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Abstract Transition zones in railway tracks are loca-
tions with a significant variation of track properties (i.e.
foundation stiffness) encountered near structures such
as bridges and tunnels. Due to strong amplification of
the track’s response, transition zones are prone to rapid
degradation. To investigate the degradation mecha-
nisms in transition zones, researchers have developed a
multitude ofmodels, someof thembeing very complex.
This study compares three solutionmethods, namely an
integral-transformmethod, a time-domainmethod, and
a hybrid method, with the goal of solving these sys-
tems efficiently. The methods are compared in terms
of accuracy, computational efficiency, and feasibility
of application to more complex systems. The model
employed in this paper consists of an infinite, inhomo-
geneous, and piecewise-linear 1-D structure subjected
to a moving constant load. Although the 1-D model is
not particularly demanding computationally, it is used
to make qualitative observations as to which method is
most suitable for the 2-D and 3-D models, which could
lead to significant gains. Results show that all three
methods can reach similar accuracy levels, and in doing
so, the time-domain method is most computationally
efficient. The integral-transform method appears to be
efficient in dealing with frequency-dependent parame-
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ters, while the time-domain and hybrid methods are
efficient in dealing with a smooth nonlinearity. For
multi-dimensional models, if nonlinearities and inho-
mogeneities are considered throughout the depth, the
time-domainmethod is likely to bemost efficient; how-
ever, if nonlinearities and inhomogeneities are limited
to the surface layers, the integral-transform and hybrid
methods have the potential to be more efficient than the
time-domain one. Finally, although the 1-D model pre-
sented in this study is mainly used to assess the three
methods, it can also be used for preliminary designs of
transition zones in railway tracks.

Keywords Solution methods comparison · Nonlinear
foundation · Infinite and inhomogeneous system ·
Moving load · Transition radiation · Non-reflective
boundaries

1 Introduction

Transition radiation occurs when a source moves with
a constant velocity through or in the vicinity of an
inhomogeneous medium [1,2]. It occurs, for example,
when a train crosses a transition zone, which in rail-
way tracks is an area with substantial variation of track
properties (e.g. foundation stiffness) encountered near
rigid structures such as bridges, tunnels or culverts.
In railway tracks, transition radiation is emitted in the
form of elastic waves that can constructively interfere
with the deformation field caused by the deadweight of
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themoving train. Consequently, transition radiation has
been identified as one of the causes of track and founda-
tion degradation due to the often strong amplification of
the stress and strain fields [3–7]. This leads to transition
zones requiring 3–8 times more frequent maintenance
than the regular parts of the railway track [8,9]. In order
to improve the design of transition zones and propose
mitigation measures, engineers and researchers have
developed a multitude of models to describe and pre-
dict the response of such systems. Some researchers
focus on modelling the ballast behaviour (e.g. [10–
15]), which is of crucial importance for the degradation
of transition zones in ballasted tracks, some focus on
transition radiation itself, while others combine both
[7,16,17]. This paper belongs in the last category.

The first study on transition radiation of elas-
tic waves was published by Vesnitskii and Metrikin
[18]. It considered an infinite string on a piecewise-
homogeneous Winkler foundation subjected to a mov-
ing point force and a moving point mass. The response
of the systemwas obtained using the method of images
for both types of moving loads, while for the moving
point mass the Fourier transform over space was addi-
tionally used. To also account for the flexural rigidity
of the system, Vesnitskii and Metrikin [19] analysed
transition radiation in a semi-infinite beam on elastic
springs clamped at one end. Once again, the method of
images combinedwith the Fourier transformover space
was used to obtain the solution. Later on, the problemof
a beam resting on a piecewise-homogeneous Winkler
foundation and subjected to a moving load was solved
using modal expansion techniques [20,21]. To study
wave propagation in the ground caused by transition
radiation, 2-D models of a piecewise-homogeneous
continuum were analysed using the Fourier transform
[22], and the Fourier transform combined with mode
matching [23,24]. Lately, a combination of the Fourier
transform over time and the Fourier expansion over
space was used to study transition radiation in a dis-
cretely supported Timoshenko beam [25]. Also, tran-
sition radiation was studied in a piecewise-linear 1-D
system using a sequential Laplace transform method
combined with a finite difference discretisation of
the spatial dimension [7]. Furthermore, the interaction
between a moving oscillator and an inhomogeneous
and infinite structure was analysed by means of the
Green’s function method [26], which can be consid-
ered as a hybrid between an integral-transform method
and a time-domain method.

Although at the beginning researchers have mainly
used integral-transform methods to study the dynam-
ics of elastic structures subjected to moving loads, the
development of computers has led to a shift towards
numerical methods such as the finite element method
combinedwith time-integrationmethods (e.g. theNew-
mark method [27–29]). One advantage of these time-
domain methods is that the geometry of the transition
zone can be modelled accurately [6,30–35]. Another
advantage is that the nonlinear behaviour of the foun-
dation or the nonlinear interaction between the vehi-
cle and the structure can easily be handled by time-
domain methods [36–40]. One of the disadvantages
of the standard time-domain methods is that the sys-
tem must be finite to be solved numerically, while the
railway track is practically infinite, potentially caus-
ing artificial reflections at the boundaries of the finite
domain. To overcome this problem, absorbing bound-
aries (e.g. perfectly matched layers) have been used in
numerous studies (e.g. [41]). Another challenge caused
by the structure being finite is that the vehicle’s action
on the structure is of finite duration causing an unreal-
istic transient behaviour at the entrance and exit of the
vehicle. This has been elegantly solved by analysing
the system in the moving reference frame, approach
which is sometimes called the moving element method
(e.g. [42,43]).

As it can be seen, a multitude of methods have been
applied by researchers and engineers to investigate
transition radiation in railway applications.Most meth-
ods fall into three main categories, namely integral-
transform methods, time-domain methods, and hybrid
methods (i.e. a combination of integral-transform and
time-domain methods). The advantages and disadvan-
tages of thesemethods have partially been discussed for
each method independently, but without much direct
comparison between them. This paper aims at com-
paring three solution methods, one corresponding to
each category, for analysing transition radiation in a
1-D model consisting of an infinite Euler–Bernoulli
beam resting on an inhomogeneous and piecewise-
linear Kelvin foundation subjected to a moving con-
stant load. The integral-transform method, namely the
sequential Laplace transform method [7], assumes that
the system’s behaviour is piecewise linear and deals
with the linear parts of the solution in the Laplace
domain. To accommodate the inhomogeneity, the finite
difference method is used for the spatial discretisation,
and non-reflective boundary conditions are imposed to
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ensure the infinite extent of the structure. The time-
domain method is the more conventional approach;
the solution is obtained by applying the finite element
method for the spatial discretisation, combined with
a set of non-reflective boundaries, and the Newmark-
β as the time-stepping method. The hybrid method,
namely the pseudo-force method [44,45], treats the
nonlinearity and part of the inhomogeneity as exter-
nal forces resulting in a fictitious linear and piecewise-
homogeneous base structure. Taking advantage of the
linearity, the Green’s function of the base structure is
obtained (the integral-transform part of the method),
and the response is expressed through convolution
integrals of the Green’s functions and the forces that
account for the nonlinearity and part of the inhomo-
geneity (the time-domain part of the method). Finally,
because these forces are state dependent, the relation
for the response at each time step is implicit, and it is
therefore solved iteratively.

The three solution methods are compared in terms
of accuracy, computational efficiency, and feasibility
of application to more complex systems. In this paper,
the feasibility of application to more complex sys-
tems refers to the feasibility of the methods to deal
with frequency-dependent properties of the structure,
to deal with a smooth nonlinearity (as opposed to the
piecewise-linear one), and to apply the solution meth-
ods to 2-D and 3-D models. It must be emphasised
that although the 1-D model described is not particu-
larly demanding from the computational point of view,
the aim of the comparison is to establish the most suit-
ablemethod to be applied tomulti-dimensionalmodels,
where the choice of the proper solution method could
lead to significant gains.

The novelty of the current study is threefold.
Firstly, a thorough and direct comparison between
integral-transform, time-domain, and hybrid methods
to describe the behaviour of an infinite and nonlin-
ear system has not been presented in the literature.
Such a comparison enables engineers and researchers
to choose the most suitable solution method for solv-
ing the specific problem they are facing. Secondly,
the application of the pseudo-force method to analyse
transition radiation in a nonlinear and infinite struc-
ture is presented here for the first time. Thirdly, the
non-reflective boundary conditions formulated for the
time-domain solution method, which enable the finite
domain to behave exactly as the infinite one, are derived
analytically; to the best of the authors’ knowledge, it

is for the first time this analytical approach is used to
solve a moving load problem containing changes in the
foundation properties (see Sect. 2.4 for more details).

Finally, it must be noted that although the 1-Dmodel
presented in this study ismainly used to assess the three
methods, it can also be used for preliminary designs of
transition zones in railway tracks.

2 Model and solution

2.1 Problem statement

The model formulated in this section is composed of
a constant moving load acting on an infinite Euler–
Bernoulli beam that rests on a smoothly inhomoge-
neous and nonlinear Kelvin foundation and is depicted
in Fig. 1. The model is divided in three domains: the
computational domain that is nonlinear and inhomoge-
neous, and two linear and homogeneous semi-infinite
domains to accommodate the infinite extent of the rail-
way track (Fig. 1). The combined equation of motion
for the three domains reads

∂̃4w

∂̃x4
+ ρ

∂̃2w

∂̃t2
+ cd(x, w)

∂̃w

∂̃t
+ fk(x, w)

= − F0 δ(x − xe − vt), ∀x,∀t,
(1)

w(x, t) =
⎧
⎨

⎩

wl(x, t), x ≤ 0,
wc(x, t), 0 ≤ x ≤ L ,

wr(x, t), x ≥ L ,

fk(x, w) =
⎧
⎨

⎩

kd,lwl, x ≤ 0,
fk,c(x, wc), 0 ≤ x ≤ L ,

kd,rwr, x ≥ L ,

cd(x, w) =
⎧
⎨

⎩

cd,l, x ≤ 0,
cd,c(x, wc), 0 ≤ x ≤ L ,

cd,r, x ≥ L ,

where ∂̃

∂̃x
and ∂̃

∂̃t
represent generalised derivatives with

respect to space and time, respectively. All parameters
in Eq. (1) have been scaled by the bending stiffness E I
of the beam; ρ is the scaled mass per unit length of
the beam; kd,l and cd,l are the scaled (homogeneous)
foundation stiffness and damping of the left semi-
infinite domain, respectively; kd,r and cd,r represent
the same quantities for the right semi-infinite domain;
fk,c(x, wc) and cd,c(x, wc) represent the scaled force
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Fig. 1 Schematisation of the model: infinite Euler–Bernoulli beam supported by an inhomogeneous and nonlinear Kelvin foundation,
subjected to a moving constant load

exerted by the foundation and the scaled foundation
damping [which is piecewise-linearly defined in Eq.
(11)] within the computational domain, respectively;
F0 and v are the scaled magnitude and the velocity of
the moving load; δ(. . . ) denotes the Dirac delta func-
tion; 0 and L denote the positions of the left and right
boundaries of the computational domain, respectively;
and xe ≤ 0 represents the position of the moving load
at t = 0. Also, wl, wr and wc represent the displace-
ments of the left and right semi-infinite domains, and
of the computational domain, respectively. The space
and time dependency of the unknown displacements
is omitted from most expressions for brevity. Further-
more, the ≤ and ≥ signs in the definition of w(x, t),
fk(x, w), and cd(x, w) for all domains emphasise that
there is continuity in these quantities at the interfaces
between the three domains.

