 and a4 are also similarity invari-
ants.

Next, the corresponding proof for the positive defi-
niteness of� is divided into four steps. More precisely,
we will show that�3,�4 are both positive definite, and
�1, �2 are both at least semi-positive definite.

Step 1 Consider the algebraic equation

G2
1 + A�1 + �1A

τ = 0. (4.9)

For the following elimination matrix H1, by letting
A1 = H1AH

−1
1 , we have

H1 =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 − a42

a32
1

⎞

⎟
⎟
⎠ ,

A1 =

⎛

⎜
⎜
⎝

−a11 −a12
a14a42
a32

a14
a21 0 0 0
0 a32 −a32 0
0 0 w1 −(a42 + a43)

⎞

⎟
⎟
⎠ ,

where w1 = (a42+a43)(a32−a42)
a32

. Using the value of w1,
we analyze the following two cases.

Case 1 If w1 = 0, based on the method intro-
duced in the subsection (I) of “Appendix B”, let
B1 = M1A1M

−1
1 , where the standardized transforma-

tion matrix

M1 =

⎛

⎜
⎜
⎝

a21a32w1 −a32w1(a32 + a42 + a43) m1 −(a42 + a43)3

0 a32w1 −w1(a32 + a42 + a43) (a42 + a43)2

0 0 w1 −(a42 + a43)
0 0 0 1

⎞

⎟
⎟
⎠ , (4.10)

withm1 = w1[(a32 +a42 +a43)(a42 +a43)+a232]. By
direct calculation, we derive

B1 =

⎛

⎜
⎜
⎝

−a1 −a2 −a3 −a4
1 0 0 0
0 1 0 0
0 0 1 0

⎞

⎟
⎟
⎠ .

Moreover, Eq. (4.9) can be equivalently transformed
into

(M1H1)G
2
1(M1H1)

τ + B1[(M1H1)�1(M1H1)
τ ]

+ [(M1H1)�1(M1H1)
τ ]Bτ

1 = 0. (4.11)

Let �0 = ρ−2
1 (M1H1)�1(M1H1)

τ , where ρ1 =
a21a32w1σ1, it can be simplified as

G2
0 + B1�0 + �0B

τ
1 = 0.

Since A has all negative real-part eigenvalues, B1 is
a standard R1 matrix. According to Lemma 2.3, �0

is positive definite. In the similar results described in
subsection (I) of “Appendix A”, the form of�0 is given
as follows.

�0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a2a3−a1a4
2[a1(a2a3−a1a4)−a23 ]

0 − a3
2[a1(a2a3−a1a4)−a23 ]

0

0 a3
2[a1(a2a3−a1a4)−a23 ]

0 − a1
2[a1(a2a3−a1a4)−a23 ]− a3

2[a1(a2a3−a1a4)−a23 ]
0 a1

2[a1(a2a3−a1a4)−a23 ]
0

0 − a1
2[a1(a2a3−a1a4)−a23 ]

0 a1a2−a3
2a4[a1(a2a3−a1a4)−a23 ]

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (4.12)
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Hence, �1 = ρ2
1 (M1H1)

−1�0[(M1H1)
−1]τ is also

a positive-definite matrix.

Case 2 If w1 = 0, that is, a32 = a42, let B1w1 =
M1w1 A1M

−1
1w1

, where the new standardized transfor-
mation matrix is

M1w1 =

⎛

⎜
⎜
⎝

a21a32 −a232 a232 0
0 a32 −a32 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ , (4.13)

which is similarly obtained by themethod in subsection
(II) of “Appendix B”. Then B1w1 is

B1w1 =

⎛

⎜
⎜
⎝

−b1 −b2 −b3 −b4
1 0 0 0
0 1 0 0
0 0 1 −(a42 + a43)

⎞

⎟
⎟
⎠

where bi (i = 1, 2, 3, 4) are shorthands, and we are
only concerned with their signs. Meanwhile, (4.9) can
be equivalently transformed into the following equa-
tion:

(M1w1H1)G
2
1(M1w1H1)

τ + B1w1 [(M1w1H1)�1(M1w1H1)
τ ]

+ [(M1w1H1)�1(M1w1H1)
τ ]Bτ

1w1
= 0.

Let �̂0 = ρ−2
1w1

(M1w1H1)�1(M1w1H1)
τ ,whereρ1w1 =

a21a32σ1. We similarly obtain

G2
0 + B1�̂0 + �̂0B

τ
1 = 0.

By means of the uniqueness of ϕA(λ), one can see that

ϕA(λ) = ϕB1w1
(λ) = λ4 + (b1 + a42 + a43)λ

3

+[b2 + b1(a42 + a43)]λ2
+[b3 + b2(a42 + a43)]λ + b3(a42 + a43),

which means

(i) b1 = a1 − (a42 + a43) = a11 + a32 > 0,

(ii) b2 = a2 − b1(a42 + a43)

= a2 − (a11 + a32)(a42 + a43)

= a11a32 + a12a21 > 0,

(iii) b3 = a3 − b2(a42 + a43) = a3

− (a11a32 + a12a21)(a42 + a43)

= (a12 − a14)a21a32 > 0.

Furthermore, we can compute that

(iv) b1b2 − b3 = (a11 + a32)(a11a32 + a12a21)

− (a12 − a14)a21a32 = a11(a12a21 + a11a32)

+ a32(a11a32 + a14a21) > 0.

Based on (i)–(iv) and Lemma 2.4, B1w1 is a standard R2

matrix, and �̂0 is a semi-positive definite matrix. Con-
sidering the relevant results introduced in subsection
(II) of “Appendix A”, �̂0 will be

�̂0 =

⎛

⎜
⎜
⎜
⎝

b2
2(b1b2−b3)

0 − 1
2(b1b2−b3)

0
0 1

2(b1b2−b3)
0 0

− 1
2(b1b2−b3)

0 b1
2b3(b1b2−b3)

0
0 0 0 0

⎞

⎟
⎟
⎟
⎠

.

(4.14)

Then �1 = ρ2
1w1

(M1w1H1)
−1�̂0[(M1w1H1)

−1]τ is
still semi-positive definite.
Therefore, given the above cases, we get that �1 is at
least semi-positive definite.

Step 2 For the following algebraic equation

G2
2 + A�2 + �2A

τ = 0, (4.15)

consider the corresponding order matrix J2 and elimi-
nation matrix P2:

J2 =

⎛

⎜
⎜
⎝

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎞

⎟
⎟
⎠ , P2 =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 − a42

a32
1 0

0 a12
a32

0 1

⎞

⎟
⎟
⎠ .

Let B2 = (P2 J2)A(P2 J2)−1. Then we can obtain that

B2 =

⎛

⎜
⎜
⎝

0 − a12a21
a32

0 a21
a32 −a32 0 0
0 w1 −(a42 + a43) 0
0 w2 a14 −a11

⎞

⎟
⎟
⎠ , (4.16)

where w1, w2 are the same as those in Theorem 4.1.
Similarly, based on the values of w1 and w2, the fol-
lowing four sub-cases shall be analyzed.

(I1) w1 = 0, w2 = 0; (I2)

w1 = 0, w2 = 0; (I3)

w1 = 0, w2 = 0; (I4) w1 = 0, w2 = 0.

