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Abstract The aeroelastic behavior of a planar pris-
matic visco-elastic structure, subject to a turbulent
wind, flowing orthogonally to its plane, is studied in
the nonlinear field. The steady component of wind is
responsible for aHopf bifurcation occurring at a thresh-
old critical value; the turbulent component, which is
assumed to be a small harmonic perturbation of the
former, is responsible for parametric excitation. The
interaction between the two bifurcations is studied
in a three-dimensional parameter space, made of the
two wind amplitudes and the frequency of the turbu-
lence. Aeroelastic forces are computed by the quasi-
static theory. A one-D.O.F dynamical system, drawn
by a Galerkin projection of the continuous model, is
adopted. The multiple scale method is applied, to get
a two-dimensional bifurcation equation. A linear sta-
bility analysis is carried out to determine the loci of
periodic and quasi-periodic bifurcations. Limit cycles
and tori are computed by exact, asymptotic, and numer-
ical solutions of the bifurcation equations. Numerical
results are obtained for a sample structure, and com-
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pared with finite-difference solutions of the original
partial differential equation of motion.
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1 Introduction

The study of the aeroelastic behavior of slender struc-
tures is a fascinating topic, of high scientific and tech-
nical value. The literature is rich of studies concerning
specific flexible structures (cables [1–7], beams [8–
12], plates [13–16]) and general aeroelastic phenom-
ena (galloping [17–21], flutter [22–25], vortex-induced
vibrations (VIV) [26–30]). The instability and bifurca-
tion events can be related to different kinds of exci-
tation. Self-excited autonomous systems, as structures
subjected to steady wind, are prone to Hopf bifurca-
tions, caused by zeroing of the total damping. Non-
autonomous systems, as structures subjected to turbu-
lent wind, are prone to parametric excitation phenom-
ena, leading to divergence, flip and Neimark–Sacker
bifurcations. Depending on the nature of the loads, the
different kinds of excitation can interact. Some atten-
tion has been devoted in literature to interactive aeroe-
lastic phenomena, as galloping parametric excitation
[31–40] or galloping vortex-induced vibrations [41–
45]. In particular, as regard the former class, the prin-
cipal resonance of a single-degree-of-freedom system
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with two-frequency parametric and self-excitation is
investigated in [31,34]; the method of multiple scales
is used to determine the equations of modulation of
amplitude and phase, and qualitative analyses are per-
formed out to study steady state, limit cycle, and torus
responses. In [32], analytical investigations of the sys-
tem under parametric, self-excited, and inertial exci-
tations were carried out. In [33], the galloping of tall
prismatic cantilevered structures, due to unsteadywind,
is analytically studied. The unsteady wind is consid-
ered by adding a time varying wind speed component
to the mean wind speed. Consequently, the structure
is subjected to multi-harmonic external and parametric
excitation. The multiple scale method is used to study
the effect of primary and secondary resonances on the
galloping response of the structure. Starting from this
last work, the parametric, external, and self-excitation
of one/two towers under turbulent wind flow is studied
in [35,36,39] and in [37,38], focusing the attention to
the periodic and quasi-periodic galloping motions. It
was shown that the unsteady component of wind can
cause a significant decrease in the critical speed; how-
ever, the contribution of the unsteady component is less
prominent at highwind velocities, atwhich large ampli-
tude oscillations occur. It was detected, moreover, that
periodic and quasi-periodic motions exist according to
suitable combinations of the steady and unsteady wind
parameters.

Here, the effect of a wind flow acting on a slen-
der prismatic structure is investigated. A class of cross
sections is considered, suffering sub-critical bifurca-
tion followed by a regain of stability at high ampli-
tudes, known in the literature as the hard-loss of stabil-
ity [8,46,47]. When the turbulence frequency is nearly
double a natural frequency of the structure, this latter is
parametrically excited at the primary resonance. There-
fore, self-excitation and parametric excitation interact,
both in linear and nonlinear fields. The investigation,
mainly carried out by perturbation methods, is aimed
at evaluating: (a) as the turbulent component reduces
the galloping critical velocity, and vice versa, (b) as the
steady wind component modifies the parametric exci-
tation instability domain. Moreover, (c) the analysis of
the limit cycles generated by the flip bifurcations, and
that of tori, generated by the Neimark–Sacker bifurca-
tions, are also of interest.

The paper is organized as follows. In Sect. 2, a con-
tinuous aeroelastic model of a slender prismatic visco-
elastic structure is reduced to a single-D.O.F systemvia

the Galerkin method. In Sect. 3, the bifurcation equa-
tions, ruling the slow flow of the amplitude and phase
of the involved mode, are derived via the multiple scale
method. In Sect. 4, the linear stability analysis is car-
ried out, and a three-dimensional stability domain is
built-up. In Sect. 5, a nonlinear analysis of the bifurca-
tion equation is performed; in particular, the bifurca-
tion equations governing the slow-slow-flowon a torus,
are derived. In Sect. 6, numerical results are reported
for a sample structure; they are compared with direct
numerical integration of the original partial integro-
differential equation of motion. In Sect. 7, some con-
clusions are drawn. In “Appendix A”, the sample sys-
tem is described. Two other “Appendixes”, supplying
details, close the paper.

2 Aeroelastic model

Acontinuousmodel of a slender prismatic visco-elastic
structure, of length l, restrained to belong to the (i, j)-
plane and constrained at its ends A, B, subjected to a
turbulent wind flow of velocityU (t)k, acting normally
to the plane, is formulated (Fig. 1). The structuralmodel
is assumed to be linear (since, as it is well-known, elas-
tic nonlinearities mainly affect the frequency, but not
the amplitude of the aeroelastic response); the aerody-
namicmodel is instead nonlinear. The generic equation
of motion and the boundary conditions are:

mv̈ + Le (v) + Lv (v̇) + cev̇ + pa = 0

BeH (v) + BvH (v̇) = 0 H = A, B (1)

In these equations: v (s, t) is the deflection of the prism
in the j-direction at the abscissa s ∈ (0, l) and time
t ∈ (0,∞); m is the mass per unit length; Le and Lv

are elastic and viscous linear operators, respectively;
BeH and BvH are elastic and viscous linear opera-
tors acting at the boundaries; ce is an external damp-
ing coefficient; pa (s, t) are aerodynamic loads in the
j-direction; a dot indicate partial differentiation with
respect to the time. Equation (1) can be referred as a
metamodel of prismatic structures, describing a class
of real important structures, as columns, towers, chim-
neys, and bridges.

2.1 Aerodynamic model

The aerodynamic forces are determined according to
the quasi-static theory [8]. This theory holds when the
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Fig. 1 Prismatic structure under transverse turbulent wind flow

vortex-shedding phenomenon is well-separated from
galloping. Only the vertical component of the aerody-
namic forces is considered.

By assuming the wind velocity U (t) uniform in
space, the quasi-static theory supplies the forces as non-
linearly depending on the structural velocity v̇ (s, t)
(which is responsible for modifications of the attack

angle). By assuming that
v̇

U
� 1, and the structure

cross section is symmetric with respect to the horizon-
tal axis, they are given by the odd-power series:

pa = −1

2
�aDU

2

[
A1

(
v̇

U

)
+ A3

(
v̇

U

)3

+A5

(
v̇

U

)5
+ · · ·

]
(2)

where: �a is the air mass density and Ai are dimension-
less aerodynamic coefficients, depending on the cross-
section shape, of which D is a characteristic length.
The aerodynamic forces include all the nonlinearities
of the problem.

By letting:

U (t) = Ū + u(t) (3)

in which Ū is the (leading) steady-state wind velocity,
and u(t) the (small) turbulent component, and lineariz-

ing Eq. (2) in the ratio
u

Ū
� 1, it follows:

pa = −Ū 2
[
b1

(
1 + u(t)

Ū

)(
v̇

Ū

)

+ b3

(
1 − u(t)

Ū

)(
v̇

Ū

)3

+ b5

(
1 − 3u(t)

Ū

)(
v̇

Ū

)5]
(4)

where bi := 1

2
�aDAi (for i = 1, 3, 5) has been intro-

duced to simplify the notation.
In the following, it will be assumed that the excita-

tion is harmonic, namely:

u(t) = û cosΩt (5)

with û � Ū the amplitude and Ω the frequency of the
turbulent component.