At the interfaces between the three domains, con-
tinuity in displacement and slope as well as in shear
force and bending moment is imposed. Furthermore,
due to the presence of damping, the displacements at
infinite distance from the moving load are zero. This
implies that the left and right domains are at rest as x
tends to negative and positive infinity, respectively. The
interface and boundary conditions thus read

wl(0, t) = wc(0, t), wc(L , t) = wr(L , t), (2)

w′
l(0, t) = w′

c(0, t), w′
c(L , t) = w′

r(L , t), (3)

w′′
l (0, t) = w′′

c (0, t), w′′
c (L , t) = w′′

r (L , t), (4)

w′′′
l (0, t) = w′′′

c (0, t), w′′′
c (L , t) = w′′′

r (L , t), (5)

lim|x−vt |→∞ wl(x, t) = 0, lim|x−vt |→∞ wr(x, t) = 0, (6)

where primes denote classical partial derivatives with
respect to x .

As for the initial conditions, unless xe is placed far
away from the transition (which is undesirable because
it leads to an increase in computational time), the choice
of the initial state (i.e. displacement and velocity fields)
affects the response in the computational domain. The
response caused by a train before it reaches a transi-
tion zone can be considered to be in the steady state.
Therefore, the initial conditions should be selected such
that the response at the start of the simulation is in the
steady-state regime, and are thus based on the steady-
state field, also referred to as the eigenfield we(x, t).
The eigenfield generated by a moving constant load
acting on an infinite Euler–Bernoulli beam that rests
on a homogeneous Kelvin foundation reads [7,46]

we(x, t) =
{
A1e−ike2(x̄−vt) + B1e−ike3(x̄−vt), x̄ < vt,

A2e−ike1(x̄−vt) + B2e−ike4(x̄−vt), x̄ ≥ vt,
(7)

where x̄ = x − xe, A1, A2, B1, and B2 are complex-
valued amplitudes, and ke1, ke2, ke3, and ke4 are the
complex-valued wavenumbers of the eigenfield. Their
expressions are given in Appendix A in [7]. It must
be noted that we(x, t) in Eq. (7) is real-valued and it
refers to the eigenfield in the left domain throughout
the paper.

Imposing the initial state based on the eigenfield is
correct only if the field is not disturbed by the inho-
mogeneity (transition zone) because the eigenfield is
derived by assuming a homogeneous foundation. The
location xe of the moving load at t = 0 should thus be
chosen such that the initial state based on the eigenfield
has decayed before the inhomogeneity. Consequently,
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Fig. 2 Piecewise-linear constitutive law of the foundation; the
loading/unloading path for the linear parts of the computational
domain 1 , and the first loading/unloading cycle for the nonlin-
ear parts of the computational domain 2

the initial conditions become

wl(x, t = 0) = we(x, t = 0), −∞ ≤ x ≤ 0,

ẇl(x, t = 0) = ẇe(x, t = 0), −∞ ≤ x ≤ 0,
(8)

wc(x, t = 0) = we(x, t = 0), 0 ≤ x ≤ L ,

ẇc(x, t = 0) = ẇe(x, t = 0), 0 ≤ x ≤ L ,
(9)

wr(x, t = 0) ≈ 0, L ≤ x ≤ ∞,

ẇr(x, t = 0) ≈ 0, L ≤ x ≤ ∞,

(10)

where overdots denote classical partial derivatives with
respect to t .

As for the nonlinear behaviour of the foundation, the
constitutive relation from Ref. [7] is chosen, which is
summarised in the following. This constitutive model
approximates the observed response of a granularmate-
rial to cyclic loading (e.g. [47]) through a piecewise-
linear profile (Fig. 2). While the loading path of such a
material is relatively well known (a multitude of stud-
ies use the cubic superlinear model), the parameters
of the unloading path (i.e. kCd,c and kDd,c in Fig. 2) are
less well known and are therefore chosen such that the
overall constitutive relation resembles the response of
granular materials to cyclic loading. For the loading
path, to approximate the cubic superlinear model by a
piecewise-linear profile, a few assumptions are made.
Firstly, the initial branch of the loading path with stiff-

ness kAd,c is chosen to be the same as the stiffness of
the equivalent linear model [48]. This assumption is
correct provided that the ballast has been well com-
pacted. Secondly, the eigenfield is assumed to be in
the initial branch with stiffness kAd,c. This assumption
comes from the fact that accelerated degradation is not
observed in the homogeneous parts of the railway track
where the response is in the steady state. Finally, the
elastic displacement limit wel (Fig. 2) is assumed to be
a fraction of the eigenfield’s maximum displacement
we
max in the soft part of the track, and, according to the

second assumption, the ratio q = wel/w
e
max must be

larger than 1.
Path 1 in Fig. 2 represents the constitutive beha-

viour for locations in the computational domain where
wel is not exceeded during the simulation. If wel is
exceeded (i.e. wc < wel because wel is negative),
the corresponding part of the foundation enters path
2 . Furthermore, the separation between the rail and
the supporting structure is allowed in this constitutive
model if the displacement of the beam wc is greater
than the plastic deformation wpl (which has a negative
value) provided that the plastic deformation has already
developed (i.e. wpl 	= 0); at the locations where no
plastic deformation develops, there is permanent con-
tact between the beam and the supporting structure.
Besides the foundation stiffness, also the foundation
damping is modified if the separation occurs according
to the following equation:

cd,c(x, wc) =
{
cd,c(x), wc ≤ wpl or wpl = 0,

0, wc > wpl and wpl 	= 0.
(11)

It must be emphasised that the specific constitutive
relation is not of crucial importance for the goal of
this paper; other nonlinear constitutive relations can be
implemented (e.g. hyperbolic soil model) provided that
they are piecewise-linearly defined.

The parameters of the constitutive relation are also
spatially varying due to the system’s inhomogeneity. In
reality, the stiffness change is abrupt in some cases and
smooth in others. In this paper, the spatial profile of
the foundation stiffness is based on a sine squared. The
smoothness can be adjusted by changing the transition
length lt; for very small lengths, this profile is close
to the piecewise one, for medium lengths it is almost
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linear, and for large lengths it is smooth. The spatial
profile of the foundation stiffness reads [7]

khd,c(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

khd,l, 0 ≤ x < xtc − lt
2 ,

khd,l

(

1 + sin2
[( x − xtc

lt
+ 1

2

) π

2

]

(p − 1)

)

,

xtc − lt
2

≤ x ≤ xtc + lt
2

,

khd,r, xtc + lt
2 < x < L ,

(12)

where h = {A, B,C, D} denotes the specific branch
(Fig. 2); xtc represents the transition centre, and p the
stiffness ratio between the stiff and soft domains. To
impose a similar spatial variation for the foundation
damping, this is defined in terms of the foundation stiff-
ness as is done for a single degree-of-freedom system:

cd,c(x) = 2ζ
√

ρ kAd,c(x), (13)

where ζ is some damping ratio. Note that, unlike for a
single degree-of-freedom system, ζ is not the ratio of
actual damping and critical damping.

Equations (1)–(10), together with the constitutive
relation and the spatial profile of the foundation, con-
stitute a complete description of the problem. In the
next section, the solution methods used to solve this
problem are described.

2.2 Solution methods

As discussed in Introduction, the chosen solutionmeth-
ods are the sequential Laplace transform method, the
time-domainmethod, and the pseudo-force method. To
keep the following derivations concise, a bilinear elas-
tic constitutive relation is chosen for the foundation
(i.e. only branches A and B from Fig. 2 are considered
with the unloading path being the same as the loading
one). The extension tomore than two branches does not
pose any difficulties, and thus, the bilinear law suffices
for the demonstration of the following procedures. The
bilinear force exerted by the foundation reads

fk,c(x, w) =
{
kAd,c(x)wc, wc ≥ wel,

kBd,c(x)wc − �kd,c(x)wel, wc < wel,

(14)

where �kd,c(x) = kBd,c(x) − kAd,c(x) is the stiffness
difference between the two branches. Note thatwel has
a negative value.

2.3 Sequential Laplace transform method

The first solution method presented is the so-called
sequential Laplace transform method [7]. This method
is only applicable when the system’s behaviour is
piecewise linear, implying that the system behaves lin-
early between the moments (i.e. nonlinear events) at
which its parameters, being functions of the field vari-
ables (displacements, velocities, etc.), change abruptly.
This enables the application of the Laplace transform
over the time between nonlinear events. The solution
method described in this section is based on [7], where
the approach is described in detail, and thus, only its
main aspects are described in the following.