Case (I1) For the following elimination matrix H2, let
C2 = H2B2H

−1
2 :

H2 =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 −w2

w1
1

⎞

⎟
⎟
⎠ ,
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C2 =

⎛

⎜
⎜
⎝

0 − a12a21
a32

a21w2
w1

a21
a32 −a32 0 0
0 w1 −(a42 + a43) 0
0 0 w3 −a11

⎞

⎟
⎟
⎠ ,

where w3 = a14 + (a42+a43−a11)w2
w1

. Based on the value
of w3, we will discuss the following two sub-cases of

Case (I1)
• If w3 = 0, in the similar method as Case 1 of Step
1 described, we construct the following standardized
transformation matrix:

M2 =

⎛

⎜
⎜
⎝

a32w1w3 −w1w3(a11 + a32 + a42 + a43) m2 −a311
0 w1w3 −w3(a11 + a42 + a43) a211
0 0 w3 −a11
0 0 0 1

⎞

⎟
⎟
⎠ , (4.17)

where m2 = w3[(a11 + a42 + a43)(a42 + a43) + a211].
Considering the similar invariant properties of a1, a2,
a3, a4, we can clearly derive that the standard R1 matrix
of A is unique. From the results shown in subsection
(I) of “Appendix B”, let D2 = M2C2M

−1
2 . Then we

obtain that D2 = B1, and (4.15) can be transformed
into

G2
0 + D2�0 + �0D

τ
2 = 0, (4.18)

where�0 = ρ−2
2 (M2H2P2 J2)�2(M2H2P2 J2)−1 with

ρ2 = a32w1w3σ2.
Consequently, �2 = ρ2

2 (M2H2P2 J2)−1�0[(M2H2P2
J2)−1]τ is a positive definite matrix.
• If w3 = 0, the relevant standardized transformation
matrix is given as follows:

M2w3 =

⎛

⎜
⎜
⎝

a32w1 −w1(a32 + a42 + a43) (a42 + a43)2 0
0 w1 −(a42 + a43) 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ .

(4.19)

Define D2w3 = M2w3C2M
−1
2w3

. By simple computa-
tion, we have

D2w3 =

⎛

⎜
⎜
⎝

−b̃1 −b̃2 −b̃3 −b̃4
1 0 0 0
0 1 0 0
0 0 1 −a11

⎞

⎟
⎟
⎠ .

Similarly, b̃i (i = 1, 2, 3, 4) are shorthands, and we
only focus on their signs. According to the method pre-
sented inCase 2 of Step 1, the characteristic polynomial
A is described by

ϕA(λ) = ϕD2w3
(λ)

= λ4 + (̃b1 + a11)λ
3

+(̃b2 + b̃1a11)λ
2 + (̃b3 + b̃2a11)λ + b̃3a11,

where

(i) b̃1 = a1 − a11 = a32 + a42 + a43 > 0,

(ii) b̃2 = a2 − b̃1a11

= a2 − a11(a32 + a42 + a43)

= a32(a42 + a43) + a12a21 > 0,

(iii) b̃3 = a4
a11

= a21a32(a12 − a14)(a42 + a43)

a11
> 0.

Moreover, noting that

b̃3 = a3 − b̃2a11 = a3 − a11[a32(a42 + a43) + a12a21]
= a12a21(a32 + a42 + a43) − a21(a11a12 + a14a32),

we can obtain

(iv) b̃1b̃2 − b̃3

= (a32 + a42 + a43)[a32(a42 + a43)

+ a12a21] − a12a21(a32 + a42 + a43)

+ a21(a11a12 + a14a32)

= a32(a42 + a43)(a32 + a42

+ a43) + a21(a11a12 + a14a32) > 0.

Hence, D2w3 is a standard R2 matrix. Meanwhile, we
can transform (4.15) into the following equation:

G2
0 + D2w3�̃0 + �̃0D

τ
2w3

= 0, (4.20)

where �̃0 = ρ−2
2w3

(M2w3H2P2 J2)�2(M2w3H2P2 J2)−1

with ρ2w1 = a32w1σ2. Bymeans of Lemma 2.4 and the
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above results (i)–(iv), it is found that �̃0 is semi-positive
definite. Following the detailed results described in
subsection (II) of “Appendix A”, we derive

�̃0 =

⎛

⎜
⎜
⎜
⎜
⎝

b̃2
2(̃b1b̃2−b̃3)

0 − 1
2(̃b1b̃2−b̃3)

0

0 1
2(̃b1b̃2−b̃3)

0 0

− 1
2(̃b1b̃2−b̃3)

0 b̃1
2b̃3 (̃b1b̃2−b̃3)

0

0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

.

(4.21)

Thus, �2 = ρ2
2w3

(M2w3H2P2 J2)−1�̃0[(M2w3

H2P2 J2)−1]τ is semi-positive definite.

Case (I2) Ifw1 = 0 andw2 = 0, consider the following
standardized transformation matrix:

M2w2 =

⎛

⎜
⎜
⎝

a14a32w1 −a14w1(a11 + a32 + a42 + a43) m3 −a311
0 a14w1 −a14(a11 + a42 + a43) a211
0 0 a14 −a11
0 0 0 1

⎞

⎟
⎟
⎠ , (4.22)

where m3 = a14[(a11 + a42 + a43)(a42 + a43) + a211].
Let D2w2 = M2w2B2M

−1
2w2

. From the descriptions
in subsection (I) of “Appendix B”, then D2w2 is also
a standard R1 matrix. Based on the uniqueness of the
standard R1 matrix of A, D2w2 = B1. Thus, (4.15) can
be converted to the equivalent equation

G2
0 + D2w2�0 + �0D

τ
2w2

= 0, (4.23)

where�0 = ρ−2
2w2

(M2w2H2P2 J2)�2(M2w2H2P2 J2)−1

with ρ2w2 = a32w1σ2.
Consequently, �2 is a positive-definite matrix, and
�2 = ρ2

2w2
(M2w2H2P2 J2)−1�0[(M2w2H2P2 J2)−1]τ .

Case (I3) If w1 = 0 and w2 = 0, for the following
order matrix J1, by letting C2w1 = J1B2 J

−1
1 , we find

that

J1 =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞

⎟
⎟
⎠ ,

C2w1 =

⎛

⎜
⎜
⎝

0 − a12a21
a32

a21 0
a32 −a32 0 0
0 w2 −a11 a14
0 0 0 −(a42 + a43)

⎞

⎟
⎟
⎠ .

We can then define D2w1 = M2w1C2w1M
−1
2w1

, where
the standardized transformation matrix M2w1 is given
by

M2w1 =

⎛

⎜
⎜
⎝

a32w2 −w2(a11 + a32) a211 −a14(a11 + a42 + a43)
0 w2 −a11 a14
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ .

(4.24)

Based on subsection (II) of “Appendix B”, D2w1 is also
a standard R2 matrix, which satisfies

D2w1 =

⎛

⎜
⎜
⎝

−d1 −d2 −d3 −d4
1 0 0 0
0 1 0 0
0 0 1 −(a42 + a43)

⎞

⎟
⎟
⎠ ,

where d j ( j = 1, 2, 3, 4) are shorthands. From the
result of
ϕA(λ) = ϕD2w1

(λ)

= [λ − (a42 + a43)](λ3 + d1λ
2 + d2λ + d3),

it indicates that (d1, d2, d3)τ = (b1, b2, b3)τ , which is
the same as in Case 2 of Step 1. Thus, (4.15) can be
transformed into the following equation:

G2
0 + D2w1�̂0 + �̂0D

τ
2w1

= 0, (4.25)

where �̂0 = ρ−2
2w1

(M2w1 J1H2P2 J2)�2(M2w2 J1H2

P2 J2)−1 with ρ2w2 = a32w2σ2.
By the property of �̂0, then�2 = (M2w2 J1H2P2 J2)−1

�̂0[(M2w2 J1H2P2 J2)−1]τ is semi-positive definitemat-
rix.