2.2 Single degree-of-freedom system

The equations of motion and boundary conditions Eq.
(1), by accounting for the aerodynamic forces (4) and
the turbulence law (5), are recast in the followingnondi-
mensional form:

v̈∗ + L ∗
e (v∗) + L ∗

v (v̇∗) + c∗
e v̇

∗ = p∗
a

B∗
eH (v∗) + B∗

vH (v̇∗) = 0 H = A, B
(6)

where:

p∗
a := −b∗

1

(
Ū∗ + û∗ cosΩ∗t∗

)
v̇∗

− b∗
3

(
1

Ū∗ − û∗

Ū∗2 cosΩ∗t∗
)

v̇∗3

− b∗
5

(
1

Ū∗3 − 3û∗

Ū∗4 cosΩ∗t∗
)

v̇∗5, (7)

and the following positions have been introduced:

v∗ := v

l
, s∗ := s

l
, t∗ := tωr ,

Ω∗ := Ω

ωr
, ωr := 1

l

√
Tr
m

,

c∗
e := ce

ωr l2

T0
, b∗

i := bi
ω2
r l

3

Tr
, Ū∗ := Ū

ωr l
,

û∗ := û

ωr l
(8)

Moreover, L ∗
e (v∗) ,L ∗

v

(
v̇∗) ,B∗

eH (v∗) ,B∗
vH

(
v̇∗)

are nondimensional operators; ωr is a reference fre-
quency and Tr a reference mechanical characteristic,
having the dimension of a force; finally a dot denotes
differentiation with respect t∗.

The continuous system (6) is discretized as a single-
D.O.F. system via the Galerkin method, by assuming:
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v∗ (s∗, t∗
) = q

(
t∗
)
φ
(
s∗) (9)

Here q (t∗) is a Lagrangian parameter and φ (s∗) is
a natural mode of the undamped system, normalized
according to max |φ| = 1, of frequency ω∗, satisfying
the boundary value problem:

L ∗
e (φ) − ω∗2φ = 0

B∗
eH (φ) = 0 H = A, B

(10)

By weighting the residuals in the domain and at the
boundaries, the following condition is enforced (Virtual
Work Equation):∫ 1

0

[
q̈φ + qL ∗

e (φ) + q̇
(
L ∗

v (φ) + c∗
eφ
)− p∗

a

]
φ ds∗

+ q̇
[
B∗

vA (φA)φA + B∗
vB (φB)φB

] = 0 (11)

from which a nondimensional ordinary differential
equation is drawn:

q̈ + ω∗2q + D0q̇ + D1
(
Ū∗ + û∗ cosΩ∗t∗

)
q̇

+ D3

(
1

Ū∗ − û∗ cosΩ∗t∗

Ū∗2

)
q̇3

+ D5

(
1

Ū∗2 − 3
û∗ cosΩ∗t∗

Ū∗4

)
q̇5 = 0 (12)

In this equation, the structural andwind coefficients are
defined as:

ω∗2 := 1

Im

∫ 1

0
L ∗

e (φ) φ ds∗,

D0 := c∗
e + 1

Im

(∫ 1

0
L ∗

v (φ) φ ds∗

+B∗
vA (φA)φA + B∗

vB (φB)φB
)
,

D1 := b∗
1, D3 = b∗

3

Im

∫ 1

0
φ4 ds∗,

D5 := b∗
5

Im

∫ 1

0
φ6 ds∗ (13)

with Im :=
∫ 1

0
φ2 ds∗. To simplify the notation, the star

will be dropped ahead.

3 Bifurcation equation

The one-D.O.F. system (12) is prone to a Hopf bifurca-
tion (galloping, in the technical literature) when b1 < 0
(i.e., A1 < 0) and the steady wind Ū attains a crit-
ical value Ūc. On the other hand, it is also suscepti-
ble of parametric excitation when the turbulence has

a suitable frequency Ω and the intensity û overcomes
a threshold, which depends on Ω . Here attention is
devoted to the case of primary parametric resonance,
for which:

Ω = 2ω + σ (14)

where ω is a natural frequency of the aeroelastic sys-
tem, and σ a small detuning. The two types of bifur-
cation can interact in the nonlinear field, giving rise to
a multiple bifurcation, described by the three bifurca-
tion parameters Ū , û, σ . It is worth noticing, however,
that, while self-excitation can occur alone (when the
turbulence is absent), the reverse does not hold, since
Ū cannot be zero nor small in the model (due to the

hypothesis
v̇

U
� 1).

To analyze the nonlinear phenomenon, the Multi-
ple Scale Method (MSM) is applied here [48] to cap-
ture the essential aspects of bifurcation (see, e.g., [49]
for several applications of the MSM in bifurcation the-
ory). Internal resonance cases, in principle possible, are
excluded in this paper.

According to the MSM, a small dimensionless
parameter ε is introduced by a suitable ordering of
variables and parameters. The Lagrangian parame-
ter is rescaled as q (t) → εq (t). Physical coeffi-
cients are also rescaled as: D0 → εD0, D1 →
εD1, D3 → ε−1D3, D5 → ε−3D5. Independent
timescales t0 := t , t1 := εt , …, are introduced, so
that ∂t = ∂0 + ε∂1 + · · · , ∂2t = (∂0 + ε∂1 + · · · )2,
where ∂ j := ∂/∂t j ( j = 0, 1, . . .). Finally, by letting
q (t) = q0 (t0, t1, . . .) + εq1 (t0, t1, . . .)+· · · , the fol-
lowing perturbation equations are derived:

ε0 : ∂20q0 + ω2q0 = 0

ε1 : ∂20q1 + ω2q1 = − (2∂0∂1q0 + D0∂0q0

+D1
(
Ū + û cosΩt

)
∂0q0

+D3

(
1

Ū
− û cosΩt

Ū 2

)
(∂0q0)

3

+D5

(
1

Ū 2
− 3

û cosΩt

Ū 4

)
(∂0q0)

5
)

(15)

Equation (15) admits the following solution:

q0 (t0, t1) = A (t1) e
iωt0 + c.c. (16)

where A (t1) is a complex modulating amplitude, vary-
ing on a (slow) timescale, whose characteristic length
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is much larger than 2π/ω; c.c. stands for complex con-
jugate terms. By substituting Eq. (16) in the second of
numbered Eq. (15) and by vanishing the secular terms,
the following complex bifurcation equation is drawn:

Ȧ = (d0 + d1Ū
)
A − d1

2
Āûeiσ t + d3

Ū
A2 Ā

+ d3
2Ū 2

ûeiσ t A Ā2 + d3
6Ū 2

ûe−iσ t A3

+ d5
Ū 3

A3 Ā2 + 3d5
2Ū 4

ûeiσ t A2 Ā3 + 3d5
4Ū 4

ûe−iσ t A4 Ā

(17)

where coming back to the unrescaled quantities has
been performed, and its coefficients assume the fol-
lowing form:

d0 = −D0

2
, d1 = −D1

2
, d3 = −3

2
ω2D3,

d5 = −5ω4D5 (18)

For further analyses, both the Cartesian and polar real
forms of Eq. (17) are needed (see [50] for a discussion),
as derived ahead.

3.1 Cartesian form

To obtain the Cartesian form of the bifurcation equa-
tion, a new variable Z (t) is defined via:

A (t) = Z (t) ei
σ
2 t (19)

which transforms the non-autonomous Eq. (17) in an
autonomous system. Then,

Z (t) = X (t) + iY (t) (20)

is posed, and the real and imaginary parts of the
equation are separated. The following two-dimensional
dynamical system is obtained:

(
Ẋ
Ẏ

)
= J0

(
X
Y

)
+ n (X,Y ) (21)

where:

J0 :=
⎡
⎢⎣d0 + Ūd1− ûd1

2

σ

2

−σ

2
d0 + Ūd1+ ûd1

2

⎤
⎥⎦ (22)

is the Jacobian matrix at the origin, and n = (nx , ny)T
is the vector of the nonlinear terms, defined as follows:

nx = d3XY 2

Ū
+ X3

(
2d3û

3Ū 2
+ d3

Ū

)

+XY 4
(
d5
Ū 3

− 3d5û

4Ū 4

)

= +X3Y 2
(
3d5û

2Ū 4
+ 2d5

Ū 3

)
+ X5

(
9d5û

4Ū 4
+ d5

Ū 3

)

ny = d3X2Y

Ū
+ Y 3

(
d3
Ū

− 2d3û

3Ū 2

)

+X4Y

(
3d5û

4Ū 4
+ d5

Ū 3

)

= +X2Y 3
(
2d5
Ū 3

− 3d5û

2Ū 4

)
+ Y 5

(
d5
Ū 3

− 9d5û

4Ū 4

)
(23)

Accordingly, the motion law (9) is expressed, at the
leading order, by:

v (s, t) = 2

[
X (t) cos

(
Ω

2
t

)

−Y (t) sin

(
Ω

2
t

)]
φ (s) (24)

where use has been made of Eqs. (16) and (14).