Assuming that thewhole system is in the first branch
(with stiffness kAd,c) of the constitutive relation at t = 0
(assumption made in Sect. 2.1), the forward Laplace
transform is applied over time to the governing equa-
tions, Eqs. (1)–(6). The Laplace-domain solution in
the computational domain cannot be obtained analyt-
ically for all stiffness and damping profiles. Hence,
the computational domain is discretised by means of
the finite difference method. The discretised Laplace-
domain equation of motion valid in the computational
domain reads

[K̂i j + (ρ s2 + cd,c,i s + kd,c,1,i )Ii j ] ŵc,1, j

= f̂ ICc,1,i + f̂ ML
c,1,i + f̂ Bc,1,i ,

(15)

where ŵc,1, j is the Laplace-domain displacement vec-
tor, Ii j is the identity matrix, f̂ ICc,1,i is the forcing

vector induced by the initial conditions, f̂ ML
c,1,i is the

Laplace-domain force exerted by the moving load, and
s = σ + iω is the Laplace variable, where σ is a small
and positive real number and ω represents the angular
frequency. Furthermore, K̂i j is the bending–stiffness
matrix of the beam that includes the contribution of the
boundary conditions that is dependent on the unknown
displacement, while f̂ Bc,1,i represents the contribution
of the boundary conditions independent of the unknown
displacement. (This part originates fromnonzero initial
conditions of the left domain and from the moving load
acting on the adjacent domains and is discussed later on
in this sectionwhere the non-reflective boundary condi-
tions are introduced.) The non-reflective boundary con-
ditions to be applied to the computational domain are
derived later in this section; for now, the boundary con-
ditions of the computational domain are kept general.
Finally, subscript 1 represents the first time interval.
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t0

t20

t30

tn0

τ1 τ2 τ3 τn-1 τn

τ2

τ3

τn

Fig. 3 Definition of the time intervals and the local and global
(overbar) nonlinear events for the sequential Laplace transform
method [7]; the nonlinear event in the global time axis t is denoted
with an overbar (τ n), while in the local time axes tn , it is indicated
without the overbar (τn)

The solution ŵc,1, j of the linear system of alge-
braic equations [i.e. Eq. (15)] can be straightforwardly
obtained by using a solver for linear systems. To obtain
the time-domain solution, the inverse Laplace trans-
form of ŵc,1, j is numerically evaluated. The resulting
time-domain solution is applicable until the first non-
linear event τ1 (i.e. when wel is first exceeded). The
response of the system after the first nonlinear event
is governed by an altered equation of motion, which
is obtained by changing Eq. (1) (for x ∈ [0, L]) as
follows:

1. The reaction of the Kelvin foundation is modified
by assigning the adequate stiffness to the nodes
where the elastic limit has been exceeded.

2. A time-variable change is introduced, which reads
t2 = t − τ 1 for t ≥ τ 1 (t represents the global
time). A graphical representation of the different
time axes and nonlinear events is given in Fig. 3.

3. Continuity is ensuredby imposing thedisplacement
and velocity of the previous system at τ1 as initial
conditions for the new system (t1 = t):

w2(x, t2 = 0) = w1(x, t1 = τ1), (16)

ẇ2(x, t2 = 0) = ẇ1(x, t1 = τ1), (17)

4. The boundary conditions (discussed later in this
section) as well as the position of the moving load
are updated accordingly.

The updated system behaves again linearly until the
next nonlinear event. Therefore, the forward Laplace
transform is applied with respect to the new time vari-

able t2 and the procedure described above is repeated.
To this end, the procedure is generalised. The Laplace-
domain equation of motion for the nth time interval
reads

[K̂i j + (ρ s2n + cd,c,i sn + kd,c,n,i )Ii j ] ŵc,n, j

= f̂ ICc,n,i + f̂ ML
c,n,i + f̂ Bc,n,i + f̂ NLc,n,i ,

(18)

where sn represents the Laplace variable associated
with the time variable tn . The force exerted by the
foundation is split into its contribution (kd,c,n,i ŵc,n,i )
proportional to the unknown displacement, and the
contribution independent of the unknown displace-
ment, which is accounted for through the external force
f̂ NLc,n,i , with superscriptNL standing for nonlinear. Their
expressions are given as follows:

kd,c,n,i ŵc,n,i =
{
kAd,c,i ŵc,n,i , wc,n,i (tn = 0) ≥ wel,

kBd,c,i ŵc,n,i , wc,n,i (tn = 0) < wel,

f̂ NLc,n,i =
{
0, wc,n,i (tn = 0) ≥ wel,
�kd,c,iwel

sn
, wc,n,i (tn = 0) < wel.

(19)

Repeating the described procedure until reaching the
final time moment tmax of the simulation, the displace-
ment vector of the computational domain becomes

wc, j (t) = [wc,1, j (0, . . . , τ1 − �t), wc,2, j (0, . . . , τ2 − �t),

. . . , wc,N , j (0, . . . , tmax − τ N−1)],
(20)

where �t is the time spacing and N is the index of the
last time interval.

One important aspect that requiresmentioning is that
the continuity of displacements and velocities at the
nonlinear events is of crucial importance for obtain-
ing correct results, and this depends on the accuracy of
the numerical evaluation of the inverse Laplace trans-
form for tn = 0. However, the Laplace-domain spectra
of the two quantities exhibit a poor decay due to the
applied initial conditions. Consequently, the numeri-
cal integration must be performed up to very high fre-
quencies leading to a significant computational effort.
A method of incorporating the high frequencies with-
out increasing the computational effort is presented in
Ref. [7] and is based on asymptotic approximations
of the high-frequency behaviour of the two quantities
(displacement and velocity).

Up to this point in the derivations, the boundary con-
ditions of the computational domain were kept general.
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The derivation of the non-reflective boundary condi-
tions is thoroughly described in Ref. [7]. The forward
Laplace transform is applied over time tn to the equa-
tions of motion of the two semi-infinite domains, Eq.
(1) for x ∈ (−∞, 0] and x ∈ [L ,∞), as well as to
the interface and boundary conditions, Eqs. (2)–(6).
By solving the resulting two boundary-value problems,
the reaction forces of the two semi-infinite domains
are expressed as functions of the displacement and
slope of the computational domain prescribed at the
corresponding interfaces. These reaction forces are the
boundary conditions to be imposed on the computa-
tional domain and read
(

ŵ′′′
c,n(0, sn)

ŵ′′
c,n(0, sn)

)

=
(
k̂l,Vυ k̂l,Vφ

k̂l,Mυ k̂l,Mφ

) (
ŵc,n(0, sn)
ŵ′
c,n(0, sn)

)

−b̂
IC
l,n − b̂

ML
l,n , (21)

(
ŵ′′′
c,n(L , sn)

ŵ′′
c,n(L , sn)

)

=
(
k̂r,Vυ k̂r,Vφ

k̂r,Mυ k̂r,Mφ

) (
ŵc,n(L , sn)
ŵ′
c,n(L , sn)

)

−b̂
IC
r,n − b̂

ML
r,n , (22)

where the entries in the matrices represent the dynamic
stiffness coefficients giving rise to the boundary forces
dependent on the unknown displacement and slope at
the boundary; subscript V stands for shear force, M
for bending moment, υ for translation and φ for rota-
tion; the coefficients are given in Eqs. (46) and (47)

in Ref. [7]. In addition, vectors b̂
IC
l,n and b̂

IC
r,n contain

the influence of the initial conditions prescribed to the
left and right domains on the reaction forces, giving
rise to boundary forces independent of the unknown
displacement and slope of the computational domain.

Similarly, vectors b̂
ML
l,n and b̂

ML
r,n contain the contribu-

tion of the moving load to the reaction forces. (They
are nonzero only when the moving load is present in
the corresponding domain.) The expressions of these
vectors for the scenario when xe = 0 are given in Ref.
[7], and can be extended for the situationswhen xe < 0.
The expressions are not presented here for brevity.

The non-reflective boundary conditions [Eqs. (21)
and (22)] for the computational domain are now fully
determined. The contribution of the boundary condi-
tions which is dependent on the yet unknown displace-
ment and slope is incorporated into the beam’s bend-
ing stiffness matrix K̂i j , while the contribution which
is independent of the unknown displacement and slope
is accounted for through the boundary-forcing vector
f̂ Bc,n,i [see Eq. (18)]. As can be seen, the beam’s bend-

ing stiffnessmatrix does not change from one system to
the other; however, the boundary-forcing vector needs
to be updated at each system change.

2.4 Time-domain method

The time-domain method is one of the more conven-
tional approaches to solve the current problem. The
spatial dimension is discretised using the finite element
method and the Newmark-β time-stepping method is
used to solve the discretised system. The only difficulty
arises when implementing the non-reflective boundary
conditions.As done in the sequential Laplace transform
method, the semi-infinite domains are treated analyti-
cally. In the time domain, this is done through convolu-
tion integrals, which implies that the relations between
displacements and forces at the boundaries are history
dependent. Therefore, after spatial discretisation, a sys-
tem of integro-differential equations has to be solved.
The approach followed here differs from those in other
works using other absorbing boundaries (e.g. [49,50])
in the following ways: (i) in principal, it introduces
no numerical reflections (instead of mitigating reflec-
tions); (ii) it does not increase the number of degrees
of freedom (like in the case of absorbing layers, that
model buffer domains with the intention of attenuating
waves); (iii) it allows the approach and exit of the load
from themodelled domain, thus avoiding transients due
to sudden entrance/exit of the load, and in this way it
limits the model to the vicinity of the region with sup-
port variations and thus further decrease the number
of degrees of freedom. The procedure is described in
more detail in the following.

The equation of motion for the computational
domain after the spatial discretisation reads

Mẍ(t) + C ẋ(t) + (
K(x) + KEB)

x(t)

= fML
c (t) + fBc (t) + fNLc (x),

(23)

where x = [wc,1, w
′
c,1, wc,2, w

′
c,2, . . . , wc,Nx , w

′
c,Nx

]T
represents the vector of generalised displacements with
Nx being the number of spatial nodes. The matrices
M, C, K, and KEB are the mass matrix, Kelvin damp-
ing matrix, Kelvin stiffness matrix, and the Euler–
Bernoulli bending stiffness matrix, respectively. K is
state-vector dependent because it contains the non-
linear part of the supporting structure that depends
on the unknown displacement. Furthermore, the time-
dependent vectors fML

c , fBc , and fNLc represent the
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moving-load forcing vector, the boundary-forcing vec-
tor, and the forcing vector containing the nonlinear part
of the supporting structure reaction force that is inde-
pendent of the unknown displacement [see Eq. (14)],
respectively. The moving-load forcing vector for a sin-
gle element fML

c,i is obtained as follows:

fML
c,i (t) = −F0

∫ i�x

(i−1)�x
φ(x)δ(x − xe − vt)dx

=
{

−F0φ(xe + vt), (i − 1)�x ≤ xe + vt ≤ i�x,

0, otherwise,

(24)

whereφ is the shape-functions vector. The assembly of
the global moving-load vector is done in the traditional
way and results in a time-dependent vector which has
nonzero entries only at the nodes related to the element
where the moving load is acting. Similarly, by assum-
ing a constant nonlinearity force inside one element, the
nonlinear-forcing vector corresponding to the bilinear
constitutive relation is obtained as follows:

fNLc,i (t) =
{

�kd,c,i
∫ i�x
(i−1)�x φ(x)dx, wc,i < wel,

0, wc,i ≥ wel.