Case (I4) If w1 = 0 and w2 = 0, i.e., a11a22 = (a12 −
a14)a32, then using a similar method as in subsection
(III) of “Appendix B”, let D2w12 = M2w12B2M

−1
2w12

,
where the corresponding standardized transformation
matrix M2w12 is given by

M2w12 =

⎛

⎜
⎜
⎝

−a232 a232 − a12a21 0 a21a32
a32 −a32 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ . (4.26)
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Then we have

D2w12 =

⎛

⎜
⎜
⎝

−c1 −c2 −c3 −c4
1 0 0 0
0 0 −(a42 + a43) 0
0 0 a14 −a11

⎞

⎟
⎟
⎠ ,

where ck (k = 1, 2, 3, 4) are shorthands. On account
of the similarity invariant of ϕA(λ), one has

ϕA(λ) = ϕD2w12
(λ)

= λ4 + (c1 + a11 + a42 + a43)λ
3

+ [c2 − c1(a11 + a42 + a43) + a11(a42 + a43)]λ2

+ [c1a11(a42 + a43) − c2(a11 + a42 + a43)]λ
+ c2a11(a42 + a43),

which implies

(i) c1 = a1 − (a11 + a42 + a43) = a32 > 0,

(ii) c2 = a4
a11(a42 + a43)

= a21a32(a12 − a14)(a42 + a43)

a11(a42 + a43)

= a21a32(a12 − a14)

a11
= a12a21 > 0.

With Lemma 2.5, we obtain that D2w12 is a standard
R3 matrix. Additionally, by letting �̄0 = ρ−2

2w12
(M2w12

P2 J2)�2(M2w12 P2 J2)
−1 with ρ2w12 = a32σ2, then

(4.15) can be equivalently transformed into the follow-
ing equation:

G2
0 + D2w12�̄0 + �̄0D

τ
2w12

= 0. (4.27)

Following Lemma 2.5 and the results described in sub-
section (III) of “Appendix A”, �̄0 is a semi-positive
definite matrix, which has the following form:

�̄0 =

⎛

⎜
⎜
⎝

1
2c1

0 0 0
0 1

2c1c2
0 0

0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ . (4.28)

Consequently, �2 = ρ2
2w3

(M2w3H2P2 J2)−1

�̄0[(M2w3H2P2 J2)−1]τ is also semi-positive definite
matrix.
Given the above analyses,�2 is at least a semi-positive
definite matrix.

Step 3 Consider the following algebraic equation:

G2
3 + A�3 + �3A

τ = 0. (4.29)

Let B3 = (M3 J3)A(M3 J3)−1, where the relevant order
matrix J3 is the same as that described in Theorem 4.1,
and standardized transformation matrix M3 is given by

M3 =

⎛

⎜
⎜
⎝

a14a21a43 −a14a21(a11 + a42 + a43) a21(a211 − a12a21) a21(a11a12 + a14a42)
0 a14a21 −a11a21 −a12a21
0 0 a21 0
0 0 0 1

⎞

⎟
⎟
⎠ . (4.30)

Similarly, we get that B3 is a standard R1 matrix.
Given the uniqueness, then B3 = B1. Furthermore,
Eq. (4.29) equivalently converts to the following equa-
tion:

G2
0 + B3�0 + �0B

τ
3 = 0, (4.31)

where �0 = ρ−2
3 (M3 J3)�3(M3 J3)−1 with ρ3 =

a14a21a43σ3.
By the property of �0, then �3 = (M3 J3)−1

�0[(M3 J3)−1]τ is positive definite.

Step 4 Consider the following algebraic equation:

G2
4 + A�4 + �4A

τ = 0. (4.32)

Define B4 = (M4 J4)A(M4 J4)−1, where the corre-
sponding order matrix J4 is shown in Theorem 4.1, and
standardized transformation matrix M4 is described by

M4 =

⎛

⎜
⎜
⎝

a14a21a32 −a21a32(a11 + a32) a32(a232 − a12a21) −a332
0 a21a32 −a232 a232
0 0 a32 −a32
0 0 0 1

⎞

⎟
⎟
⎠ .

(4.33)

Obviously, B4 is also a standard R1 matrix, which
means that B4 = B1. Similarly, (4.32) is equivalent
to the following algebraic equation:
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Stationary distribution and density function expression 945

G2
0 + B4�0 + �0B

τ
4 = 0, (4.34)

where �0 = ρ−2
4 (M4 J4)�4(M4 J4)−1 with ρ4 =

a14a21a32σ4.
Consequently, �4 is positive definite, and �4 =
(M4 J4)−1�0[(M4 J4)−1]τ .

In summary, �3, �4 are both positive definite. Fur-
thermore, �1, �2 are both at least semi-positive def-
inite. Hence, � = �1 + �2 + �3 + �4 is a pos-
itive definite matrix, and the corresponding special
form of � can be determined by the above steps. By
the positive definiteness of �, we can compute that

φ0 = (2π)−2|�|− 1
2 . Thus, there exists a unique exact

normal density function around the quasi-endemic
equilibrium E∗+ while RS

0 > 1, which is given

by Φ(y1, y2, y3, y4) = (2π)−2|�|− 1
2 exp

(− 1
2 (y1,

y2, y3, y4)�−1(y1, y2, y3, y4)τ
)
. Considering the trans-

formation of (y1, y2, y3, y4) and (S, I, Q, R), then the
unique ergodic stationary distribution �(·) of system
(2.2) approximately follows a unique log-normal prob-
ability density function

Φ(S, I, Q, R) = (2π)−2|�|− 1
2

e
− 1

2

(
ln S

S∗+
,ln I

I∗+
,ln Q

Q∗+
,ln R

R∗+

)
�−1
(
ln S

S∗+
,ln I

I∗+
,ln Q

Q∗+
,ln R

R∗+

)τ

.

This completes the proof of Theorem 4.1. ��

Remark 4.2 By means of Theorems 3.1 and 4.1, if
RS

0 > 1, we can obtain that the unique ergodic station-
ary distribution �(·) of system (2.2) admits the corre-
sponding probability density function Φ(S, I, Q, R).
Hence, RS

0 > 1 can be considered as a reasonable
stochastic criterion for the disease persistence, and the
exact expression of the density function of system (2.2)
can provide an effective method to prevent and control
many epidemics.

5 Numerical simulations and parameter analyses

In this section, we will introduce some examples and
simulations to illustrate the above theoretical results.
Making use of the common higher-ordermethod devel-
oped byMilstein [41], the corresponding discretization
equation of system (2.2) is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sk+1 = Sk + (Λ − μSk − βSk I k + ωRk
)
�t

+σ1Sk
√
�tξk + σ 2

1
2 Sk
(
ξ2k − 1

)
�t,

I k+1 = I k + [βSk I k − (μ + α1 + γ + δ)I k
]
�t

+σ2 I k
√
�tηk + σ 2

2
2 I k
(
η2k − 1

)
�t,

Qk+1 = Qk + [δ I k − (μ + α2 + ε)Qk
]
�t

+σ3Qk
√
�tζk + σ 2

3
2 Qk

(
ζ 2k − 1

)
�t,

Rk+1 = Rk + [γ I k + εQk − (μ + ω)Rk
]
�t

+σ4Rk
√
�tνk + σ 2

4
2 Rk

(
ν2k − 1

)
�t,

(5.1)

where the time increment is �t > 0, and ξk , ηk ,
ζk , νk are the independent Gaussian random variables
which follow the Gaussian distribution N (0, 1) for
k = 1, 2, . . . , n. From the realistic statistics described
by Hethcote [15], Qi [34] and the Central Statistical
Office of Zimbabwe (CSZ), the corresponding biolog-
ical parameters and initial value of system (2.2) are
shown in Table 1.
Next, based onTable 1,wewill perform some empirical
examples to focus on the following four aspects:

(i) The ergodicity property and the existence of a
unique stationary distribution ifRS

0 > 1.
(ii) The corresponding dynamical behavior of sys-

tem (2.2) under RS
0 ≤ 1.