3.2 Polar form

To derive the polar form of the bifurcation equation
(17), the complex amplitude is expressed as:

A (t) = 1

2
a (t) eiϕ(t) (25)

with a (t) the modulus of the amplitude and ϕ (t) the
phase. Here, according to Eq. (9), a(t) represents the
motion of the material point at which φ attains its max-
imum modulus. Consequently, Eq. (17) splits into two
real equations:

ȧ = a

(
+d0 + d1Ū − 1

2
d1û cos γ

)

+ a3
(
d3
4Ū

+ d3û cos γ

6Ū 2

)

+ a5
(

d5
16Ū 3

+ 9d5û cos γ

64Ū 4

)

aγ̇ = a
(
d1û sin γ − σ

)− a3
d3û sin γ

6Ū 2
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− a5
3d5û sin γ

32Ū 4
(26)

in which γ := 2ϕ (t)−σ t is the phase difference. The
motion law (9), at the leading order, reads:

v (s, t) = a (t) φ (s) cos

(
Ω

2
t + γ (t)

2

)
(27)

Amplitudes and phases in the two representations are
related by a = 2

√
X2 + Y 2, γ = 2 arg (X + iY ).

4 Linear stability analysis

The rest position of the structure v (s, t) = 0 ∀ (s, t), is
described by the trivial solution A = 0 of the bifurca-
tion equation (17). Since the polar form (26) is singular
at a = 0, the Cartesian form (21) is used. Stability of
the origin is governed by the eigenvalues of the Jaco-
bian matrix J0, which read:

λ± = d0 + d1Ū ± 1

2

√
	 (û, σ

)
(28)

where the discriminant is:

Δ
(
û, σ
) := d21 û

2 − σ 2 (29)

For later purposes, the associated (right) eigenvectors,
solving (J0 − λ±I) x = 0, together with the left eigen-
vectors, solving the transpose conjugate eigenvalue
problem

(
J0 − λ̄±I

)
y = 0, are evaluated as:

x± =
(
d1û∓

√
	 (û, σ

)
σ

)
,

y± =
(

−d1û±
√

	 (û, σ
)

σ

)
(30)

In the absence of turbulence (û = 0 , σ = 0), the two
eigenvalues Eq. (28) are real and coincident. A Hopf
bifurcation occurs when λ+ = λ− = 0, at the critical
galloping velocity Ū = Ūc:

Ūc = −d0
d1

(31)

The coefficients d0 and d1 (see Eq. (18)) depend on
the the cross-section shape. Here, the interesting case
d0 < 0 (section prone to galloping) and d1 > 0 (sub-
critical Hopf bifurcation) is considered.

The turbulent component ofwindmodifies the bifur-
cation condition, according to the nature of the eigen-
values (28). To investigate its effects, linear stability is
studied in the

(
σ, û, Ū

)
-space, in which: (i) Ū is the

distinguished parameter, and, (ii) û and σ are the split-
ting parameters (since they rule the coalescence, as it
will appear clear soon). Results are qualitatively sum-
marized in Fig. 2, where the linear stability domain is
represented (a) by a3Dview, or (b,c,d) by cross sections
parallel to the coordinate planes (here the eigenvalues
are also sketched in the different regions).

In the
(
û, σ
)
-plane, the straight lines σ = ±d1û are

the locus atwhichΔ = 0.These lines separate the plane
in an internalRP and an externalRQ region, in which
periodic and quasi-periodicmotions, respectively, arise
when Ū takes a suitable value, as discussed ahead.

– In the internal regionRP , it is	 (û, σ
)

> 0, so that
the eigenvalues are real and distinct. Here, when Ū
is increased from zero, and it is such that λ± = 0,
two successive flip bifurcations occur, at which a
periodic response, of period double of that of exci-
tation, is triggered. This happen on the geometrical
locus:

d0 + d1Ū ± 1

2

√
d21 û

2 − σ 2 = 0 (32)

which is a cone in the parameter space. The lowest
bifurcation (λ+ = 0) manifests at a steady wind
velocity Ū

(
û, σ
)

< Ūc, so that turbulence reduces
the galloping velocity.

– In the external region RQ , it is 	 (û, σ
)

< 0, so
that the eigenvalues are complex conjugates. Here,
when Ū is increased from zero, and it is such that
Re[λ+] = Re[λ−] = 0, a Neimark–Sacker bifur-
cation occurs, at which a quasi-periodic response
is triggered. This happen on the geometrical locus:

d0 + d1Ū = 0 (33)

i.e., at Ū = Ūc ∀ (û, σ
)
.

– At the interface betweenRP andRQ , it is	 (û, σ
)

= 0, so that the eigenvalues are real and coincident.
Theyvanish at Ū = Ūc, where theNeimark–Sacker
bifurcation degenerates in a flip bifurcation. The
splitting parameters decide about the coalescence.

It is worth noticing that, referring to the slow flow
ruled by the bifurcation equation (17), the flip bifurca-
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tion appears as a divergence (simple zero eigenvalue)
and the Neimark–Sacker as a Hopf bifurcation. At
the intersections of the relevant manifolds, a double-
zero (Bogdanov–Takens) bifurcation occurs, where the
Hopf bifurcation degenerates; here, the Hopf manifold
dies (see, e.g., [51]). This mechanisms clearly appears
in Fig. 2b, c.

Amechanical interpretationof the instability domain
canbegiven.When Ū = Ūc, the aerodynamicdamping
balances the structural damping, so that themonomodal
response of the structure is undamped. Due to the para-
metric excitation, there exists a sector of the Ū = Ūc

plane, in which the system is unstable, according to
the well-known Mathieu equation (see Fig. 2a). When
Ū < Ūc, the structural damping prevails over the aero-
dynamic damping, so that the unstable zone moves
apart from the σ -axis. Consequently, a larger turbu-
lence, or a smaller detuning, are needed tomake the sys-

tem unstable, namely: (i) û > ûm (σ ), with ûm := σ

d1
the minimum turbulence amplitude (see 2b), or, (ii)
|σ | < σM

(
û
)
, with σM := d1û the maximum detuning

(see 2c). When (ideal case, beyond the validity limits
of the theory) Ū = 0, damping is only of structural
type, so that û takes its maximum value ûc = ûc (σ )

(see Fig. 2b). Out of the parametric excitation zone, at
Ū = Ūc, the phenomenon is lead by the self-excitation.
However, the periodic motion experienced by the sys-
tem under non-turbulent wind, is modified by the tur-
bulence, which introduces a second frequency, Im[λ±],
into the response, thus transforming the limit cycle in
a torus.

5 Nonlinear analysis

Bifurcation analysis calls for determining: (a) the limit
cycles (periodic solutions) generated by the flip bifur-
cation; (b) the tori (quasi-periodic solutions) gener-
ated by the Neimark–Sacker bifurcations. The periodic
solutions, which are equilibrium points for the bifurca-
tion equations, are found by analytically or numeri-
cally solving nonlinear algebraic equations. The quasi-
periodic solutions, which are periodic orbits for the
bifurcation equations, are found (i) via numerical inte-
gration of the ordinary differential equations, and (ii)
asymptotically, by carrying out a new perturbation
analysis (as, e.g., done in [52], and, then, in [37,38]
for a different engineering application).