(25)

As for the non-reflective boundary conditions, the
expressions derived in Sect. 2.3 are valid for this
method too. However, they need to be expressed in the
time domain. Moreover, the dynamic stiffness coeffi-
cients (k̂h,Vυ, k̂h,Vφ, k̂h,Mφ, and k̂h,Mυ in Eqs. (21) and
(22), where h = {l, r}) increase with increasing fre-
quency, and therefore, it is difficult to obtain their coun-
terparts in the time domain. Consequently, for the time-
domain method, instead of making use of the dynamic
stiffness coefficients (i.e. imposing forces as bound-
ary conditions), the dynamic compliance coefficients
are used (i.e. displacement and slope are imposed as
boundary conditions), which decaywith increasing fre-
quency. By expressing the displacement and slope in
terms of the bending moment and shear force in Eqs.
(21) and (22), the dynamic compliance coefficients in
the Laplace domain are obtained, and their expressions
read

ĉh,Vυ = (−1 − i)k−3
h , ĉh,Mυ = −ik−2

h ,

ĉh,Mφ = (1 − i)k−1
h , ĉh,Vφ = −ik−2

h , h = {l, r},
(26)

where kh = 4
√−ρ s2 − cd,h s − kd,h with h = {l, r},

and the branches of the complex-valued wavenumbers
are chosen such that Im(kh) < 0 and Re(kh) > 0.

The time-domain non-reflective boundary condi-
tions are now expressed through convolution integrals.
Their expressions are given as follows:

wc(d, t) = wV(d, t) + wM(d, t),

w′
c(d, t) = w′

V(d, t) + w′
M(d, t), d = {0, L},(27)

where wV and wM represent the displacements caused
by an applied shear force and displacement caused by
an applied bending moment, respectively, while w′

V
and w′

M represent the same quantities but for the slope.
Furthermore, their expressions read

wV(d, t) =
∫ t

0
ch,Vυ(t − τ)w′′′

c (d, τ )dτ, (28)

wM(d, t) =
∫ t

0
ch,Mυ(t − τ)w′′

c (d, τ )dτ, (29)

w′
V(d, t) =

∫ t

0
ch,Vφ(t − τ)w′′′

c (d, τ )dτ, (30)

w′
M(d, t) =

∫ t

0
ch,Mφ(t − τ)w′′

c (d, τ )dτ, (31)

where d = {0, L} and h = {l, r}, and h = l for
d = 0 while h = r for d = L , and where τ repre-
sents the running-time variable of integration (should
not be mistaken with the variable in Sect. 2.3 where it
indicated the moment of the nonlinear event). The inte-
grals in Eqs. (28)–(31) are discretised, and the forces
are assumed to be constant during one time step and
equal to the average between the previous and the next
time step [51]. The remainder of the procedure is pre-
sented only for wV(0, t) since the procedure is exactly
the same for the other terms. The expression for wV

now reads

wV(0, tn) ≈
n−1∑

n̄=0

w′′′
c (0, tn̄) + w′′′

c (0, tn̄+1)

2

×
∫ tn̄+1

tn̄
cl,Vυ(tn − τ)dτ,

(32)

where n is the index of the observation time variable
while n̄ is the index for the running (i.e. integration)
time variable. The index n should not be confused with
that in Sect. 2.3 where it specified the time moment
of the nth nonlinear event. It can be shown that the
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remaining integral in Eq. (32) is equivalent to

∫ tn̄+1

tn̄
cl,Vυ(tn − τ)dτ =

∫ tn−n̄

0
cl,Vυ(tn−n̄ − τ)dτ

−
∫ tn−(n̄+1)

0
cl,Vυ(tn−(n̄+1) − τ)dτ

= Hl,Vυ(tn−n̄) − Hl,Vυ

(
tn−(n̄+1)

)
,

(33)

where H represents the response of the semi-infinite
system to a unit step force applied at t0 = 0. The
responseH can be obtainedwith a good accuracy using
the inverse Laplace transform as follows:

Hl,Vυ(tn−n̄) ≈ eσ tn−n̄

π

∫ ωmax

0
Re

(
ĉl,Vυ(ω)

σ + iω
eiωtn−n̄

)

dω.

(34)

To obtain accurate results without integrating up to
very high frequencies, the asymptotic approximation
approach described in [7] is used. Substituting Eqs.
(33) and (34) in Eq. (32), and rearranging the terms,
the displacement wV becomes

wV(0, tn) ≈ 1

2
w′′′
c (0, t1)

[Hl,Vu(tn) − Hl,Vu(tn−1)
]

+
n−1∑

n̄=1

1

2
w′′′
c (0, tn̄)

[Hl,Vu(tn−n̄+1)

− Hl,Vu(tn−n̄−1)
]

+ 1

2
w′′′
c (0, tn)

[Hl,Vu(t1) − Hl,Vu(t0)
]
.

(35)

It is important to note that in Eq. (35) and the simi-
lar expressions for the other three componentswM,w′

V,
andw′

M, the displacement, slope, bendingmoment, and
shear force at time moment tn are unknown, while all
the other components are known (i.e. history terms).
Therefore, Eq. (35) is divided into a yet unknown
instantaneous contribution and an already known his-
tory contribution:

wV(0, tn) ≈ Hinst
l,Vu w′′′

c (0, tn) + wV,hist(0, tn), (36)

Hinst
l,Vu = 1

2

(

Hl,Vu(t1) − Hl,Vu(t0)

)

. (37)

After deriving the expressions for the other three com-
ponents (i.e. wM, w′

V, and w′
M) and substituting them

in Eq. (27), the non-reflective boundary conditions
become:

(
wc(0, tn)
w′
c(0, tn)

)

= Hinst
l

(
w′′′
c (0, tn)

w′′
c (0, tn)

)

+
(

wV,hist(0, tn) + wM,hist(0, tn)
w′
V,hist(0, tn) + w′

M,hist(0, tn)

)

,

(38)
(

wc(L , tn)
w′
c(L , tn)

)

= Hinst
r

(
w′′′
c (L , tn)

w′′
c (L , tn)

)

+
(

wV,hist(L , tn) + wM,hist(L , tn)
w′
V,hist(L , tn) + w′

M,hist(L , tn)

)

.

(39)

The force and moment are obtained from Eqs. (38) and
(39) through matrix inversion. Also, to have the com-
plete non-reflective boundary conditions, the effects on
the computational domain of the moving load when it
acts on the semi-infinite domains and of the non-trivial
initial conditions of the left semi-infinite domain need
to be superimposed. These contributions are obtained
by numerically evaluating the inverse Laplace trans-

form of vectors b̂
ML
l,1 , b̂

ML
r,1 , and b̂

IC
l,1 from Sect. 2.3. The

complete non-reflective boundary conditions now read

(
w′′′
c (0, tn)

w′′
c (0, tn)

)

= (
Hinst

l

)−1
(

wc(0, tn)
w′
c(0, tn)

)

− bhistl − bML
l − bICl ,

(40)

(
w′′′
c (L , tn)

w′′
c (L , tn)

)

= (
Hinst

r

)−1
(

wc(L , tn)
w′
c(L , tn)

)

− bhistr − bML
r ,

(41)

where vectors bhistl and bhistr incorporate the history
shear forces and bending moments and read

bhistl = (
Hinst

l

)−1
(

wV,hist(0, tn) + wM,hist(0, tn)
w′
V,hist(0, tn) + w′

M,hist(0, tn)

)

,

(42)

bhistr = (
Hinst

r

)−1
(

wV,hist(L , tn) + wM,hist(L , tn)
w′
V,hist(L , tn) + w′

M,hist(L , tn)

)

.

(43)

The forces expressed in Eqs. (40) and (41) are imposed
at the boundaries of the computational domain [Eq.
(23)]. Consequently,

(
Hinst

l

)−1 and
(
Hinst

r

)−1 are added
to the Euler–Bernoulli stiffness matrix KEB because
they are dependent on the unknown displacement and
slope. The remaining terms in Eqs. (40) and (41)
are accounted for in the boundary-forcing vector fBc
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because they are independent of the unknown displace-
ment and slope, and are thus treated as external forces.
Incorporating these boundary conditions [Eqs. (40)
and (41)] ensures that the finite computational domain
behaves as an infinite one.

By discretising the convolution integrals, the system
of integro-differential equations is approximated by a
system of coupled ordinary differential equations with
state-dependent coefficients. This system is solved by
means of the Newmark-β method [27]. To this end, the
generalised displacement vector xn+1 at time moment
tn+1 is expressed as a function of the displacement xn ,
velocity ẋn , and acceleration ẍn at time moment tn as
follows:

xn+1 = Y−1
n+1z, (44)

Yn+1 = 1

β�t2
M + γ

β�t
C + Kn+1 + KEB, (45)

z =
(

fML
c,n+1 + fBc,n+1 + fNLc,n+1

)

+ M
(

1

β�t2
xn + 1

β�t
ẋn +

(
1

2β
− 1

)

ẍn

)

+ C
(

γ

β�t
xn −

(

1 − γ

β

)

ẋn − �t

(

1 − γ

2β

)

ẍn

)

,

(46)

where γ and β are two parameters that indicate how
much of the acceleration at the end of a time interval
influences the relations for the velocity and displace-
ment at the end of that interval [27]. The parameters
are chosen as γ = 1

2 and β = 1
4 , implying that the

acceleration is constant over a time step and is equal to
the average between the previous and the next time
step. This choice is preferred in order to have con-
sistency between the assumed force evolution of the
non-reflective boundary conditions [as expressed in
Eq. (32)] and the assumed force evolution in the time-
stepping scheme. After obtaining xn+1, the generalised
velocity and acceleration vectors are also computed to
be used for obtaining the generalised displacement at
the next time moment. Their expressions read

ẋn+1 = γ (xn+1 − xn)
β �t

+ ẋn

(

1 − γ

β

)

+ ẍn�t

(

1 − γ

2β

)

,

(47)

ẍn+1 = xn+1 − xn
β �t2

− ẋn
β�t

− ẍn

(
1

2β
− 1

)

. (48)

At each time step, the nodes are monitored to check
in which branch of the constitutive relation they are,
and if they have changed branch, the Kelvin stiffness
matrix K as well as the nonlinear-forcing vector fNLc
are updated accordingly. It must be noted that when the
nonlinear constitutive relation discussed in the problem
statement is adopted, also theKelvin dampingmatrixC
becomes state-variable dependent and thus needs to be
updated at each nonlinear event. The time-domain solu-
tion method is now fully described. Next, the pseudo-
force method is introduced.

2.5 Pseudo-force method

In this section, the problem is solved using the frame-
work of the pseudo-force method [44,45]. In accor-
dance with this approach, the solution method is
based on the response of the linear and piecewise-
homogeneous system, which in this work is expressed
in terms of theGreen’s function. The steps of the proce-
dure are as follows. The base system is assumed to be
linear and piecewise-homogeneous while the nonlinear
and the remainder of the inhomogeneity components
[the difference between the piecewise-homogeneous
profile and the one described by Eq. (12)] of the system
are accounted for bymeans of pseudo-forces.Basically,
the nonlinear and the remainder of the inhomogeneity
terms are moved to the right-hand side of the equation
of motion and the resulting implicit equation is solved
in an iterative manner. It must be noted that the shift-
invariant homogeneous system could be chosen as the
base system too; however, by doing so, the pseudo-
forces that account for the inhomogeneity must act on
the entire right semi-infinite domain. For the piecewise-
homogeneous system, the pseudo-forces need to be
prescribed only in the transition zone and its vicinity
and this is the reason why the piecewise-homogeneous
base system is preferred. The procedure on which this
solution method is based is explained in detail in [45].
Therefore, only the crucial aspects of the approach are
elaborated in the following.