(iii) The influence of stochastic fluctuations on the
disease persistence of system (2.2).

(iv) The effects of the main parameters of system
(2.2) on the disease dynamics, such as the recruitment
rate and transmission rate.
In addition, we still give the exact expression of a
unique log-normal density functionΦ(S, I, Q, R)with
respect to the distribution �(·).

5.1 Dynamical behaviors of system (2.2) under
RS

0 > 1

Example 5.1 According to Table 1, let themain param-
eters (Λ, β,μ, α1, α2, δ, γ, ε, ω) = (25000,
4×10−6, 0.0143, 0.02, 0.01, 0.2, 0.2, 0.15, 0.25) and
let the stochastic perturbations (σ1, σ2, σ3, σ4) =
(0.008, 0.004, 0.005, 0.005). We then calculate that

R0 = Λβ

μ(μ + α1 + δ + γ )
= 16.1184 > 1,

RS
0 = Λβ

(
μ + σ 2

1
2

)(
μ + α1 + γ + δ + σ 2

2
2

) = 16.0821 > 1.
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Table 1 List of biological parameters and initial value of system (2.2)

Parameters Description Unit Value Source

Λ Recruitment rate of the population Per year ≥ 10,000 people [34]

β Transmission rate of the susceptible individuals Per year [0, 1] × 10−5 [34]

μ Natural death rate of the population Per year [0.01,0.025] [15], CSZ data

α1 Disease mortality of the infected individuals Per year [0,0.1] [15,34]

α2 Disease mortality of the quarantined individuals Per year [0,0.08] [15]

δ Quarantine coefficient Per year [0.1, 4] [34]

γ Recovered rate of the infected people Per year [0.1,2] [34]

ε Recovered rate of the quarantined individuals Per year [0.1, 0.4] [15]

ω Immune loss rate of the recovered individuals Per year [0.1,0.3] Estimated

Z(0) The initial value of system (2.2) Million (0.1, 0.28, 0.32, 0.4) Estimated

By Theorem 3.1, we can obtain that system (2.3) has a
unique stationary distribution �(·), which means the
epidemicwill be persistent long-term.This is supported
by the left column of Fig. 1. Furthermore, by detailed
calculation, we derive that

w1 = 0.0489 = 0, w2 = 7.1555 = 0,

w3 = −129.2314 = 0.

It follows from Theorem 4.1 that the stationary dis-
tribution �(·) obeys a log-normal density function
Φ(S, I, Q, R). More precisely,

� = ρ2
1 (M1H1)

−1�0[(M1H1)
−1]τ

+ ρ2
2 (M2H2P2 J2)

−1�0[(M2H2P2 J2)
−1]τ

+ ρ2
3 (M3 J3)

−1�0[(M3 J3)
−1]τ

+ ρ2
4 (M4 J4)

−1�0[(M4 J4)
−1]τ

= 10−3 ×

⎛

⎜
⎜
⎝

0.0491 −0.0184 −0.0090 0.0040
−0.0184 0.1804 0.1578 0.1764
−0.0090 0.1578 0.2296 0.1852
0.0040 0.1764 0.1852 0.2278

⎞

⎟
⎟
⎠ ,

By the definition of E∗+, we further determine that
(S∗+, I ∗+, Q∗+, R∗+) = (1.0857 × 105, 2.8503 × 105,
3.2708 × 105, 4.0133 × 105). Then the expression of
Φ(S, I, Q, R) is obtained. In order to validate the cor-
rectness of the result, the corresponding marginal den-
sity functions of S(t), I (t), Q(t) and R(t) are sepa-
rately given by

(i) F1(S) = ∂Φ

∂S
= 56.934e−10183(ln S−11.6);

(ii) F2(I ) = ∂Φ

∂ I
= 29.702e−2771.6(ln I−12.56);

(iii) F3(Q) = ∂Φ

∂Q
= 26.328e−2177.7(ln Q−12.7);

(iv) F4(R) = ∂Φ

∂R
= 26.432e−2194.9(ln R−12.9).

The curves of (i)–(iv) are shown in the right column of
Fig. 1. Clearly, it verifies Theorem 4.1 from the side.

5.2 Impact of random noises σ1 and σ2 on the disease
persistence

It follows from Remark 4.1 that random fluctuations of
susceptible and infected individuals (i.e., σ1, σ2) have a
critical influence on the disease persistence. Therefore,
by the method of controlling variables, we are devoted
to studying the corresponding dynamical effects of σ1
and σ2 in the following Example 5.2.

Example 5.2 First, the parameters are chosen consid-
ering the following three subcases of random perturba-
tions:

(a1) (σ1, σ2) = (0.01, 0.01);
(a2) (σ1, σ2) = (0.1, 0.01);
(a3) (σ1, σ2) = (0.01, 0.1).

In fact, the above three subconditions (a1)-(a3) all guar-
antee the existence of the ergodic stationary distribution
of system (2.2). For subcases (a1) and (a2), i.e., sub-
figure (2-1), by only increasing the perturbation inten-
sity of susceptible individuals, the corresponding num-
bers of quarantined and recovered individuals decrease
apparently. In contrast, by only increasing the pertur-
bation intensity of infected individuals, the population
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Fig. 1 The left column represents the numbers of
S(t), I (t), Q(t), R(t) in model (2.1) and system (2.2)
with the initial value Z(0) and the noise intensities
(σ1, σ2, σ3, σ4) = (0.008, 0.004, 0.005, 0.005), respectively.

The right column shows the frequency histogram and the
corresponding marginal density function curves of individuals
S, I, Q, R

numbers of the quarantined individuals increase appar-
ently, which can be verified by subfigure (2-2). Taken
together, both the large white noises σ1 and σ2 have
a great destabilizing influence on the susceptible and
infected population. Figure 2 confirms this.

From the expression ofRS
0 (orR0), the disease per-

sistence of system (2.2) (or system (2.1)) is critically
affected by the recruitment rate Λ, transmission rate
β and quarantined coefficient δ. Hence, the following
Examples 5.3-5.5 will reveal these effects.

5.3 Impact of recruitment rate Λ on the dynamics of
system (2.2)

Example 5.3 Let the stochastic perturbations (σ1, σ2,

σ3, σ4) = (0.1, 0.1, 0.01, 0.01) and the biological
parameters (β, μ, α1, α2, δ, γ, ε, ω) = (5 × 10−7,

0.0143, 0.02, 0.01, 0.2, 0.2, 0.15, 0.2). Considering the
subcases of Λ = 10,000, 20,000, 30,000 and 40,000,
the correspondingpopulation intensities of infected and

quarantined individuals are shown in Fig. 3, respec-
tively. Clearly, the epidemic infection will decrease
as the recruitment rate decreases. Moreover, a small
recruitment rate, such as Λ < 10,000, can effectively
lead to disease extinction (see Fig. 3).