5.1 Limit cycles

Periodic motions are the equilibrium points a = const,
γ = const of the polar Eq. (26). By requiring ȧ = 0
and γ̇ = 0 and by zeroing the right-hand side, sin γ

and cos γ are obtained and the variable γ condensed
using the relation sin2 γ + cos2 γ = 1. The resulting
equation for the unknown a is the following:

Ū 2
(
16d0Ū 3 + 16d1Ū 4 + 4a2d3Ū 2 + a4d5

)
2

û2
( 9
4a

4d5 + 8
3a

2d3Ū 2 − 8d1Ū 4
)
2

+ 64Ū 8σ 2

û2
( 3
4a

4d5 + 4
3a

2d3Ū 2 − 8d1Ū 4
)
2

= 1 (34)

In general, the roots of the Eq. (34) cannot be deter-
mined analytically. However, this is viable in the par-
ticular case of perfect resonance (i.e.,σ = 0), forwhich
the solutions read:

a1± = 4Ū

√
1

d5
(
9û + 4Ū

) (−d3

(
Ū + 2

3
û

)
±√Δ+

)

a2± = 4Ū

√
1

d5
(
9û − 4Ū

) (−d3

(
Ū − 2

3
û

)
±√Δ−

)

with

Δ± := d23

(
Ū ± 2

3
û

)
2

+d5
(
9û ± 4Ū

) (
d1
(
û ∓ 2Ū

)∓ 2d0
)

2
(35)

together with γ1 = 0 and γ2 = π , respectively. The Eq.
(35) consist in multi-valued functions, whose existence
depends on the wind parameters and on the nature of
the aerodynamics coefficients (i.e., by the cross-section
geometry).

To detect stability of the periodic solution, the
dynamical system Eq. (26) is perturbed by letting
a (t) = ae + δa (t) and γ (t) = γe + δγ (t), where
δa, δγ are small deviations from the equilibrium solu-
tion (ae, γe). Substituting in the equation and lineariz-
ing in the perturbation, leads to the following varia-
tional equation:

(
δȧ
δγ̇

)
= Je

(
δa
δγ

)
(36)

where Je := [Ji j (ae, γe)] is the 2× 2 Jacobian matrix
at the equilibrium, whose coefficients are:
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Fig. 2 Linear instability
domain: a 3D representation
in the space of the wind
parameters; coordinate
sections: b û − Ū , c σ − Ū ,
d σ − û. Black solid lines
are loci at which periodic
(P) and quasi-periodic (Q)
motions arise. Gray solid
lines are successive
bifurcation loci. The gray
filled areas indicate the
stable regions. (Color figure
online)

(a) (b)

(c) (d)

J11 (ae, γe) = d0 + Ūd1 + 3d3a2e
4Ū

+ 5d5a4e
16Ū 3

+
(

−1

2
ûd1 + 45ûd5a4e

64Ū 4
+ ûd3a2e

2Ū 2

)
cos γe

J12 (ae, γe) =
(
1

2
ûd1ae − ûd3a3e

6Ū 2
− 9ûd5a5e

64Ū 4

)
sin γe

J21 (ae, γe) =
(

− ûd3ae
3Ū 2

− 3ûd5a3e
8Ū 4

)
sinγe

J22 (ae, γe) =
(
ûd1 − ûd3a2e

6Ū 2
− 3ûd5a4e

32Ū 4

)
cos γe (37)

By denoting with μ the eigenvalues of Je, the periodic
solution is stable if Re (μ) < 0 for all μ, and unsta-
ble if Re (μ) > 0 for at least one μ. In the resonant
case, the Jacobian matrix is diagonal, with eigenvalues
J11 (ai±, γi ) and J22 (ai±, γi ).

5.2 Tori

Quasi-periodicmotions are found as limit cycles for the
bifurcation equations, via a perturbation analysis. Use
is made of the Cartesian form (21) of the bifurcation
equation and the MSM is newly applied to build-up
periodic solutions arising at Neimark–Sacker points.
Here, the eigenvalues of the Jacobian matrix J0 are

purely imaginary, i.e.,λ± = ±i� ,with� := 1

2

√−Δ,

and where Ū = Ūc. At the bifurcation, the motion is:

(
X
Y

)
= R (t)

(
d1û − 2i�

σ

)
ei� t +c.c.+h.o.t. (38)

where R (t) = 1

2
r (t) eiθ(t) is a complex amplitude,

and where use has been made of Eq. (30). By letting
Ū = Ūc + εΔU to explore the neighborhood of the
bifurcation point, and newly applying the MSM (see
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“Appendix B”), the following polar form of the bifur-
cation equation (sometimes referred to as ruling the
slow-slow-motion), is drawn:

ṙ = rd1ΔU + c3r
4
r3 + c5r

16
r5

r θ̇ = c3i
4
r3 + c5i

16
r5 (39)

Quasi-periodic solutions are found as equilibrium
points r = const of Eq. (39), i.e.,

r± =
√

−2c3r
c5r

± 2
√
c3r 2 − 4c5r d1ΔU

c5r
θ± (t) = β±t + θ0

(40)

where θ0 is an initial phase and:

β± := c3i
4
r3± + c5i

16
r5± (41)

is a frequency correction.
To detect stability, r (t) = r± + δr (t) is put in Eq.

(39), and this latter linearized:

δṙ =
(
d1ΔU + 3

4
c3r r

2± + 5

16
c5r r±4

)
δr (42)

According toEq. (9), (16), (20), (38), the quasi-periodic
motion of the original system is described, at the lead-
ing order, by:

v (s, t) = 2rσ

(
cos

(
Ω

2
t

)
cos(�∗t + θ0 + α)

− sin

(
Ω

2
t

)
cos(�∗t + θ0)

) φ (s)

(43)

where �∗ := � + β is the amplitude-dependent non-

linearmodulating frequency, andα := arctan(
2�

σM
(
û
) ).

The motion has therefore two frequencies, the driving

one
Ω

2
, and themodulating one�∗. At any given s = s̄,

the modulating amplitude:

a (t) =
⎛
⎝2rσ

√
1 − σM

(
û
)

σ
cos (2�∗t + 2θ0 + α)

⎞
⎠
(44)

exists only when σ > σM
(
û
)
and it spans the range:

a (t) ∈
⎡
⎣2rσ

√
1 − σM

(
û
)

σ
, 2rσ

√
1 + σM

(
û
)

σ

⎤
⎦
(45)

whose extreme values represent the lengths of the axes
of an elliptical trajectory traveled in the (X ,Y ) state-
space (see the later Fig. 13).

It should be noticed, however, that the perturbation
solution carried out here (local bifurcation analysis) is
unable to capture possible interactions (global bifurca-
tions analysis) between tori and limit cycles. Therefore,
it is expected that it loses validity at high amplitudes of
motion. The questionwill be investigated via numerical
analyses.

6 Numerical results

Here, by referring to a sample structure described in
“AppendixA”, the nondimensional coefficients appear-
ing in Eq. (18) are taken to assume the following
values: d0 = −0.14, d1 = 0.19, d3 = 4717.47,
d5 = −9.19 × 107. These numerical values are con-
sistent with the ordering performed in the perturbation
analyses.

The asymptotic solutions, previously determined,
are validated ahead against numerical results. These
latter consist of: (i) numerical integrations of the non-
linear partial differential equation of motion Eq. (6),
discretized by finite-differences (see “Appendix C”),
and, (ii) numerical integrations of the bifurcation equa-
tions Eq. (26) and (21), for given initial conditions.

6.1 Linear analysis

In the case study, the first natural frequency isω = 2.12
rad/s (ω∗ = 8.77 in dimensionless form) and the cor-
responding galloping velocity (in the absence of turbu-
lence) is Ūc = 34.13 m/s (U∗

c = 0.7 in dimensionless
form). The influence of the turbulent component of the
wind is illustrated in the (quantitative) linear instability
domain in Fig. 3, where (a) a 3D-plot and (b–d) planar
contour plots are shown. Plots are extended beyond the
limits of validity of the theory, which requires û � Ū .
It is seen that the critical wind velocity decreases when
the turbulence increases and/or the detuning decreases.
For example, when û = 0.15 and σ = 0.02, it is
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Fig. 3 Linear instability
domain: a 3D
representation; contour
plots in the planes: b

(
û, Ū
)
,

when σ spans (0, 0.07) by
steps 0.014; c

(
σ, Ū
)
, when

û spans (0.05, 0.3) by steps
0.05; d

(
σ, û
)
, when Ū

spans the range (0.525, 0.7)
by steps 0.035

(a) (b)

(c) (d)

Ū = 0.64, i.e., Ūc is reduced of 7.7%; when û = 0.15
and σ = 0 it is Ū = 0.62, i.e., Ūc is reduced by 10.7%.