After moving the terms accounting for the nonlin-
earity and for the remainder of the inhomogeneity to
the right-hand side, the equation of motion reads

w′′′′ + ρ ẅ + cPHd (x) ẇ + kPHd (x) w

= f ML + f u + f v, (49)
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wherew is the displacement of the entire beam (i.e. x ∈
(−∞,∞)), cPHd (x) = cd,lH(xtc−x)+cd,r H(x−xtc)
and kPHd (x) = kd,lH(xtc − x) + kd,r H(x − xtc) are
the piecewise-homogeneous damping and stiffness of
the Kelvin foundation, respectively, with xtc being the
location of the abrupt transition, and f u and f v are the
pseudo-forces; f u is proportional to the displacement
while f v is proportional to the velocity, and, in the case
of the bilinear constitutive relation, they read

f u(x, w) = −
[
kAd (x) − kPHd (x)

]
wH(w − wel) (50)

−
[(
kBd (x) − kPHd (x)

)
w − �kd(x)wel

]

H(wel − w),

f v(x, ẇ) = −
[
cd(x) − cPHd (x)

]
ẇ. (51)

It must be noted that the part of the nonlinear forc-
ing that is independent of the unknown displacement
(denoted by superscript NL in the other two methods),
namely �kd(x)welH(wel −w), is incorporated here in
f u because in this method both contributions (depen-
dent on or independent of the unknown displacement)
are treated as external forces; therefore, the distinc-
tion between them is not needed in this method. Addi-
tionally, it must be noted that when the nonlinear con-
stitutive relation discussed in the problem statement
(Sect. 2.1) is adopted, the behaviour of the foundation
damping becomes piecewise linear too and must be
accounted for in Eq. (51).

The solution to Eq. (49) can be expressed as a super-
position of the response wML caused by the moving
load f ML in the base system and the response to the
pseudo-forces. Firstly, the responsewML caused by the
moving load can be obtained by using the Fourier trans-
form over time. In the Fourier domain, after imposing
interface conditions and the condition of zero displace-
ments at infinity, the displacements of the two domains
can be obtained analytically (e.g. [23,46]). To obtain
the time-domain solution, the inverse Fourier integral
is evaluated numerically. Secondly, the response to the
pseudo-forces is expressed as a convolution integral of
the impulse response of the base systemand said forces.
For conciseness, the derivation is demonstrated for f u

only. The contribution wv caused by the forcing term
related to the damping inhomogeneity f v is kept gen-
eral and is made specific in the final expression [Eq.
(64)]. The response thus reads

f u

x

Δx
2
Δx
2

i=1 i=Nx

xi

Fig. 4 The assumed spatial profile of the pseudo-forces; the
length of the domain should be chosen such that the first (i = 1)
and last (i = Nx) pseudo-force are nearly zero

w(x, t) = wML(x, t) + wv(x, t)

+
∫ L

0

∫ t

0
g(x, ξ, t − τ) f u

(
ξ,w(ξ, τ )

)
dξdτ,

(52)

where g is the time-domain Green’s function of the
base system.

To evaluate Eq. (52), the integrals are discretised.
Firstly, the displacement w is assumed to be piecewise
constant in space and equal to the value at the centre of
each discrete element. Consequently, also the Green’s
function g is determined with a box-car shaped load in
space (Fig. 4), while it assumes a Dirac delta function
loading in time.

The continuous-in-time and discrete-in-space exp-
ression for the displacement reads

wi (t) = wML
i (t) + wv

i (t)

+
Nx∑

ī=1

∫ t

0
gi,ī (t − τ) f u

ī

(
wī (τ )

)
dτ,

(53)

where i is the index for the observation point in space
while ī is the index for the running (integration) spatial
variable, and Nx is the number of integration points.
Secondly, the forces f u

ī
are assumed to be piecewise

linear in time. The displacement thus becomes

wi,n = wML
i,n + wv

i,n +
Nx∑

ī=1

n∑

n̄=1

∫ tn̄

tn̄−1

gi,ī (tn − τ)

×
[

f u
ī,n̄−1

(wī,n̄−1)

(

1 − τ − tn̄−1

�t

)

+ f u
ī,n̄

(wī,n̄)
τ − tn̄−1

�t

]

dτ, n ≥ 1,

(54)

where n is the index for the observation time variable
while n̄ is the index for the running (integration) time
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f u

ttn

Δt Δt

f nu-1

Δt

f nuf nu

f nu-1

tn tn

Fig. 5 The loading applied within a single time step is decom-
posed into two parts: one proportional to f un−1 and the other
proportional to f un

variable. Eq. (54) is valid only for n ≥ 1 because at
t0 = 0, just the response caused by the moving load
(i.e. wi,0 = wML

i,0 ) is present, similar to the initial con-
ditions imposed in the other two methods. It can be
observed that Eq. (54) consists of two terms, one pro-
portional to the force at time moment tn̄−1 and one
proportional to the force at time moment tn̄ . Since the
two forcing terms are not dependent on the variable of
integration τ , they can be taken out of the integral. The
equation can therefore be rewritten as follows:

wi,n = wML
i,n + wv

i,n +
Nx∑

ī=1

n∑

n̄=1

[

f u
ī,n̄−1

(wī,n̄−1)Li,ī,n−n̄

+ f u
ī,n̄

(wī,n̄)Ri,ī,n−n̄

]

, (55)

Li,ī,n−n̄ =
∫ tn̄

tn̄−1

gi,ī (tn − τ)

(

1 − τ − tn̄−1

�t

)

dτ, (56)

Ri,ī,n−n̄ =
∫ tn̄

tn̄−1

gi,ī (tn − τ)
τ − tn̄−1

�t
dτ, (57)

where L and R represent the responses observed at
tn due to triangular pulses lasting between tn̄−1 and tn̄
(Fig. 5).

The time-domain Green’s functions gi,ī (tn − τ)

need to be obtained numerically while the integra-
tion from tn̄−1 to tn̄ needs to be performed numer-
ically too, thus introducing two sources of inaccu-
racy. To increase accuracy, the response associatedwith
a triangular pulse can be obtained directly from the
Laplace domain, where only the inverse Laplace trans-
form needs to be evaluated numerically. To this end,
the expressions for L andR can be rewritten by intro-
ducing the variable change τ̄ = τ − tn̄−1:

Li,ī,n−n̄ =
∫ tn−n̄+1

0
gi,ī (tn−n̄+1 − τ̄ )

(

1 − τ̄

�t

)

× H(�t − τ̄ )dτ̄ ,

(58)

Ri,ī,n−n̄ =
∫ tn−n̄+1

0
gi,ī (tn−n̄+1 − τ̄ )

(
τ̄

�t

)

× H(�t − τ̄ )dτ̄ ,

(59)

where tn−n̄+1 = tn − tn̄−1. These responses can now
be expressed as inverse Laplace transforms as follows:

Li,ī,n−n̄ = eσ tn−n̄+1

π

×
∫ ∞

0
Re

(

ĝi,ī (σ + iω) P̂L(σ + iω) eiωtn−n̄+1

)

dω,

(60)

Ri,ī,n−n̄ = eσ tn−n̄+1

π

×
∫ ∞

0
Re

(

ĝi,ī (σ + iω) P̂R(σ + iω) eiωtn−n̄+1

)

dω,

(61)

where ĝi,ī is the Laplace-domain Green’s function
associated with a Dirac delta load in time and a box-car
function in space, and P̂L and P̂R are given by

P̂L(s) = 1

s2�t

(

1 − s�te−s�t − e−s�t
)

, (62)

P̂R(s) = 1

s2�t

(

− 1 + s�t + e−s�t
)

. (63)

The inverse Laplace transforms are evaluated numer-
ically using a quadratic, nested, adaptive integration
scheme.

To express the contribution from the forces propor-
tional to the velocity f v [Eq. (51)], one needs to derive
an expression for the velocity ẇi,n . One could follow
the same procedure as for the displacement wi,n and
obtain a similar equation to Eq. (55). Then, the equa-
tions forwi,n [Eq. (55)] and ẇi,n could be solved simul-
taneously. However, the Laplace-domain counterparts
of L andR that relate applied force to resulting veloc-
ity have a poor decay and, consequently, evaluating the
inverse Laplace transforms is time consuming. A com-
putationally efficient alternative is to approximate the
velocity ẇi,n as a function of the displacement at the
previous time moments by using the finite difference
method. This makes the force f vi,n proportional to the
displacement (i.e. f vi,n(wi,n, wi,n−1, wi,n−2)), so that it
can be added to the force f u, together being incorpo-
rated in the force f u+v

i,n . Note that for conciseness, the

force f u+v
i,n is indicated in the following to be depen-

dent on the displacement wi,n , while in actual fact it
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is also dependent on the displacement at the previous
time moments. The complete solution now reads

wi,n = wML
i,n +

Nx∑

ī=1

n∑

n̄=1

[

f u+v
ī,n̄−1

(wī,n̄−1)Li,ī,n−n̄

+ f u+v
ī,n̄

(wī,n̄)Ri,ī,n−n̄

]

.

(64)

It can be observed that Eq. (64) is implicit for n̄ = n.
Therefore, the equation is divided in an yet unknown
instantaneous contribution and an already known his-
tory contribution. The equation becomes

wi,n = wML
i,n + whist

i,n +
Nx∑

ī=1

f u+v
ī,n

(wī,n)Ri,ī,0, (65)

whist
i,n =

Nx∑

ī=1

n−1∑

n̄=1

[

f u+v
ī,n̄−1

(wī,n̄−1)Li,ī,n−n̄

+ f u+v
ī,n̄

(wī,n̄)Ri,ī,n−n̄

]

+
Nx∑

ī=1

f u+v
ī,n̄−1

(wī,n̄−1)Li,ī,0. (66)

In order to advance to the next time step, Eq. (65) is
solved for wi,n using an iterative scheme. The scheme
is defined by the following recursive relation that starts
at j = 0 (where j indicates the iteration counter):

w
j+1
i,n ≈ wML

i,n + whist
i,n +

Nx∑

ī=1

f u+v
ī,n

(w
j
ī,n

)Ri,ī,0. (67)

The rate of convergenceof this iterative scheme isRi,ī ,0
[45]. Iterations continue until specified tolerances are
met for all entries of the displacement wi,n . No con-
vergence problems were encountered while computing
the results for this paper.