5.4 Impact of transmission rate β on the dynamics of
system (2.2)

Example 5.4 Choose the biological parameters (Λ,

μ, α1, α2, δ, γ, ε, ω) = (20,000, 0.0143, 0.02,0.01, 0.2,
0.2, 0.15, 0.2) and random noises (σ1, σ2, σ3, σ4) =
(0.1, 0.1, 0.01, 0.01). Consider the subcases of trans-
mission rate β = 3 × 10−7, 5 × 10−7, 7 × 10−7 and
9 × 10−7, the corresponding population numbers of
infected and isolated individuals are described in Fig.
4, respectively. Obviously, smaller contact rate can be
conducive to the reduction in infection even lead to
elimination of disease. For instance, by Fig. 4, we can
take some reasonable measures to guarantee the result
of β < 3 × 10−7 to eliminate the disease.
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Fig. 2 The corresponding simulations of the
solution (S(t), I (t), Q(t), R(t)) to system (2.2)
under the noise intensities (σ1, σ2, σ3, σ4) =
(0.01, 0.01, 0.01, 0.01), (0.1, 0.01, 0.01, 0.01) and

(0.01, 0.1, 0.01, 0.01) are carried out. Other given param-
eters are as follows: (Λ, β, μ, α1, α2, δ, γ, ε, ω) =
(20,000, 3.5 × 10−6, 0.0143, 0.02, 0.01, 0.2, 0.2, 0.15, 0.2)
and (σ3, σ4) = (0.01, 0.01)

0 0.5 1 1.5 2

Time t 107

0

1

2

3

4

5

6

7

8

V
al

ue

105 The population intensity of I(t)

=10000
=20000
=30000
=40000

0 0.5 1 1.5 2

Time t 107

0

1

2

3

4

5

6

7

V
al

ue

10 5
The population intensity of Q(t)

=10000
=20000
=30000
=40000

Fig. 3 The population intensities of infected and iso-
lated individuals of system (2.2) with the recruit-
ment rate Λ = 10,000, 20,000, 30,000 and 40,000,

respectively. Other fixed parameters: (σ1, σ2, σ3, σ4) =
(0.1, 0.1, 0.01, 0.01) and (β, μ, α1, α2, δ, γ, ε, ω) =
(5 × 10−7, 0.0143, 0.02, 0.01, 0.2, 0.2, 0.15, 0.2)

5.5 Impact of quarantine coefficient δ on the
dynamics of system (2.2)

Example 5.5 Consider the environmental fluctuations
(σ1, σ2, σ3, σ4) = (0.1, 0.1, 0.01, 0.01) and the bio-

logical parameters (Λ, β,μ, α1, α2, δ, γ, ε, ω)

= (20,000, 5×10−7, 0.0143, 0.02, 0.01, 0.2, 0.15, 0.2).
Next, we assume that the quarantined coefficient is
δ = 0.05, 0.1, 0.2 and 0.4. Similarly, the disease
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Fig. 4 The population numbers of infected and quaran-
tined individuals of system (2.2) with the transmission rate
β = 3 × 10−7, 5 × 10−7, 7 × 10−7 and 9 × 10−7, respec-

tively. Other given parameters: (Λ,μ, α1, α2, δ, γ, ε, ω) =
(20,000, 0.0143, 0.02, 0.01, 0.2, 0.2, 0.15, 0.2) and
(σ1, σ2, σ3, σ4) = (0.1, 0.1, 0.01, 0.01)

infection will be under control as the quarantined rate
increases. Figure 5 validates this.

For a comprehensive analysis, the case RS
0 ≤ 1

should be discussed and simulated.

5.6 Dynamical behaviors of system (2.2) ifRS
0 ≤ 1

Example 5.6 Let themainparameters (Λ, β,μ, α1, α2,

δ, γ, ε, ω) = (20,000, 3.5 × 10−7, 0.0143, 0.02,
0.01, 0.2, 0.2, 0.15, 0.2) and the environmental noise
intensities (σ1, σ2, σ3, σ4) = (0.1, 0.1, 0.01, 0.01).
Then we can compute

R0 = Λβ

μ(μ + α1 + δ + γ )
= 1.1283 > 1,

RS
0 = Λβ

(
μ + σ 2

1
2

)(
μ + α1 + γ + δ + σ 2

2
2

) = 0.8263 < 1.

According to Theorem 4.1, the existence and unique-
ness of the ergodic stationary distribution of system
(2.2) is unknown. Figure 3 indicates that the disease
will go to extinction in the long-term. Furthermore,
when R0 > 1, the deterministic system (2.1) has an
endemic equilibrium E∗ which is globally asymptoti-
cally stable (Fig. 6).

6 Conclusions and discussion of results

6.1 Conclusions

In this subsection, we draw conclusion from the theo-
retical results of this paper.
• By means of Theorem 3.1, the existence of the
ergodic stationary distribution �(·) of the solution
(S(t), I (t), Q(t), R(t)) to system (2.2) is proved under

RS
0 = Λβ

(
μ + σ 2

1
2

)(
μ + α1 + γ + δ + σ 2

2
2

) > 1.

• By taking the effect of stochasticity into account, the
quasi-endemic equilibrium E∗+ related to E∗ is defined.
Assuming thatRS

0 > 1, we determine that the station-
ary distribution �(·) around E∗+ admits a log-normal
density function in the following form:

Φ(S, I, Q, R) = (2π)−2|
�|− 1

2 e
− 1

2

(
ln S

S∗+
,ln I

I∗+
,ln Q

Q∗+
,ln R

R∗+

)
�−1
(
ln S

S∗+
,ln I

I∗+
,ln Q

Q∗+
,ln R

R∗+

)τ

,

where the special form of � is shown in Theorem 4.1.
Clearly, the above results indicate that the infectious
disease will prevail and persist for long-term devel-
opment if RS

0 > 1. In epidemiology, the first con-
cern is whether an epidemic will occur. Therefore, by
means of the above numerical simulations and parame-
ter analyses,we are devoted to providing some effective
measures to reduce the threat of infectious diseases to
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Fig. 5 The numbers of infected and quarantined individuals of
system (2.2) with the isolated coefficients δ = 0.05, 0.1, 0.2 and
0.4. Other fixed parameters are as follows: (σ1, σ2, σ3, σ4) =

(0.1, 0.1, 0.01, 0.01) and (Λ, β, μ, α1, α2, δ, γ, ε, ω) =
(20,000, 5 × 10−7, 0.0143, 0.02, 0.01, 0.2, 0.15, 0.2)
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Fig. 6 The left figure shows the numbers of
S(t), I (t), Q(t), R(t) in the deterministic system (2.1)
with the initial value Z(0). The right figure reflects the
population intensities of S(t), I (t), Q(t), R(t) in system

(2.2) with main parameters (Λ, β, μ, α1, α2, δ, γ, ε, ω) =
(20,000, 3.5 × 10−7, 0.0143, 0.02, 0.01, 0.2, 0.2, 0.15, 0.2)
and noise intensities (σ1, σ2, σ3, σ4) = (0.1, 0.1, 0.01, 0.01)

human life and safety, and eventually lead to the erad-
ication of disease. Based on the above numerical sim-
ulations, we can conclude the following three points:

(1) To provide effective treatment and a wide range
of isolation measures, see Fig. 5.

(2) To control the activities of the susceptible indi-
viduals in highly pathogenic areas and provide some

effective vaccination strategies for susceptible individ-
uals, that is to say, β → 0+, see Fig. 4.

(3) To implement some reasonable policies to
reduce populationmobility in differential risk epidemic
regions, which means the value of Λ is sufficiently
small, see Fig. 3. For example, various joint prevention
and control greatly inhibited the spread of COVID-19
in China.
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6.2 Discussion of results

In this paper, to the best of our knowledge, the dis-
ease persistence of an SIQRS epidemic model, which
includes the existence of ergodic stationary distribution
and the exact expression of probability density func-
tion, is studied. Through comparison with the existing
results, our main contributions will be introduced in the
following two aspects in detail.