6.2 Limit cycle analysis in the resonant case

The nonlinear behavior of the system at the perfect
resonance (σ = 0) is first analyzed in the (Ū , û)-plane.
The relevant bifurcation analysis calls for determining
limit cycles and analyzing their stability. Amplitude
and phase of the limit cycles are defined by the explicit
expressions ai±, γi (i = 1, 2) in Eq. (35).

First, the existence domain of each solution branch
in Eq. (35) is studied in the parameter plane (see Fig.
4). In the same figure, the bifurcation locus, made by
two generatrices of the cone, are marked in red. The
plot displays the existence of a complex scenario, in
which from zero to four limit cycles coexist (the cir-

cled numbers denote the number of solutions in each
region). To detect the stability of the periodic solutions,
the sign of the corresponding eigenvalues J11 and J22
of the Jacobian matrix Eq. (36) is evaluated: They are
found to be both negative only when evaluated at the
(a2+, γ2) limit cycle, which is therefore the unique sta-
ble bifurcated branch.

Planar bifurcation diagrams are built-up and shown
in Figs. 5 and 6, namely: (i) a versus Ū , for selected
values of û (ticks I, II in Fig. 4), and, (ii) a versus û,
for selected values of Ū (ticks III to VI in Fig. 4).

The
(
a, Ū
)
diagrams are commented first. In case (I)

there exist three families of limit cycles, all branching
from the trivial path. Two of them are close to the gal-
loping curve (û = 0) (one on the left, the other on the
right), generated, when Ū is increased, at entering and
coming out the cone of Fig. 3. A third family bifurcates
from Ū = 0, at which the theory loses validity; how-
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Fig. 4 Existence domains, according to the wind parameters
(Ū ,û), of:a1+ (blue region),a1− (gray region),a2+ (black region)
and a2− (pink region). The straight red lines are the bifurcation
loci. The circled numbers indicate the number of solutions coex-
isting in the same region. (Color figure online)

ever, the existence of this branch has been confirmed by
numerical results, as it will be discussed later. The dan-
gerous phenomenon of hard loss of stability, already
manifesting in absence of turbulence, is observed. It
is generated by an (unstable) subcritical bifurcation,
followed by a regain of stability, which entails a finite
jump of the amplitude, just passed the critical velocity.
In the numerical example, this amplitude is about 1%
of the length (i.e., double of the cross-section height).
Moreover, the existence of a stable portion of the low-
est branch, creates a potentially dangerous competitive
attractor at high amplitude, although existing in a very
narrow range of the velocity (0.25, 0.26). In case (II),
in which the turbulence is higher, the scenario changes,
since the stable and unstable portions of the two low-
est curves weld together, the highest remaining undis-
turbed. Here, once the trivial path loses stability, the
system jumps to an even higher-amplitude limit cycle,
equal to about 1.5% of the length. The dangerous effect
of the turbulence is thus highlighted.

When the bifurcation diagrams
(
a, û
)
are plotted,

Fig. 6 is obtained. In all cases, just one family of
limit cycles exists, generated, for û increasing, at the
(unique) crossing of the cone. When Ū < Ūc (cases
(III) and (IV)), a hard loss of stability is observed.How-
ever, in case (III), in which Ū is far from the galloping
value, the stable branch fails to overlap the sub-critical
region. This aspect could be interpreted as due to the

Fig. 5 Bifurcation diagrams. Steady amplitude of the limit cycle
versus the steady wind velocity, for assigned turbulence ampli-
tudes: (I) û = 0.1; (II) û = 0.2. Blue, gray, black and pink lines
refer to the non-trivial solutions a1+, a1−, a2+, a2− , respectively.
The thin green curve is the bifurcation diagram when û = 0; the
green markers are numerical results. (Color figure online)

Fig. 6 Bifurcation diagrams. Steady amplitude of the limit cycle
versus the turbulence amplitude for assigned steady wind veloc-
ity: (III) Ū = 0.52; (IV) Ū = 0.59; (V) Ū = Ūc = 0.7; (VI)
Ū = 0.8. Blue, gray, black and pink lines refer to the non-trivial
solutions a1+, a1−, a2+, a2−, respectively; the green markers are
numerical results. (Color figure online)

prevailing influence of the parametric excitation with
respect the galloping phenomenon. In contrast, in case
(IV), the stable branch extends on a small portion of the
super-critical region. When Ū ≥ Ūc (cases (V) e (VI)),
the trivial solution is unstable, so that motion stabilizes
on limit cycles of great amplitude,which increaseswith
the turbulence.
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To sketch the evolution of the system in presence of
one or more attractors, the transients asymptotic solu-
tions, obtained by direct numerical integrations of the
bifurcation equation (26), are investigated in the state-
space at varying of the initial conditions. By referring
to the bifurcation diagram in Fig. 5I, the (a, γ ) trajec-
tories are shown in Fig. 7 for the steadywind velocities:
(a) Ū = 0.5, at which two stable steady solutions co-
exist; (b) Ū = 0.84, at which only one stable steady
solution exists. It is seen, in Fig. 7a, that trajectories
originating at low amplitudes (i.e., below that of the
unstable solution) are attracted by the trivial solution,
irrespectively of γ ; in contrast, trajectories originating
at higher amplitudes can be attracted by one of the two
stable solutions, according to the initial gamma. In Fig.
7b it appears that there exist a trajectory leading to the
stable solutionwhich attracts all the surrounding orbits.
Finally, the steady-state and transients asymptotic solu-
tions, are validated against exact finite-difference solu-
tions of the partial differential equations (6). In partic-
ular, for given initial conditions (a = 0.01, γ = 0.05
in Fig. 7b), the exact response and the asymptotic a (t)
time-histories are compared in Fig. 7c. After a transient
has been exhausted, the motion stabilizes on a limit
cycle of amplitude a, depending on the wind param-
eters. When the limit cycle amplitudes are extracted
by the recorded responses, relevant to different wind
parameters, the (green) bullets reported in Figs. 5I and
6IV are found. In all cases, the agreement between
exact and asymptotic solutions is excellent.

6.3 Limit cycle analysis in the quasi-resonant case

The nonlinear periodic motions in the quasi-resonant
case are analyzed. Differently from the resonant case,
explicit forms of amplitude and phase of the limit
cycles are not available, so that numerical solutions
are obtained. The same values of the turbulence, û =
0.1, 0.2, already considered in Fig. 5a, b, are consid-
ered in Figs. 8 and 9, respectively. In each of them,
three different values of detuning σ have been consid-
ered, such that the

(
û, σ
)
point in the parameter space

is (a) inside the regionRP , (b) at the interface between
RP and RQ , (c) inside the region RQ . For compari-
son, in addition to the galloping curve (thin green line),
the curves relevant to σ = 0 (thin red lines) have also
been reported. At the bottom of the figures, the phases
are plotted. Referring to Fig. 8a, it is seen that, in the

periodic region RP , the limit cycle are only slightly
affected by the small detuning. In contrast, when the
detuning is large (Fig. 8b, c), due to the disappearance
of the flip bifurcation points B2, B3 from the trivial
path, limit cycles not crossing this path arise, gener-
ated by welding of the former curves, which, however,
leaves almost unaltered their stable parts. Concerning
the phase, it appears that the detuning alters the con-
stant values γ1,2 = 0, π of the perfect resonance, so
that the phase changes with the parameter. The phases,
as the amplitudes, show a welding mechanism. A very
similar behavior is exhibited in Fig. 9.

Some bifurcation diagrams, plotting the steady
amplitude and phase of the limit cycle versus the turbu-
lence amplitude û are shown in Fig. 10 for an assigned
detuning σ = 0.05 and steady wind velocity: (a)
Ū = 0.85Ūc; (b) Ū = Ūc; (c) Ū = 1.15Ūc. A com-
parison between quasi-resonant (black lines) and reso-
nant (thin red lines) cases is made. It is observed, with
respect to the resonant case, that the detuning rounds
the cusps of the amplitude bifurcation diagrams, but
does not involve qualitative changes. It mainly modi-
fies the unstable branches of the bifurcation diagrams,
pushing them forward.