All three solutionmethods have been presented now.
In the following section, the performance of the three
solution methods is compared.

3 Results and discussion

Here, the proposed solution methods, namely the
sequential Laplace transform (SLT) method, the time-
domain (TD) method, and the pseudo-force (PF)
method, are compared in terms of accuracy, computa-
tional efficiency, and feasibility to apply themethods to

more complex models. The three methods are assessed
for extreme situations. To this end, a relatively high
load velocity is chosen, namely 95% of the minimum
phase velocity in the soft domain (the velocity is 400
m/s, which may seem extremely high; however, the
velocity relative to the minimum phase velocity is of
importance, and not the absolute value of the veloc-
ity; for a more extensive discussion on this subject, see
Sect. 3.1. of Ref. [26]). Also, a relatively low damping
ratio (ζ = 0.05) is used to make sure that errors are
not damped out. Moreover, a high stiffness dissimilar-
ity between the left and right domain (p = 5) is chosen
which, combined with an abrupt transition (lt = 0.01
m), leads to strong transition radiation and large plastic
deformation. The location of the abrupt transition is at
xtc = 5 m for all simulations presented in this section.
Also, xe = − 30 m for all the results presented in the
following to ensure that the eigenfield does not interact
with the inhomogeneity at the beginning of the simu-
lation. The parameter values used in the computations
are given in Table 1.

3.1 Accuracy

The accuracy assessment of the three methods is based
on two types of simulations. Firstly, a linear limit case
is considered by setting the parameters kBd,c(x), k

C
d,c(x),

and kDd,c(x) to be equal to the initial stiffness kAd,c(x).
By doing so, fictitious nonlinear events are introduced,
but the response should be the same as the response
of the linear system. In the second type of simulation,
the nonlinear systemwith the constitutive relation from
Sect. 2.1 (Fig. 2) is considered.

The linear limit case is compared to the semi-analyt-
ical solution of a piecewise-homogeneous and linear
system. This semi-analytical benchmark solution is the
same as the response wML of the base system to the
moving load in the PF method (Sect. 2.5). Because the
only source of error of this semi-analytical solution is
the numerical evaluation of the inverse Fourier trans-
form, a very high maximum frequency (i.e. fmax = 40
kHz) and a small frequency step (i.e. � f = 0.1 Hz)
are adopted to obtain a very high accuracy.
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Table 1 System parameters (the overbar represents that the coefficient has not been scaled by the beam’s bending stiffness)

Parameter Value Unit

Bending stiffness EI 6.42 × 106 Nm2

Mass per unit length ρ 268.33 kg/m

Moving-load magnitude F0 80 × 103 N

Loading stiffness k
A
d,l 83.33 × 106 N/m2

Loading stiffness k
B
d,l 158.33 × 106 N/m2

Unloading stiffness k
C
d,l 233.33 × 106 N/m2

Unloading stiffness k
D
d,l 83.33 × 106 N/m2

Damping ratio ζ 0.05

Stiff-soft stiffness ratio p 5

Centre of the transition xtc 5 m

Transition length lt 0.01 m

Load position at t = 0 xe −30 m

The relative error e(x) used in this section is defined
as follows:

e(x) =
∑tmax

t=0 |wbench(x, t) − wlin(x, t)|
∑tmax

t=0 |wbench(x, t)|
, (68)

where wlin is the displacement in the linear limit case
andwbench is the benchmark solution. This error formu-
lation where the summation over time is performed in
both the numerator and denominator is chosen because
at certain locations and time moments, the displace-
ment can be zero or close to zero, which, if the summa-
tion over time were not taken, would lead to a huge rel-
ative error that has no physical significance. This error
relation is also used for the nonlinear case; however,
for the nonlinear simulation there is no semi-analytical
solution to use as a benchmark, and thus, the threemeth-
ods are compared to each other.

The accuracy is studied for varying sampling param-
eters �t and �x . The three methods have different
sensitivities to the two sampling parameters; therefore,
when varying one sampling parameter, the other one is
chosen such that the resulting error is of the same order
for all three methods. For the SLT and TD methods,
the frequency spacing �ω = 4π rad/s has been cho-
sen after sensitivity studies, while for the PF method
the adaptive algorithm (see Ref. [45]) chooses itself the
frequency sampling. Note that for the TD method, the
frequency sampling is needed for evaluating the inverse
Laplace transforms to obtain the response functionsH

[see Eq. (34)] and the boundary vectors (bICl , bML
l , and

bML
r ). As for the maximum frequency, fmax = 2 kHz

for the TD method, fmax = 1/(2�t) for the SLT
method, and fmax = 2log2(2π/�t)+2 for the PF method,
unless specified otherwise. It must be mentioned that
fmax for the PF method is set to such a large value (e.g.
fmax ≈ 40 kHz for�t = 100μs) because the adaptive
algorithm chooses very few sampling points if the inte-
grand is smooth at high frequencies, therefore leading
to almost no additional computational effort.

3.1.1 Linear limit case

The elastic displacement limit ratio q = wel/w
e
max is

chosen to have a value close to unity (q = 1.01) such
that fictitious nonlinear events occur in abundance. For
the TD method, this limit case is the same as a lin-
ear case (no fictitious nonlinear events) in terms of
accuracy. For the SLT method, this limit case tests
all operations, namely solving the system in Eq. (18),
updating the non-reflective boundaries, and evaluating
the inverse Laplace transform. The PF method reduces
to computing the response wML caused by the mov-
ing load, which is exactly the same as the benchmark
solution; therefore, such a comparison would be super-
fluous. To also test the PF method, the piecewise-
homogeneous base system is prescribed to have the
abrupt transition at xtc = 6 m, while the forces that
account for the inhomogeneity need to act such that
the system simulates an abrupt transition at xtc = 5 m.
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In this way, the Green’s functions and the convolutions
are assessed.

Figure 6 shows that the response obtained with all
three methods converges to the semi-analytical one as
�x decreases. However, to obtain similar magnitudes
of the error, the SLT method requires a smaller �x
than the TD and PF methods. This is because a certain
ratio between the maximum frequency fmax and �x
must be satisfied in the SLTmethod. More specifically,
the Laplace-domain moving load is harmonic in space
(F̂ML = − F0

v
exp(−s x

v
)); to accurately represent F̂ML

at high frequencies, there should be at least five spatial
points per wavelength, leading to the requirement that
�x = v/(4 fmax). For the parameters in Fig. 6, this
minimum requirement is �x = 5 cm; for this reason,
the error is much larger for �x = 10 cm while for the
remaining values of �x the error is of similar magni-
tude. The larger error in the right domain for the SLT
and TD methods is caused by the significantly smaller
values of the displacement encountered there. The PF

method is not so much affected by this because as the
transients caused by the transition die out, the solution
tends to the semi-analytical baseline response.

The error also decreases with decreasing �t for all
threemethods, depicted in Fig. 7. Unlike for decreasing
�x , here the TD and PF methods require smaller �t
than the SLT method to obtain a similar error magni-
tude. The TDmethod exhibits a significant error reduc-
tion with decreasing �t , which is to be expected since
the Newmark method is a time-stepping method and
the smaller the �t , the more accurate the approxi-
mation becomes. For the SLT method, fmax needs to
be increased with decreasing �t to obtain convergent
results. More specifically, to satisfy the continuity con-
ditions [see Eqs. (16) and (17)], the inverse Laplace
transform requires a high accuracy close to tn = 0
(here, n refers to the time interval; see Sect. 2.3).
This can be achieved by satisfying the criterion �t =
1/(2 fmax) (i.e. the time discretisation should not be
more refined than the Nyquist criterion requires). The
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�x = 2 cm for the TD method, �x = v/(4 fmax) for the SLT method, and �x = 4 cm for the PF method

fact that the spatial discretisation is linked to fmax (as
stated in the previous paragraph) leads to the three sam-
pling parameters (i.e.�x ,�t , and fmax) being interde-
pendent for the SLT method. As presented in Sect. 3.2,
this leads to significant increase in computational effort
when one of them is changed. As for the PF method,
the error decreases considerably with decreasing �t .
This is caused by the pseudo-forces (acting between
x = 5–6 m) becoming more accurate; in other words,
the approximation of the convolution integrals [see Eq.
(66)] is improved by decreasing �t .

3.1.2 Nonlinear case

As there is no semi-analytical solution to test against in
the nonlinear case, it is chosen to run a high-resolution
simulation using the TD method (i.e. fmax = 4 kHz,
�x = 0.5 cm, �t = 10μs), and perform the accuracy
analysis using this result as a benchmark. Therefore, it
is important to realise that the error studies presented
in this subsection do not represent errors with respect

to a true solution, but they are essentially differences
between solution methods. For the results presented in
this subsection, the elastic displacement limit ratio is
chosen as q = 1.05.

One can observe at a first glance of Figs. 8 and 9 that
the error in general is considerably larger than for the
linear limit case (Sect. 3.1.1). The additional error is
mainly caused by two factors: the spatial and temporal
discretisation of the foundation’s nonlinear force [see
Eq. (14) for the bilinear case], and the combination of
non-smooth nonlinearity and separation between the
beam and supporting structure only being allowed in
the locations where plastic deformation has developed
(see Fig. 2). To exemplify the latter, assume the min-
imum displacement at a certain location x1 computed
with the TD method to be min

(
w(x1, t)

) = wel + ε

(where ε is a very small displacement); this location is
therefore in the initial stiffness branch (kAd,c) for all time
moments. Now, assume the same quantity computed
with the SLT method to be min

(
w(x1, t)

) = wel − ε;
this location experiences a small plastic deformation
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and the separation between the beam and foundation
is allowed (i.e. no force is exerted by the foundation
for upwards displacement of the beam). As can be
seen, a very small difference in the displacement mag-
nitude (2ε) can lead to different behaviour, causing a
larger error than in the linear limit case. Nonetheless,
the plastic deformation profile and the displacement’s
time history show that despite the substantial errors, the
solutions exhibit the same trend for all three methods
(Figs. 10, 11).

Figure 8 shows that all solutions converge to the
benchmark by decreasing �x ; however, the conver-
gence is not monotonic for all locations, not even for
the TD method despite the benchmark solution being
computed with the TD method. The non-monotonic
convergence is caused by the several sources of error
that may eliminate each other, leading to apparently
accurate solutions for certain sampling combinations.
Interestingly, the largest error generally does not occur
where the plastic deformation develops, but at a loca-

tion (around x = 3.5 m) between two plastically
deformed regions (Fig. 10).