(i) By means of the linear random disturbance
shown in [15,20–22,25–37], we focus on a stochas-
tic SIQRS epidemic model with temporary immunity
in the present study. Next, we construct some suitable
Lyapunov functions to derive a stochastic critical value
RS

0 . By the Khas’minskii ergodicity theory, we obtain
that system (2.2) admits a unique ergodic stationary
distribution while RS

0 > 1. From the similar expres-
sions of RS

0 and the basic reproduction number R0, it
greatly reveals that the stochastic positive equilibrium
state (i.e., disease persistence) is only determined by
the dynamical behavior of the susceptible individuals
and the infectious people. More precisely, the corre-
sponding random fluctuations are σ1, σ2. In view of the
method of controlling variables and numerical simula-
tions, the key measure to the prevention of infectious
disease lies in the control and quarantine of infected
individuals. Furthermore, by the corresponding param-
eter analyses, we further provide some reasonablemea-
sures to reduce the transmission of epidemic.

(ii) The existence of the ergodic stationary distribu-
tion makes it difficult to determine the exact statistical
properties of disease persistence. For further dynami-
cal investigation in epidemiology, based on Zhou and
Zhang [33], we develop some solving theories of alge-
braic equations with respect to the four-dimensional
probability density function, which are described in
Lemmas 2.3–2.5. In fact, focusing on the previous
studies [27–32], the corresponding persistence is only
obtained by the existence theory of the unique station-
ary distribution with ergodicity. By taking the effect
of stochasticity into consideration, the quasi-endemic
equilibrium E∗+ is constructed. By means of the equiv-
alence of system (4.1) and the corresponding lin-
earized system (4.3), we derive the exact expression
of the log-normal four-dimensional density function
Φ(S, I, Q, R). In addition, the covariance matrix � is
solved by the algebraic equationG2+ A�+�Aτ = 0,
that is, Eq. (4.6). Following the existing results, the
corresponding stability theory of zero solution of the

general linear equation, described in [42], can validate
the positive definiteness of �. But the specific form
of� is hard to obtain. In the current study, we develop
the corresponding standard R1, R2, R3 matrices shown
in Lemmas 2.3–2.5. By means of the general solving
theories, we can verify that � is positive definite and
obtain the special form of � as shown in the detailed
discussions. Furthermore, compared to what the exist-
ing results cannot obtain the general expression of�, it
is important to highlight that our methods and theories
can be used to prove that � is positive definite even if
the diffusionmatrixG is semi-positive definite, such as
in delay stochastic differential equations [29,43–45].

Finally, some important topics that should be further
studied are noted here. First, due to the limitation of our
mathematical approaches to an epidemic model with
temporary immunity, the sufficient conditions for dis-
ease extinction are difficult to establish. Consequently,
for a comprehensive discussion, we only plot the rele-
vant simulation of the solution (S(t), I (t), Q(t), R(t))
while RS

0 ≤ 1. Second, by taking the effect of tele-
graph noises into account [31,35,46], the correspond-
ing SIQRS epidemic model with temporary immunity
and regime switching should be studied. These prob-
lems are expected to be considered and solved in our
future work.
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Appendix A

(I)Proof of Lemma 2.3: Consider the algebraic equation
G2

0+A0θ0+θ0Aτ
0 = 0,where θ0 is a symmetricmatrix.

By direct calculation, we have

θ0 =

⎛

⎜
⎜
⎝

σ11 0 σ13 0
0 σ22 0 σ24
σ13 0 σ33 0
0 σ24 0 σ44

⎞

⎟
⎟
⎠ , (6.1)
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where σ22 = a3
2[a1(a2a3−a1a4)−a23 ]

, σ13 = −σ22, σ33 =
a1
a3
σ22, σ24 = − a1

a3
, σ11 = a2a3−a1a4

a3
σ22, and σ44 =

a1a2−a3
a3a4

σ22. Assume that a1 > 0, a3 > 0, a4 >

0, a1(a2a3 − a1a4) − a23 > 0. Then we can show that

σ11 > 0, σ11σ22 > 0, σ22(σ11σ33 − σ 2
13) > 0,

(σ11σ33 − σ 2
13)(σ22σ44 − σ 2

24) > 0.

This means all the leading principal minors of matrix
θ0 are positive. Consequently, θ0 is positive definite.

The proof is completed.
(II) Proof of Lemma 2.4: Consider the algebraic equa-
tion G2

0 + B0θ1 + θ1Bτ
0 = 0, where θ1 is a symmetric

matrix. We can get by direct computation that

θ1 =

⎛

⎜
⎜
⎝

θ11 0 θ13 0
0 θ22 0 0
θ13 0 θ33 0
0 0 0 0,

⎞

⎟
⎟
⎠ , (6.2)

where

θ22 = 1

2(b1b2 − b3)
, θ13 = −θ22, θ11 = b2θ22,

θ33 = b1
b3

θ22.

If b1 > 0, b3 > 0, b1b2 − b3 > 0, noting that

θ11 > 0, θ11θ22 > 0, θ22(θ11θ33 − θ213) > 0,

which means three leading principal minors of matrix
θ1 are positive. Hence, θ1 is semi-positive definite. The
proof is confirmed.
(III) Proof of Lemma 2.5: For the algebraic equation
G2

0+C0θ2+θ2Cτ
0 = 0, since θ2 is a symmetric matrix,

we obtain

θ2 =

⎛

⎜
⎜
⎝

ϑ11 0 0 0
0 ϑ22 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ , (6.3)

where ϑ11 = 1
2c1

, ϑ22 = 1
2c1c2

.
If c1 > 0 and c2 > 0, then θ2 is a semi-positive definite
matrix. This completes the proof.

Appendix B (Theory in obtaining standardized
transformation matrix)

By means of the invertible linear transformations, we
will derive the corresponding standardized transforma-
tion matrices of standard R1, R2, and R3 matrices.

(I) The theory of obtaining standard R1 matrix:
For the algebraic equationG2+A�+�Aτ = 0, where
G = diag(σ, 0, 0, 0), and

A =

⎛

⎜
⎜
⎝

a11 a12 a13 a14
a21 a22 a23 a24
0 a32 a33 a34
0 0 a43 a44

⎞

⎟
⎟
⎠ . (6.4)

First, we assume that

a21 = 0, a32 = 0, a43 = 0.

Define X = (x1, x2, x3, x4)τ which follows dX =
AXdt . Considering the following vector Y = (y1,
y2, y3, y4)τ ,

y4 = x4, y3 = y′
4 = a43x3 + a44x4,

y2 = y′
3 = a43dx3 + a44dx4 = a32a43x2 + (a33

+ a44)a43x3 + (a244 + a34a43)x4,

y1 = y′
2 = a21a32a43x1 + [(a22

+ a33 + a44)a32a43]x2
+ [a43(a23a32 + a34a43

+ a33a44 + a233 + a244)]x3
+ [a24a32a43 + (a33 + a44)a34a43

+ (a34a43 + a244)a44]x4 := m1x1

+ m2x2 + m3x3 + m4x4.

Then the corresponding standardized transformation
matrix is given by

M =

⎛

⎜
⎜
⎝

m1 m2 m3 m4

0 a32a43 (a33 + a44)a43 a244 + a34a43
0 0 a43 a44
0 0 0 1

⎞

⎟
⎟
⎠ .