The plots of the steady amplitude and phase of
the limit cycle versus the detuning parameter σ are
shown in Fig. 11 for an assigned turbulence amplitude
û = 0.1 and steady wind velocity: (a) Ū = 0.85Ūc;
(b) Ū = Ūc; (c) Ū = 1.15Ūc. In these bifurcation dia-
grams it emerges that the detuning strongly influences
the amplitude and phase of the limit cycles. In partic-
ular, there exist two closed curves (for amplitudes and
phases) in the subcritical range and just one curve in the
supercritical range. This circumstance proves the exis-
tence of a tubular surface in the

(
Ū , σ, a

)
-space, emerg-

ing from the plane of the trivial solution (a = 0), whose
transverse and longitudinal sections are the bifurcation
diagrams in Figs. 8, 9 and 11.

The asymptotic solutions are validated against numer-
ical results: green bullets are superimposed to the
asymptotic bifurcation diagrams in Figs. 8c, 9c, 10c
and 11c. The exact results are found to be in excellent
accordance with the analytical predictions.

6.4 Torus analysis

The nonlinear quasi-periodicmotions, occurring on tori
of the state-space, are studied. These solutions are gen-
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(a) (b) (c)

Fig. 7 Trajectories in the state space for different initial con-
ditions (black markers) and for the steady wind velocities: a
Ū = 0.5; b Ū = 0.84; unstable and stable steady solutions are
denoted by red and green markers, respectively. c Comparison

between exact response (green line) and asymptotic a(t) (black
line) time histories. Turbulent wind parameters σ = 0, û = 0.1.
(Color figure online)

Fig. 8 Bifurcation
diagrams: steady amplitude
and phase of the limit cycle
versus the steady wind
velocity for turbulence
amplitude û = 0.1 and
assigned values of detuning:
a σ = 0.016, such that(
û, σ
) ∈ RP ; b

σ = σM = 0.019, such that(
û, σ
)
is at the interface; c

σ = 0.025 such that(
û, σ
) ∈ RQ . Analytical

quasi-resonant (black lines),
resonant (thin red lines),
galloping (thin green lines);
the green markers are exact
results. (Color figure online)

(a) (b) (c)

erated byNeimark–Sacker bifurcations, at Ū = Ūc and
splitting parameters in theRQ region. The study is car-
ried out, both numerically (via integration of the bifur-
cation equations (21)), and asymptotically, as described
in Sect. 5.2. Since the bifurcation is of codimension-
1, the bifurcation diagram in Fig. 12a is sufficient to
explain the phenomenon. Here, in addition to the quasi-
periodic solution (exact and asymptotic), represented
via the interval [amin, amax], also the periodic solutions
are plotted. At Ū = Ūc, a torus bifurcates from the triv-
ial solution. It is of subcritical type, andmanifests again
the hard loss of stability phenomenon. After regain-
ing stability, a collision of the torus with a limit cycle
occurs, leading to the disappearance of the torus. Exact
results (green segments and green bullets) clearly show

the stable part of both torus and limit cycle branches.
The asymptotic solution displays the qualitative mech-
anism.

The torus branch plotted in Fig. 12a is just that cor-
responding to a

(
û, σ
)
pair; if this latter is changed,

other branches of similar type are found. If a cross-
section at Ū = Ūc of all these curves is made, together
with σ = const or û = const, the plots in Fig. 12b, c
are obtained. They, in addition to the collision already
described, show the existence of stable tori external to
the limit cycle tube (see Fig. 12c).

The transients asymptotic solutions, drawn by the
bifurcation equation (39) through direct numerical inte-
gration, are investigated in the (X,Y ) state space, at
varying of the initial conditions. Although the motion
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Fig. 9 Bifurcation
diagrams: steady amplitude
and phase of the limit cycle
versus the steady wind
velocity for turbulence
amplitude û = 0.2 and
assigned values of detuning:
(a) σ = 0.03, such that(
û, σ
) ∈ RP ; (b)

σ = σM = 0.038 , such that(
û, σ
)
is at the interface; (c)

σ = 0.05 such that(
û, σ
) ∈ RQ . Analytical

quasi-resonant (black lines),
resonant (thin red lines),
galloping (thin green lines);
the green markers are exact
results. (Color figure online)

(a) (b) (c)

Fig. 10 Bifurcation
diagrams: steady amplitude
and phase of the limit cycle
versus the turbulence
amplitude for σ = 0.05 and
assigned values of steady
wind velocity: a
Ū = 0.85Ūc; b Ū = Ūc; c
Ū = 1.15Ūc. Analytical
quasi-resonant (black lines),
resonant (thin red lines); the
green markers are exact
results. (Color figure online)

(a) (b) (c)

essentially occurs in the one-dimensional space r(t),
as the first of numbered Eq. (39) proves, the two-
dimensional representation adopted here is more clear,
since it allows distinguishing closed orbits from equi-
libria. In particular, the periodic (stable and unstable)
solutions are represented by inclined ellipsis, whose
axis lengths are the maximum and minimum value of
the amplitude, according Eq. (45). By referring to the
bifurcation diagram in Fig. 12a, the (X,Y ) trajectories
are shown in Fig. 13 for the steady wind velocities: (a)

Ū = 0.59, at which two periodic stable solutions co-
exist; (b) Ū = 0.75, at which only one periodic stable
solution exists. Figure 13a shows that, when the ini-
tial conditions are inside the unstable closed orbit, the
motion is attracted by the trivial solution. In contrast,
when they are external to the unstable orbit, the trajec-
tories are attracted by the stable orbit. In Fig. 13b, it
appears that all the trajectories dye on the stable orbit.

Moreover, concerning the asymptotic solution,when
compared with the exact one, it is observed that: (i) it
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Fig. 11 Bifurcation
diagrams: steady amplitude
and phase of the limit cycle
versus the detuning
parameter for a turbulence
amplitude û = 0.1 and
assigned steady wind
velocity: a Ū = 0.85Ūc; b
Ū = Ūc; c Ū = 1.15Ūc.
Analytical (solid lines) and
exact (green point bullets)
results. (Color figure online)

(a) (b) (c)

(a) (b) (c)

Fig. 12 Bifurcation diagrams: (a) a versus Ū when û = 0.1 and
σ = 0.05; (b) a versus û when Ū = Ūc and σ = 0.055; (c)
a versus σ when Ū = Ūc and û = 0.1. Exact (green markers)

and asymptotic (black lines) periodic solutions. Exact (green seg-
ments) and asymptotic (gray regions) quasi-periodic solutions.
(Color figure online)

(a) (b)

Fig. 13 Trajectories in the state space for different initial con-
ditions (black markers) and for the steady wind velocities: a
Ū = 0.59; b Ū = 0.75. Stable and unstable periodic solutions
are represented by green and red ellipsis, respectively. Turbulent
wind parameters σ = 0, û = 0.1. (Color figure online)

captures the qualitative trend, but it is not very accu-
rate for steady wind velocities far from the galloping
value; (ii) it is unable to describe the interaction with
limit cycles (as a matter of fact, it exists after the colli-
sion). Item (i) clearly appears in Fig. 14, where a com-
parison between the time-histories of the exact (green
lines) and analytical (black lines) amplitudes X,Y, a
are shown for given X = 0, Y=0.0025 initial condi-
tions, represented in Fig. 13a. The rough approxima-
tion of the asymptotic solution is mainly due to the fact
it has been limited to the first-order. It is guessed that
pushing forward the perturbation expansion one step
further would give better results.With reference to item
(ii), the exact and asymptotic (Eq. (43)) slow frequency
�∗ is plotted in Fig. 15 versus the wind parameters.
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Fig. 14 Time histories of: a
X ; b Y ; c a. Comparison
between exact (green lines)
and asymptotic (black lines)
results. Wind parameters
σ = 0.05, Ū = 0.72,
û = 0.1. (Color figure
online)

(a) (b) (c)

Fig. 15 Modulating
frequency �∗ versus: a Ū
for û = 0.1 and σ = 0.05; b
û for Ū = Ūc and
σ = 0.055; c σ for Ū = Ūc
and û = 0.1. Exact (green
point bullets) versus
asymptotic (gray lines)
results. (Color figure online)

(a) (b) (c)

It appears that, although an ordering violation occurs
in the perturbation scheme, which leads the frequency
�∗ to vanish, the asymptotic solutions in Fig. 15b, c,
capture with reasonably accuracy the zero-frequency
occurrence, denoting the collision of torus and limit -
cycle. Of course, negative frequencies, beyond the col-
lision, have no meaning. In conclusion, even a low-
order perturbation solution, as expected, gives useful
information.