One can observe in Fig. 9 that the error decreases
with decreasing �t for all three methods, but the
decrease is non-monotonic similarly to the error for
decreasing �x , and can be explained in the same man-
ner. The errors obtained with the TD and PF meth-
ods seem to converge to a non-zero value because with
the decrease in �t the error introduced by the spa-
tial discretisation starts governing. This is not observed
in the SLT method because �x is decreased with �t
to respect the criterion �x = v/(4 fmax) discussed in
Sect. 3.1.1.

To offer a bigger picture, Figs. 10 and 11 present the
plastic deformation profile and the displacement’s time
history at x = 3.5 m (the location in the soft domain
with the largest error), respectively. Although in some
cases the errors may appear to be large (e.g. 2–20% in
Figs. 8, 9), all three methods perform very well and the
differences can hardly be seen.
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To conclude, all three methods converge given
the correct sampling parameters �x and �t , and all
three can reach similar error magnitudes. Nonetheless,
also the computational effort required to achieve the
observed accuracy needs to be investigated if onewants
to present a complete picture. In this section, the sam-
pling parameters have been chosen such that the error
magnitude is similar for the three methods. In the next
section, the computational effort to obtain the accuracy
discussed in this section is presented and discussed.

3.2 Computational efficiency

In this subsection, the most intensive computational
operations are identified for each method. These com-
putational operations are analysed qualitatively as well
as quantitatively by presenting a comparison of the
computational time required to perform the simulations
presented in Sect. 3.1.2. The computational effort pre-
sented in Figs. 10 and 11 represents wall-clock time
and the simulations have been performed on a PC
with Intel(R) Xeon(R) CPU E5-1630 v3 @ 3.70 GHz
processor and 32 GB of RAM memory. It must be
emphasised that further optimisation of the algorithms
is always possible; however, the authorsmade their best
to optimise them and believe that further improvement,
although possible, will not lead to significantly differ-
ent results, especially for the qualitative analysis.

For the TD method, the most computationally
demanding processes are numerically solving the sys-
tem of Eqs. (44)–(46) and computing the non-reflective
boundary conditions. Firstly, determining the solution
of the system requires the computation of the matrix
inverseY−1

n+1 (themost computationally intensive oper-
ation) once at the start of the simulation and recomputed
at each nonlinear event due to the change in the proper-
ties of the foundation (i.e.K andC). Alternatively, one
can solve the linear system of equationsYn+1xn+1 = z
using a sparse Y matrix; this operation is consider-
ably faster than explicitly computing Y−1. However,
this operation would need to be computed for each
time moment while the matrix inversion needs to be
computed only at each nonlinear event. Consequently,
for few nonlinear events, the former option is faster
while for many nonlinear events, the latter is more effi-
cient. Secondly, the computation of the non-reflective
boundary conditions involves numerically evaluating
the inverse Laplace transforms to obtain the response

functions H [see Eq. (34)] and the boundary vectors
(bICl , bML

l , and bML
r ), and evaluating the convolution

integrals at the boundaries [see Eq. (32)].
For the SLT method, the most computationally

intensive operations are solving the linear system of
equations [Eq. (18)], updating of the non-reflective
boundary conditions, and numerically evaluating of the
inverse Laplace transform. The linear system of equa-
tions [Eq. (18)] needs to be solved for each frequency
and at each nonlinear event. This is done by using an
algorithm to solve linear systems of equations in MAT-
LAB (i.e. themldivide routine)where the dynamic stiff-
ness matrix is assembled as sparse. For the results pre-
sented here, this is the most computationally intensive
part of the SLT method. Next, updating the boundary
conditions involves computing the particular solutions
of the non-trivial initial conditions in the left and right
domains; this implies a numerical evaluation of the
inverse Laplace transform for each frequency (see Eqs.
(68) and (69) of [7]). Finally, the numerical evaluation
of the inverse Laplace transform needs to be performed
for each time moment and for each spatial point.

For the PF method, the computationally demanding
operations are determining the response functions L
and R in the time domain], i.e. inverse Laplace trans-
forms; see Eqs. (60) and (61)] and determining the his-
tory component whist

i,n of the response [see Eq. (66)].
The associated response functions need to be deter-
mined for all the excitation points ξī and observation
points xi for all timemoments. If the response functions
have a strong decay in time, it is sufficient to determine
them only for the time moments when the response has
a significant amplitude. Determiningwhist

i,n involves the
evaluation of two convolution integrals [Eq. (66)], one
over the number of excitation points ξī and one over the
time moments smaller than the observation time; this
operation needs to be performed for each observation
point xi and observation time tn .

Figure 12 presents the computational effortC (mea-
sured in seconds) needed to reach the accuracy shown
in Fig. 8. The TD and SLT methods require similar
computational times while the PF method appears to
be more computationally intensive. This is caused by
the fact that with decreasing �x (i.e. increasing the
number Nx of excitation ξī and observation xi points),
the number of required response functions L and R
increases with N 2

x . However, once the response func-
tions are determined, a whole parametric study can be
conducted (e.g. varying v, lt , types of nonlinearity, etc.)
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by only performing the convolutions [Eq. (65)]. For the
TD and SLT methods, the computational effort is gov-
erned by the matrix inversion operation while updating
the non-reflective boundary conditions, as one could
expect, is not affected by the change in �x since they
need to be determined only at the boundaries. For the
SLT method, the inverse Laplace transform appears to
be the least computationally intensive operation.

Figure 13 presents the computational effort C
needed to reach the accuracy shown in Fig. 9. The
computational effort in the TD method is still gov-
erned by the inversion of the matrix operation despite
�x being constant because the number of nonlinear
events increases with the decreasing �t (i.e. the num-
ber of matrix-inversion operations increases). Also,
the computational effort needed to update the non-
reflective boundaries appears to be slightly affected by
the decrease in�t . Although the evaluation of the con-
volution integrals increases almost quadratically, the
numerical evaluation of the inverse Laplace transforms

increases linearly with decreasing �t ; for �t = 80–
250μs, the inverse transforms are governing CNRBC

for the TD method, while for smaller �t the convolu-
tion integrals start governing. As for the SLT method,
the matrix inversion is also still governing the com-
putational time when decreasing �t because �x and
fmax are also varied for these simulations and the num-
ber of nonlinear events increases with decreasing �t .
Respecting the convergence criteria for the SLTmethod
leads to a considerable increase in computational effort.
For the PF method, C appears to increase less drasti-
cally than the other two methods with decreasing �t .
This is becauseC in the PF method is mainly governed
by �x , which is kept constant here. Also, C for the
PF method is not affected by the number of nonlinear
events.

Finally, given the accuracy levels presented in
Sect. 3.1.2, the TDmethod is the most computationally
efficient method. However, for certain combinations of
�t and�x , the SLTmethod is not far behind, while the
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PF method shows potential for a large number of simu-
lations provided that the associated response functions
do not change.

To conclude, it must be mentioned that the above-
drawn conclusions can be somewhat different for
another choice of parameters (e.g. train velocity, transi-
tion length, elastic displacement limit ratio q, damping
ratio, etc.). It is impossible to cover all combinations
of parameters, but an indication of how changing these
parameters may influence the computational effort is
given in the following. The main effects of changing
these parameters on the computational effort compar-
ison can be grouped as follows: changes leading to a
variation in the number of spatial nodes, changes lead-
ing to a variation in the number of time samples, and
changes leading to a variation in the number of non-
linear events. Firstly, the number of spatial nodes is
affected by the largest real part of the wavenumber of
the eigenfield (see Appendix A of Ref. [7]) and of the
generated waves; this is in turn influenced by the load
velocity. (The higher the load velocity, the larger the
real part of these wavenumbers.) The number of spa-
tial nodes is also affected by the length of the transi-
tion zone because the complete nonlinearity and inho-
mogeneity needs to be incorporated in the computa-
tional domain. Secondly, the number of time samples
is affected by the maximum frequency of the generated
waves (same reasoning as for the maximum wavenum-
ber can be applied here), by the load velocity (i.e. the
lower the velocity, the more time moments until the
load has passed the transition), and by the damping
present in the system (i.e. the higher the damping, the
fewer timemoments until the waves die out in the com-
putational domain). Thirdly, the number of nonlinear
events is affected by the load velocity (the lower the
velocity, the less plastic deformation and the fewer non-
linear events), by the length of the transition and the
stiffness ratio p (the smoother the transition the fewer
nonlinear events), and by the elastic displacement limit
ratio q (the larger the ratio the fewer nonlinear events).
From the previously drawn conclusions, it can be seen
that the PF method is most influenced by the variation
in the number of spatial nodes, the TD is most affected
by the variation in the number of time samples, and the
SLT method is most affected by the number of nonlin-
ear events. (It may seem that also the SLT method is
strongly affected by the number of time samples, from
Fig. 13, but it is mostly the decrease in �t which leads
to an increase in fmax and a decrease in �x that con-

tributed to this sensitivity; an increase in number of
time samples while keeping the �t fixed does not fol-
low a similar trend in computational effort increase.)
These qualitative observations can give an indication
to which method is advantageous for a different choice
of parameters.

3.3 Feasibility of application to more complex systems

Here, the feasibility for the methods to handle frequen-
cy-dependent properties of the structure (e.g. frequen-
cy-dependent springs and dashpots) is qualitatively
assessed, as well as to handle a smooth nonlinearity (as
opposed to the piecewise-linear one), and to apply the
solution methods to multi-dimensional models. It must
be emphasised that all three methods can be applied in
the above-mentioned situations, but one can be more
efficient than others, and this is discussed in the fol-
lowing.

Usually when a model reduction is opted for (e.g.
going from 2-D to 1-D), the conversion of parame-
ters is done for a specific frequency range of interest.
If more frequency ranges are of interest or if the fre-
quency range is broad, then the conversion may lead
to frequency-dependent parameters of the reduced-
order model. The TD method is inefficient in this
case because additional convolution integrals are intro-
duced that are distributed throughout the spatial domain
(opposed to the convolution integrals at the bound-
aries which are local), leading to a significant increase
in computational time. For the SLT method, the
frequency-dependent parameters can directly be incor-
porated in the equation of motion with no additional
effort since the system is solved in the Laplace domain;
therefore, the computational effort in this case is
unchanged. For the PF method, the response functions
L andR are determined from the Laplace domain and
can easily incorporate frequency-dependent parame-
ters too; however, the fact that the nonlinearity and
part of the inhomogeneity is accounted through the
pseudo-forces leads to additional convolution integrals
throughout the spatial domain, which increases the
computational effort of the method. Therefore, the SLT
method appears to be most suitable to tackle a system
with frequency-dependent properties.