(6.5)

Given the above, we derive that Y = MX , which
implies that dY = MdX = MAXdt = (MAM−1)Ydt .
Meanwhile, based on the relationship of the vector Y ’s
components, one has

dY = d

⎛

⎜
⎜
⎝

y1
y2
y3
y4

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

−a1 −a2 −a3 −a4
1 0 0 0
0 1 0 0
0 0 1 0

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

y1
y2
y3
y4

⎞

⎟
⎟
⎠ dt.
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Obviously, we obtain the corresponding standard R1

matrix MAM−1 := A0, which refers to (2.3). Let
ρ1 = a21a32a43σ and θ0 = ρ−2

1 M�Mτ . Then the
above equation can be equivalently transformed into
the following equation:

G2
0 + A0θ0 + θ0A

τ
0 = 0. (6.6)

(II)Themethodof transforming standard R2matrix:
For the algebraic equationG2+B�+�Bτ = 0,where
G = diag(σ, 0, 0, 0), and

B =

⎛

⎜
⎜
⎝

b11 b12 b13 b14
b21 b22 b23 b24
0 b32 b33 b34
0 0 0 b44

⎞

⎟
⎟
⎠ . (6.7)

Similarly, we stipulate that

b21 = 0, b32 = 0.

Let the vector X = (x1, x2, x3, x4)τ follow dX =
BXdt . For the following vector Y = (y1, y2, y3, y4)τ ,
y4 = x4, y3 = x3, y2 = y′

3 = b32x2 + b33x3 + b34x4,

y1 = y′
2 = b32dx2 + b33dx3 + b34dx4

= b21b32x1 + (b22 + b33)b32x2

+ (b233 + b23b32)x3 + [(b33 + b44)b34 + b24b32]x4.

Then the relevant standardized transformation matrix
M is described by

M =

⎛

⎜
⎜
⎝

b21b32 (b22 + b33)b32 b233 + b23b32 (b33 + b44)b34 + b24b32
0 b32 b33 b34
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ .

(6.8)

Moreover, we get that Y = MX , which means
dY = MdX = MBXdt = (MBM−1)Ydt . Similarly,

according to the relationship of the vector Y ’s compo-
nents, we obtain a standard R2 matrix MBM−1 := B0,
which refers to (2.4). Denote ρ2 = b21b32σ , θ1 =
ρ−2
2 M�Mτ . Then the above equation is equivalent to

G2
0 + B0θ1 + θ1B

τ
0 = 0. (6.9)

(III) The method of transforming standard R3

matrix: Consider the algebraic equation G2 + C� +
�Cτ = 0, where G = diag(σ, 0, 0, 0), and

C =

⎛

⎜
⎜
⎝

c11 c12 c13 c14
c21 c22 c23 c24
0 0 c33 c34
0 0 c43 c44

⎞

⎟
⎟
⎠ . (6.10)

First, we assume that c21 = 0. For a vector X =
(x1, x2, x3, x4)τ determined by dX = CXdt , the fol-
lowing vector Y = (y1, y2, y3, y4)τ satisfies

y4 = x4, y3 = x3, y2 = c21x1

+ c22x2 + c23x3 + c24x4,

y1 = y′
2 = c21(c11 + c22)x1 + (c12c21 + c222)x2

+ [c13c21 + c23(c22 + c33) + c24c43]x3
+ [c14c21 + c24(c22 + c44) + c23c34]x4.

By defining the corresponding standardized transfor-
mation matrix

M =

⎛

⎜
⎜
⎝

c21(c11 + c22) c12c21 + c222 c13c21 + c23(c22 + c33) + c24c43 c14c21 + c24(c22 + c44) + c23c34
c21 c22 c23 c24
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ , (6.11)

we can obtain Y = MX . That is to say, dY = MdX =
MCXdt = (MCM−1)Ydt . Hence, the standard R3

matrix MCM−1 := C0 is obtained, which refers to
(2.5). Let ρ3 = c21σ and θ2 = ρ−2

3 M�Mτ . Then
it can be equivalently transformed into the following
equation:

G2
0 + C0θ2 + θ2C

τ
0 = 0. (6.12)
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Appendix C

Consider the following k-dimensional stochastic dif-
ferential equation

dX (t) = f (X (t), t)dt + g(X (t), t)dB(t) for t ≥ t0,

with the initial value X (0) = X0 ∈ R
k , where B(t)

depicts a k-dimensional standard Brownian motion
defined in the above complete probability space. The
common differential operator L is described by

L = ∂

∂t
+

k∑

i=1

fi (X (t), t)
∂

∂Xi

+1

2

k∑

i, j=1

[
gτ (X (t), t)g(X (t), t)

]

i j

∂2

∂Xi∂X j
.

Let the operator L act on a function V ∈ C2,1(Rk ×
[t0,∞];R1+). Then one can determine that

L V (X, t) = Vt (X (t), t) + VX (X (t), t) f (X (t), t)

+1

2
trace

[
gτ (X (t), t)VXX (X (t), t)g(X (t), t)

]
,

where Vt = ∂V
∂t , VX = ( ∂V

∂x1
, . . . , ∂V

∂xk
), and VXX =

( ∂2V
∂xi ∂x j

)k×k . If X (t) ∈ R
k , we have

dV (X (t), t) = L V (X (t), t)dt

+VX (X (t), t)g(X (t), t)dB(t).

References

1. Khan, T., Zaman, G., Chohan, M.I.: The transmission
dynamic of different hepatitis B-infected individuals with
the effect of hospitalization. J. Biol. Dyn. 12, 611–631
(2018)

2. Sasaki, S., Suzuki, H., Fujino, Y., Kimura, Y., Cheelo, M.:
Impact of drainage networks on cholera outbreaks inLusaka,
Zambia. Am. J. Public Health 99, 1982–1989 (2009)

3. Ma, X., Wang, W.: A discrete model of avian influenza
with seasonal reproduction and transmission. J. Biol. Dyn.
4, 296–314 (2010)

4. Kermack, W.O., McKendrick, A.G.: A contribution to the
mathematical theory of epidemics. Proc. R. Soc. Lond. A
115, 700–21 (1927)

5. Liu, X., Takeuchi, Y., Iwami, S.: SVIR epidemic models
with vaccination strategies. J. Theor. Biol. 253, 1–11 (2008)

6. Li, J., Teng, Z., Wang, G., Zhang, L., Hu, C.: Stability and
bifurcation analysis of an SIR epidemic model with logistic
growth and saturation treatment. Chaos Soliton Fractals 99,
63–71 (2017)

7. Jerubet, R., Kimathi, G.: Analysis and modeling of tuber-
culosis transmission dynamics. J. Adv. Math. Comput. Sci.
32, 1–14 (2019)

8. Li, M.Y., Smith, H.L., Wang, L.: Global dynamics of an
SEIR epidemic model with vertical transmission. SIAM. J.
Appl. Math. 62, 58–69 (2001)

9. Hove-Musekwa, S.D., Nyabadza, F.: The dynamics of an
HIV/AIDS model with screened disease carriers. Comput.
Math. Method Med. 10, 287–305 (2015)

10. Iwami, S., Takeuchi, Y., Liu, X.: Avian-human influenza
epidemic model. Math. Biosci. 207, 1–25 (2007)

11. Cai, L., Wu, J.: Analysis of an HIV/AIDS treatment model
with a nonlinear incidence. Chaos Soliton Fractals 41, 175–
182 (2009)

12. Vincenzo, C., Gabriella, S.: A generalization of the
Kermack–McKendrick deterministic epidemic model.
Math. Biosci. 42, 43–61 (1978)

13. Carter, E., Currie, C.C., Asuni, A., et al.: The first six weeks-
setting up aUKurgent dental care centre during the COVID-
19 pandemic. Br. Dent. J. 228, 842–848 (2020)

14. Liu, J., Zhou,Y.: Global stability of an SIRS epidemicmodel
with transport-related infection. Chaos Soliton Fractals 40,
145–158 (2009)