7 Conclusions

The aeroelastic stability of a slender prismatic visco-
elastic structure under turbulent wind flow has been
analyzed by a one-D.O.F. dynamical system, drawn by
aGalerkin projection of the continuousmodel. Aerody-
namic forces have been evaluated via the quasi-static
theory. The unsteady wind has been split in a steady
part and in a fluctuating part, assumed harmonic, of
frequency close to the double of the fundamental fre-
quency of the structure. The steady part is responsible
for galloping; the harmonic part for principal paramet-
ric excitation. The two bifurcationmechanisms interact
in the nonlinear field. The multiple scale method has
been applied to find bifurcation equations. These have
been solved for analyzing linear stability, limit cycles
(periodic motions) and tori (quasi-periodic motions),
bifurcating from the trivial path. The analytical solu-

tions have been validated against numerical integration
of the finite-difference discretized equations. The fol-
lowing main results have been found.

1. The parameter space is made of two regions: In
each of them, periodic and quasi-periodic solu-
tions bifurcate from the equilibrium. In the peri-
odic region, the parametric excitation mechanism
prevails over galloping. Here, however, the steady
wind influences the parametric excitation instabil-
ity domain, since it modifies the resultant (struc-
tural plus aerodynamic) damping. The higher the
wind velocity, the wider the instability domain.
On the other side, turbulence reduces the gallop-
ing velocity of the steady wind case. In the quasi-
periodic region, the galloping mechanism prevails
over parametric excitation. However, the turbulent
component changes the Hopf bifurcation of the
autonomous system into a Neimark–Sacker bifur-
cation for the non-autonomous system, but it does
not affect the critical velocity.

2. In the perfect resonant case, there are several limit
cycle branches. They are multi-valued, and exhibit
the hard-loss of stability phenomenon. Just one
branch is stable. When a detuning is introduced,
either itweakly affects the resonant solutions (small
detuning), or it dramatically changes them (suf-
ficiently large detuning), explaining as unstable
bifurcated paths merge and move away from the
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trivial path. The agreement between exact and
asymptotic periodic solutions is excellent.

3. Torus branches bifurcate from the trivial path. They
alsomanifest the hard loss of stability phenomenon.
After having regained stability, they collide with a
limit cycle and disappear.Meantime, their slow fre-
quency tends to zero. There exist, however, regions
of the parameter space where stable quasi-periodic
motion take place.

4. A first-order asymptotic solution for quasi-periodic
motions has been built-up. It qualitatively captures
the features of the numerical solutions, although is
not very accurate at high steadywind velocities. On
the other hand, it gives a satisfactory estimate of the
collision point, at which the slow frequency goes
to zero.
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Appendix A: Illustrative example

A narrow pipeline, box-girder suspension bridge, is
considered as an illustrative example of the theory
developed. Suchkind of industrial bridges is commonly
adopted in the world to overcome ground depressions
(or rivers) in constructing lines for liquid and gas trans-
portation. Narrowness of bridge assures validity of the
the aerodynamic quasi-static theory, since the time a
fluid particle takes to cross the bridge is small with
respect the natural period of the structure. The box-
girder hypothesis also entails that, for sufficiently long

bridges, the torsional natural frequency is much higher
than the flexural frequency, this circumstance prevent-
ing flutter (for which a coalescence between the two
frequencies is requested), and allowing considerations
of transverse vibrations only (galloping).

7.1 Background

A standard, single-span, pipeline suspension bridge is
considered, consisting of a pair of identical parallel
cables, a stiffening box-girder, equispaced hangers and
two supporting towers (Fig. 16).Here, the classical con-
tinuum model of suspension bridge is adopted, origi-
nally derived by Melan in 1906 [53], revised by Bleich
et al. in 1950 [54] for in-plane linear vibrations anal-
ysis, and recently re-examined by Luco and Turmo in
2010 [55]. Moreover, the Irvine’s theory [56] for tor-
sional vibrations of box-girder suspension bridges is
used, aimed to investigate possible dynamic coupling,
triggered by aeroelastic forces, between flexural and
torsional behavior. According to these works, the stiff-
ening girder is modeled as an Euler-Bernoulli beam;
the vertical hangers are assumed to be inextensible and
massless and are uniformly distributed along the span
(i.e., they work as an inextensible and shear-flexible
curtain); consequently, cable and beam undergo the
same vertical displacement field v (s, t); the horizontal
displacements of the cable are free, not being restrained
by the curtain; the towers are assumed of negligible
flexibility, so that the cables arefixed at the ends; out-of-
plane displacements are ignored, but twist is accounted
for; any structural (geometrical and material) nonlin-
earities are ignored.

According to the Irvine’s theory of shallow cables
[57], the equations of motion of a single cable read:s

T̄0v
′′ + kT̄d − m̄cv̈ + p̄c − r̄ = 0

T̄d + Ec Āc

l
k

l∫
0

v ds = 0
(46)

Here: a dash denotes spatial-differentiation, a dot time-
differentiation and an overbar a quantity related to a
single cable of the pair; T̄0 is the pretension, k :=
w̄

T̄0
the curvature under self-weight w̄ (including half

the weight of the deck), T̄d the dynamic tension (all
assumed constant in space) and m̄c is the cable mass
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Fig. 16 Single-span
suspension bridge model: a
longitudinal view (cable
denotes the pair of the
individual cables); b
cross-section. (Color figure
online)

(a) (b)

per unit length; Ec Āc is the axial stiffness and l the
length, confused with the chord; finally p̄c are external
forces and r̄ distributed reactions exerted by the hangers
(positive of traction). The first of numbered Equation
(46) expresses the balance among incremental forces
(including inertia), while the second of numbered Eq.
(46) is a compatibility condition, descending from the
static condensation of the horizontal displacements.

The equations of motion of the box girder, ignoring
non-uniform torsion effects, are:

Eb Ib v′′′′ + mbv̈ − pb − 2r̄ = 0

Gb Jb θ ′′ − IGbθ̈ + cb − r̄ b = 0
(47)

where: Eb Ib is the bending stiffness, Gb Jb the Bredt
torsional stiffness, mb the mass per unit length of the
beam, IGb the centroidal mass inertia moment of the
box, pb the external vertical force, cb the external tor-
sional couple per unit length.

By eliminating the reactive force r̄ between the first
of numbered Eqs. (46) and (47), and appending bound-
ary conditions, the following equations for the planar
motion are obtained:

Eb Ibv
′′′′ − T0v

′′ + Ec Ac
k2

l

l∫
0

vds + mv̈ − p = 0

v (0, t) = 0, Eb Ibv
′′ (0, t) = 0

v (l, t) = 0, Eb Ibv
′′ (l, t) = 0

(48)

wherem := mb+2m̄c, p := pb+2 p̄c are the totalmass
and forces, respectively, and where unbarred quanti-
ties refer to the pair of cables (e.g., T0 = 2T̄0 and
Ec Ac = 2Ec Āc). By proceeding in the same way for
the second of numbered Eqs. (46) and (47), and enforc-

ing compatibility between the cross section and the

cables (i.e., by letting v = −b

2
θ at the left cable), the

equations ruling the twist motion are found:

GJ θ ′′ − Ec Ac

l
k2
(
b

2

)2 l∫
0

θ ds − IG θ̈ + cb = 0

θ (0, t) = 0, θ (l, t) = 0

(49)

where GJ := Gb Jb + b2

4
T0 and IG := IGb + b2

4
mc

are the total torsional stiffness and inertia moment of
the bridge, respectively.

When undamped free oscillations are addressed
(p = cb = 0), then v (s, t) = φ (s) exp

(
iω f t

)
,

θ (s, t) = ψ (s) exp (iωt t), with ω f , ωt the natu-
ral flexural and torsional frequency of the bridge. The
eigenpairs

(
φ (s) , ω f

)
and (ψ (s) , ωt ) satisfy the fol-

lowing boundary value problems:

Eb Ibφ
′′′′ − T0φ

′′ + Ec Ac
k2

l

l∫
0

φ ds − mω2
f φ = 0

φ (0) = 0, φ′′ (0) = 0

φ (l) = 0, φ′′ (l) = 0

(50)

and:

GJ ψ ′′ − Ec Ac
l

k2
(
b

2

)2 l∫
0

ψ ds + IGω2
t ψ = 0

ψ (0) = 0, ψ (l) = 0

(51)

123



Nonlinear interaction between self- and parametrically excited 97

When antisymmetric deflections occur, the integral
terms (accounting for dynamic stress) disappear, so
that:

φ = sin
( 2nπs

l

)
, ω f = 2πn

l

√
T0
m

(
4π2n2�2 + 1

)
n =, 1, 2, . . .