In the problem statement, the reaction of the Kelvin
foundationwas assumed tobepiecewise linear.Although
under certain conditions (see [7]) this assumption is rea-
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sonable, other analyses might require a smoothly non-
linear constitutive law (e.g. cubic super-linear model
[52]). The TD method can easily incorporate such
behaviour, but with an increase in the computational
time because the matrix-inversion operation [see Eq.
(44)] must be performed at each time moment; how-
ever, this operation can be sped up as discussed in
Sect. 3.2. The SLT method is very inefficient for such
behaviour; the smoothly nonlinear behaviour implies
that nonlinear events occur essentially at each time
moment leading to a considerable increase in the com-
putational time. The PF method, however, can eas-
ily handle such a behaviour. The only increase in
the computational time might come from the poorer
convergence of the iterative scheme; however, this is
unlikely. To present a more quantitative comparison,
fictitious nonlinear events are imposed at each time
step for one set of sampling parameters (�x = 5cm
and �t = 80 μs for the TD method, �x = 5 cm and
�t = 250 μs for the SLT method, and �x = 5 cm
and �t = 100 μs for the PF method). As can be seen
in Fig. 12, the computational effort for these sampling
parameters in the reference case is approximately 40 s
for the TD method, 100 s for the SLT method, and
2,660 s for the PF method. When the fictitious non-
linear events are imposed at each time moment, the
computational effort is approximately 55 s for the TD
method and 550 s for the SLT method, while the one of
the PF method remains approximately the same. Thus,
by implementing a smoothly nonlinear constitutive law,
the TD appears to bemost efficient and the PF least effi-
cient, while the computational effort of the SLTmethod
is most affected by such a change.

As for using themethods to analyse a 2-Dmodel, for
example, all three methods have advantages and disad-
vantages. If the nonlinearity and inhomogeneity of the
system is considered throughout the depth (i.e. ballast
layers as well as the soil layers), then all three methods
need to discretise a considerable portion of the vertical
direction, leading to a significant increase in the com-
putational time. For such a system, the TD method is
likely to be most efficient as the SLT and PF meth-
ods become unfeasible for very large systems. More
specifically, for the SLT method, the matrix inversion
for systems with a very large number of degrees-of-
freedom becomes unfeasible when performed for each
frequency and each nonlinear event, while for the PF
method, the large number of associated response func-
tions to be determined in the time domain renders the

method unfeasible. However, if the nonlinearity and
inhomogeneity are limited to the surface layers (e.g.
nonlinear ballast layer resting on inhomogeneous soil
layer supported by a linear half-space), then only the
top layers need to be discretised and the others could
be included by using frequency-dependent parameters.
For such a system, the TD method requires additional
spatially distributed convolution integrals to account
for the presence of the half-space. The SLTmethod can
exactly replace the half-space by frequency-dependent
springs and dashpots, which does not affect its effi-
ciency. Also the PF method can incorporate the half-
space with no additional effort (it will already be incor-
porated in L and R, which are computed only for the
top layers). An example of such a 2-D system has been
formulated in Ref. [17] (but with a linear behaviour
for all materials), where the ballast and the foundation
are modelled as lattices. This model has approximately
60,000 degrees-of-freedom (DOFs) and 40,000 of them
are for the foundation. Replacing the foundation by
frequency-dependent springs can reduce significantly
the amount of DOFs; however, for the SLT method,
the dynamic stiffness matrix for the reduced system
needs to be inverted for each frequency individually,
while for the PF method, obtaining the Green’s func-
tions even for this reduced system seems unfeasible.
To conclude, even though the SLT appears to have the
potential to be more efficient than the TD method for
such a system, it difficult to draw a definite conclusion.

4 Conclusions

This study presents three solutionmethods to obtain the
response of a 1-Dmodel consisting of an infinite Euler–
Bernoulli beam resting on a locally inhomogeneous
and nonlinear supporting structure subject to a moving
constant load. The three methods, namely the sequen-
tial Laplace transform (SLT) method, the time-domain
(TD) method, and the pseudo-force (PF) method, were
chosen from the three main categories of solution
methods available in the literature, namely integral-
transform methods, time-domain methods, and hybrid
methods, respectively. The three methods were com-
pared in terms of accuracy, computational efficiency,
and feasibility of application tomore complex systems.

Results show that all three methods are able to reach
similar accuracy levels, both for a linear limit case
and for the nonlinear situation. For the latter case, the
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combination of non-smooth nonlinearity and separa-
tion between the beam and supporting structure only
being allowed at the locations where plastic deforma-
tion has developed leads to larger relative errors than
in the former case and to non-monotonic convergence
with decreasing �x and �t . Given similar accuracy
levels, the TDmethod is overall the most computation-
ally efficient method. However, for certain sampling
combinations, the SLT method is not far behind while
the PF method shows potential for a large number of
simulations provided that the response functions do not
change. As for the feasibility to apply these methods
to more complex systems, the SLT method appears to
be most efficient in dealing with frequency-dependent
parameters while the TD and PF methods in dealing
with smooth nonlinearity. For a 2-D system, if the non-
linearity and inhomogeneity is considered throughout
the depth, the TD method is likely to be most efficient;
however, if the nonlinearity and inhomogeneity are lim-
ited to the surface layers (e.g. nonlinear ballast layer
resting on inhomogeneous soil layer supported by a
linear half-space), the SLT method has the potential to
be more efficient than the TD method.

Based on this study, the adequate solutionmethod to
solvemore complex systems can be selected depending
on the specific characteristics of the model. Although
the 1-D model presented in this study has mainly been
used to assess the three methods, it can also be used
for preliminary designs of transition zones in railway
tracks.

Nomenclature

General

�t Time spacing
�x Spatial spacing
δ(. . . ) Dirac delta function
ω Angular frequency
ρ Mass per unit length of the beam

scaled by E I
σ Real part of Laplace variable
ζ Damping ratio
A1, A2, B1, B2 Complex-valued amplitudes of

the eigenfield
cd,c Foundation damping within the

computational domain scaled by
E I

cd,l, cd,r Foundation damping of the left
and right semi-infinite domains,
respectively, scaled by EI

E I Bending stiffness of the beam
F0 Magnitude of the moving load

scaled by E I
fk,c Force exerted by the founda-

tion within the computational
domain scaled by E I

H(. . . ) The Heaviside function
ke1, k

e
2, k

e
3, k

e
4 Complex-valued wavenumbers

of the eigenfield
kAd,c, k

B
d,c, k

C
d,c, k

D
d,c Foundation stiffness branches of

the constitutive relation scaled
by E I

kd,l, kd,r Foundation stiffness of the left
and right semi-infinite domains,
respectively, scaled by E I

L Length of the computational
domain

lt Transition length
p Stiff-soft stiffness ratio
q Ratio between the elastic dis-

placement limit and the maxi-
mum displacement of the eigen-
field

s Laplace variable
t Time
v Velocity of the moving load
we Displacement of the eigenfield
wel Elastic displacement limit
wl, wr Displacement of the left and

right semi-infinite domains
wpl Plastic displacement
wc Displacement of the computa-

tional domain
x Spatial coordinate
xtc Centre of the transition
xe Position of the moving load at

t = 0

PF method

L, R Responses observed at tn due
to triangular pulses lastingbetween
tn̄−1 and tn̄

f u, f v Pseudo-forces proportional to the
displacement andvelocity, respec-
tively
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g Time-domain Green’s function
kPHd , cPHd Piecewise-homogeneous stiffness

and damping of theKelvin foun-
dation, respectively

Nx Number of integration points
w Displacement of the entire beam

x ∈ (−∞,∞)

wML Displacement causedby themov-
ing load in the base system

wv Displacement caused by f v

Results

�ω Radial frequency spacing
C Computational effort
Cconvo Computational effort for the con-

volution procedure
CGFs Computational effort for deter-

mining the Green’s functions
CILT Computational effort for the

inverse Laplace transform pro-
cedure

CK,inv Computational effort for the
matrix inversion procedure

CNewmark Computational effort for the
Newmark-β scheme

CNRBC Computational effort for updat-
ing the non-reflective boundary
conditions

Ctotal Total computational effort
e Relative error
fmax Maximum frequency of integra-

tion
wbench Benchmark solution
wlin Displacement in the linear limit

case

SLT method

b̂
IC
l,n, b̂

IC
r,n Vector containing the influ-

ence of the initial condi-
tions prescribed to the left
and right domains, respec-
tively

b̂
ML
l,n , b̂

ML
r,n Vector containing the con-

tributionof themoving load
to the reaction forces of

the left and right domains,
respectively

f̂ Bc,n,i The contribution of the
boundary conditions inde-
pendent of the unknown
displacement

f̂ ICc,n,i Forcing vector induced by
the initial conditions

f̂ ML
c,n,i Force exerted by the mov-

ing load
f̂ NLc,n,i The part of the piecewise-

linear foundation force that
is independent of the
unknown displacement

k̂l,Vυ, k̂l,Vφ, k̂l,Mυ, k̂l,Mφ Entries in thedynamic stiff-
nessmatrix of the left semi-
infinite domain

k̂r,Vυ, k̂r,Vφ, k̂r,Mυ, k̂rs,Mφ Entries in thedynamic stiff-
ness matrix of the right
semi-infinite domain

K̂i j Bending–stiffnessmatrix of
the beam

τ n The moment of the nth
nonlinear event in theglobal
time axis t

τn The moment of the nth
nonlinear event in the local
time axis tn

Ii j Identity matrix
N The index of the last time

interval
sn The Laplace variable asso-

ciated with the time inter-
val tn

tn Thenth time interval (Fig. 3)

TD method

φ FEM shape-functions vec-
tor

bhist Vector incorporating thehis-
tory shear forces and bend-
ing moments

C FEM Kelvin damping
matrix

fBc FEMboundary-forcingvec-
tor

fML
c FEM moving-load forcing

vector
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fNLc FEM forcing vector con-
taining the nonlinear part
of the supporting structure
reaction force that is inde-
pendent of the unknown
displacement

K FEMKelvin stiffnessmatrix
KEB FEMEuler–Bernoulli bend-

ing stiffness matrix
M FEM mass matrix
x Vector of generalised dis-

placements
γ, β Newmark-β schemeparam-

eters
ĉl,Vυ, ĉl,Vφ, ĉl,Mυ, ĉl,Mφ Entries in thedynamic com-

pliance matrix of the left
semi-infinite domain

ĉr,Vυ, ĉr,Vφ, ĉr,Mυ, ĉr,Mφ Entries in thedynamic com-
pliance matrix of the right
semi-infinite domain

H The response of the semi-
infinite system to a unit step
force applied at t0 = 0

τ Running-time variable of
integration

kl, kr Complex-valuedwavenum-
ber of the left and right
semi-infinite domains,
respectively

tn Time moment of observa-
tion

wV, wM Displacement caused by
applied shear force andbend-
ing moment, respectively

Nx Thenumber of spatial nodes
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