15. Hethcode, H., Ma, Z., Liao, S.: Effect of quarantine in six
endemic models for infectious diseases. Math. Biosci. 180,
141–160 (2002)

16. Ma, Y., Liu, J., Li, H.: Global dynamics of an SIQR model
with vaccination and elimination hybrid strategies. Mathe-
matics 6, 328 (2018)

17. Joshi, H., Sharma, R.K., Prajapati, G.L.: Global dynamics
of an SIQR epidemic model with saturated incidence rate.
Asian J. Math. Comput. Res. 21, 156–166 (2017)

18. Feng, Z., Thieme, H.R.: Recurrent outbreaks of childhood
diseases revisited: the impact of isolation.Math. Biosci. 128,
93–130 (1995)

19. Wu, L., Feng, Z.: Homoclinic bifurcation in an SIQR model
for childhood diseases. J. Differ. Equ. 168, 150–167 (2000)

20. Zhang, X., Huo, H., Xiang, H., Meng, X.: Dynamics of the
deterministic and stochastic SIQS epidemicmodelwith non-
linear incidence. Appl. Math. Comput. 243, 546–558 (2014)

21. Ma, Z., Zhou, Y., Wu, J.: Modeling and Dynamic of Infec-
tious Disease. Higher Education Press, Beijing (2009)

22. Shuai, Z., Tien, J.H., Driessche, P.: Cholera models with
hyperinfectivity and temporary immunity. Bull. Math. Biol.
74, 2423–2445 (2012)

23. Li, X., Gray, A., Jiang, D., Mao, X.: Sufficient and neces-
sary conditions of stochastic permanence and extinction for
stochastic logistic populations under regime switching. J.
Math. Anal. Appl. 376, 11–28 (2011)

24. Liu, Q., Jiang, D., Hayat, T., Ahmad, B.: Analysis of a
delayed vaccinated SIR epidemic model with temporary
immunity and Lévy jumps. Nonlinear Anal. Real. 27, 29–43
(2018)

25. Cai,Y.,Kang,Y.:A stochastic epidemicmodel incorporating
media coverage. Commun. Math. Sci. 14, 893–910 (2015)

26. Zhao, Y., Jiang, D.: The threshold of a stochastic SIS epi-
demic model with vaccination. Appl. Math. Comput. 243,
718–727 (2014)

27. Khan, T., Khan, A.: The extinction and persistence of the
stochastic hepatitis B epidemic model. Chaos Soliton Frac-
tals 108, 123–128 (2018)

28. Han, B., Jiang, D., et al.: Stationary distribution and extinc-
tion of a stochastic staged progression AIDS model with

123



Stationary distribution and density function expression 955

staged treatment and second-order perturbation. Chaos Soli-
ton Fractals 140, 110238 (2020)

29. Zhang, X.: Global dynamics of a stochastic avian–human
influenza epidemic model with logistic growth for avian
population. Nonlinear Dyn. 90, 2331–2343 (2017)

30. Caraballo, T., Fatini, M.E., Khalifi, M.E.: Analysis of a
stochastic distributed delay epidemic model with relapse
and Gamma distribution kernel. Chaos Soliton Fractals 133,
109643 (2020)

31. Wang, Y., Jiang, D.: Stationary distribution of an HIVmodel
with general nonlinear incidence rate and stochastic pertur-
bations. J. Frankl. I(356), 6610–6637 (2019)

32. Wang, L., Wang, K., et al.: Nontrivial periodic solution for
a stochastic brucellosis model with application to Xinjiang,
China. Physica A 510, 522–537 (2018)

33. Liu, Q., Jiang, D., Hayat, T., Alsaedi, A.: Dynamical behav-
ior of a stochastic epidemic model for cholera. J. Frankl.
I(356), 7486–7514 (2019)

34. Zhou, B., Zhang, X., Jiang, D.: Dynamics and density func-
tion analysis of a stochastic SVI epidemic model with half
saturated incidence rate. Chaos Soliton Fractals 137, 109865
(2020)

35. Qi, K., Jiang, D.: The impact of virus carrier screening
and actively seeking treatment on dynamical behavior of a
stochastic HIV/AIDS infection model. Appl. Math. Model.
85, 378–404 (2020)

36. Zhang, X., Jiang, D., Alsaedi, A.: Stationary distribution
of stochastic SIS epidemic model with vaccination under
regime switching. Appl. Math. Lett. 59, 87–93 (2016)

37. Mao, X.: Stochastic Differential Equations and Applica-
tions. Horwood Publishing, Chichester (1997)

38. Liu, Q., Jiang, D., Shi, N., Hayat, T., Ahmad, B.: Stationary
distribution and extinction of a stochastic SEIR epidemic
modelwith standard incidence. PhysicaA 476, 58–69 (2017)

39. Has’miniskii, R.Z.: Stochastic Stability ofDifferential equa-
tions. Sijthoff Noordhoff, Alphen aan den Rijn (1980)

40. Gardiner, C.W.: Handbook of Stochastic Methods for
Physics. Chemistry and the Natural Sciences. Springer,
Berlin (1983)

41. Roozen, H.: An asymptotic solution to a two-dimensional
exit problem arising in population dynamics. SIAM J. Appl.
Math. 49, 1793 (1989)

42. Higham,D.J.:Analgorithmic introduction to numerical sim-
ulation of stochastic differential equations. SIAM Rev. 43,
525–546 (2001)

43. Ma, Z., Zhou, Y., Li, C.: Qualitative and Stability Methods
for Ordinary Differential Equations. Science Press, Beijing
(2015)

44. Liu, Q., Jiang, D., Hayat, T., Alsaedi, A.: Long-time
behaviour of a stochastic chemostat model with distributed
delay. Stochastics 91, 1141–1163 (2019)

45. Li, M.Y., Shuai, Z., Wang, C.: Global stability of multi-
group epidemic models with distributed delays. J. Math.
Anal. Appl. 361, 38–47 (2010)

46. Liu,Q., Jiang,D., Shi,N.,Hayat, T.,Alsaedi,A.:Asymptotic
behavior of stochastic multi-group epidemic models with
distributed delays. Physica A 467, 527–541 (2017)

47. Liu, Q., Jiang, D., Shi,N., Hayat,T., et al.: A stochastic SIRS
epidemic model with logistic growth and general nonlinear
incidence rate. Phys A Stat Mech Appl 551, 124152 (2020)

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

123


	Stationary distribution and density function expression for a stochastic SIQRS epidemic model with temporary immunity
	Abstract
	1 Introduction
	2 Mathematical models and necessary lemmas
	2.1 Deterministic SIQRS epidemic model and dynamical properties
	2.2 Stochastic SIQRS epidemic system
	2.3 Mathematical notations and necessary lemmas

	3 Stationary distribution and ergodicity of system (2.2)
	4 Density function analyses of stationary distribution (cdot)
	4.1 Two important transformations of system (2.2)
	4.2 Density function expression of stationary distribution (cdot)

	5 Numerical simulations and parameter analyses
	5.1 Dynamical behaviors of system (2.2) under mathscrR0S>1
	5.2 Impact of random noises σ1 and σ2 on the disease persistence
	5.3 Impact of recruitment rate  on the dynamics of system (2.2)
	5.4 Impact of transmission rate β on the dynamics of system (2.2)
	5.5 Impact of quarantine coefficient δ on the dynamics of system (2.2)
	5.6 Dynamical behaviors of system (2.2) if mathscrR0Sle1

	6 Conclusions and discussion of results
	6.1 Conclusions
	6.2 Discussion of results

	Acknowledgements
	Appendix A
	Appendix B (Theory in obtaining standardized transformation matrix)
	Appendix C
	References