ψ = sin
( 2nπs

l

)
, ωt = 2πn

l

√
GJ

IG
n =, 1, 2, . . . (52)

where the dimensionless parameter �2 is defined in the
later Eq. (55). For symmetricmodes, due to the nonzero
dynamic tension contribution, no closed form solutions
exist, but frequencies must be found by solving the
following transcendent equations:

β1 f β2 f

(
β2
1 f + β2

2 f

) (
Λ2 − ω∗2

f

)
2Λ2

= β1 f
3 tanh

(
β2 f

2

)
+ β2 f

3 tan

(
β1 f

2

)

tan

(
βt

2

)
=
(

βt

2

)
− 4
(
1 + α2

)
μ2

(
βt

2

)3
(53)

In Eq. (53), ω∗
f = ω f /ωr is the nondimensional flexu-

ral frequency (with ωr the reference frequency defined
in Eq. (8) and Tr = T0), β1 f , β2 f , βt are dimen-
sionless frequency-dependent wave-numbers, defined
as follows:

β1 f :=

√√√√−1 +
√
1 + 4�2ω∗2

f

2�2 ,

β2 f :=

√√√√1 +
√
1 + 4�2ω∗2

f

2�2 , βt := l

√
IG
GJ

ωt (54)

and the following dimensionless parameters are intro-
duced:

�2 := Eb Ib
l2T0

, Λ2 := (kl)2
Ec Ac

T0
, α2 := Gb Jb

T0
( b
2

)2 ,

μ2 := (kl)2
Ec Ac

T0
(55)

As a sample system, a pipeline suspension bridge
(already analyzed in [47], but only in vertical oscil-
lations) is considered, having the following geomet-
ric, elastic and inertial characteristics: (i) pair of steel
cables: length l = 195m, sag d = 19.5m, mass
mc = 177.6kg/m; accounting for themass of the beam,
T0 = (mc + mb)gl2/8d = 2.62 × 106 N; axial stiff-
ness Ec Ac = 4.75 × 109 N; (ii) steel girder: a ribbed

Table 1 First flexural and torsional natural frequencies of the
sample system (S symmetric, A antisymmetric). The unit is rad/s

ω f ωt

A 2.12 64.62

S 3.91 34.17

rectangular box cross-section, of dimension b = 2 m,
height D = 1 m, equivalent uniform thickness of 1cm,
flexural stiffness Eb Ib = 2.4×109 Nm2, torsional stiff-
ness Gb Jb = 2.1× 109 Nm2, mass mb = 917.86kg/m
(including fluids conveyed in the internal pipes), cen-
troidal inertia moment IGb = 346.25kgm. The first
symmetric and antisymmetric frequencies, for flexu-
ral and torsional modes are computed, according Eqs.
(52) and (53). The results are reported in Table 1. It
is concluded that, due to the large torsional-to-flexural
ratio, modes are well-separated, so that neither flutter,
nor flexural-torsional galloping can occur; therefore,
the theory developed before for cross-wind oscillations
can be applied to the example at hand.

7.2 Aero- and visco-elastic model

The Bleich model for vertical oscillations of the bridge
is enriched by introducing [47]: (i) linear visco-elastic
constitutive laws for cable and girder, ruled by the
Kelvin-Voigt law, (ii) external damping, (iii) aerody-
namic loads, according the quasi-steady theory. The
relevant equations of motion and boundary conditions
are:

Eb Ib (1 + ηb∂t ) v′′′′ − T0 (1 + ηc∂t ) v′′

+Ec Ac (1 + ηc∂t )
k2

l

l∫
0

vds + mv̈ + cev̇ − pa = 0

v (0, t) = 0, Eb Ib (1 + ηb∂t ) v′′ (0, t) = 0

v (l, t) = 0, Eb Ib (1 + ηb∂t ) v′′ (l, t) = 0 (56)

Here: ηb, ηc are internal viscous damping coefficients,
for the cable and girder, respectively; ce := ceb +cec is
an external damping coefficient, accounting for dissipa-
tion of both girder and cable in motionless air; pa (s, t)
are aerodynamic loads assumed to act on the girder
only, due to the higher out-of-plane stiffness of the
beamand to the smaller dimensions of the cable (which,
being of circular shape, is exclusively subjected to drag
forces); ∂t indicates time partial differentiation.
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Equations (56) are recast in the nondimensional
form Eq. (6), by defining:

L ∗
e

(
v∗) = �2∂4s v∗ − ∂2s v∗ + Λ2

l∫
0

v∗ds

L ∗
v

(
v̇∗) = �2η∗

b∂
4
s ∂tv

∗ − η∗
c∂

2
s ∂tv

∗

+Λ2η∗
c∂t

l∫
0

v∗ds

B∗
eH

(
v∗) =

(
v∗

�2∂2s v∗
)

H = A, B

B∗
vH

(
v̇∗) =

(
0

�2η∗
b∂

2
s ∂tv

∗
)

(57)

where η∗
b,c = ηb,cωr and Tr = T0 is taken. Here,

�2 is the girder-to-cable stiffness ratio and Λ2 is the
Irvine’s cable parameter, defined in Eq. (55); moreover,
η∗
b, η∗

b, c∗
e are nondimensional damping coefficients.

The dominant first antisymmetric natural mode
φ (s∗) = sin (2πs∗) is taken as trial function, with
the associated nondimensional frequency ω∗ = ω∗

f =
2π
√
4π2ρ2 + 1. By applying the Galerkin method via

Eq. (9), the coefficients (13) assume the following
expressions:

D0 := c∗
e + 16π4η∗

bρ
2 + 4π2η∗

c , D1 := b∗
1,

D3 := 3

4
b∗
3, D5 := 5

8
b∗
5 (58)

For the sample system described above, the follow-
ing further parameters are taken: ηb = 0.00027 s,
ceb = 55.88 Ns/m2, ηc = 0.000014 s, and cec = 6.29
Ns/m2, entailing a global damping ratio ξ = 1.5%;
aerodynamic dimensionless coefficients A1 = −3.47,
A3 = −490.25, A5 = 44744.21; air mass density
�a = 1.25 kg/m3. The corresponding nondimensional
parameters are: ρ2 = 0.023997, Λ2 = 1161.79, η∗

b =
0.0011, η∗

c = 0.000056, c∗
e = 0.223 and b∗

1 = −0.39,
b∗
3 = −54.54, b∗

5 = 4978.17. The nondimensional
frequency of the first antisymmetric natural mode is
ω∗ = 8.76; the nondimensional coefficients in Eq.
(58) are: D0 = 0.27, D1 = −0.39, D3 = −40.91,
D5 = 3111.36. Note that, although in long bridges the
cable stiffness is often predominant over that of the
girder, in the selected sample numerical system, the
two substructures really collaborate. As a proof of this,
the natural frequency shows that the contribution of the

girder, encompassed by the ρ2 parameter, is compara-
ble with that of the cable alone.

Appendix B: Torus asymptotic analysis

Periodic solutions of the bifurcation Eq. (21), arising
at a Neimark–Sacker bifurcation point, are sought for.
The following series expansions:

(
X
Y

)
=
(
X0

Y0

)
+ ε

(
X1

Y1

)
+ · · · (59)

are introduced; moreover, the distinguished bifurcation
parameter is split as Ū = Ūc+εΔU . Consistentlywith
the ordering adopted before for the bi coefficients (see
the “AppendixA”), a rescaling is performed for the new
coefficients: d1 → εd1, d3 → ε−1d3, d5 → ε−3d5.
By introducing the timescales t0 = t, t1 = εt , the
following perturbation equations at ε0 order are drawn:

∂0X0 − σY0
2

+ 1

2
d1û X0 = 0

∂0Y0 + σ X0

2
− 1

2
d1ûY0 = 0

(60)

which admit the periodic solution:

(
X0

Y0

)
= R (t1)

(
d1û − 2i�

σ

)
ei� t0 + c.c. (61)

With this solution, in order for the ε1-equations (not
shown here) admit not diverging solutions, resonant
terms on the right hand member, of type qe±i� t0 , must
be made orthogonal to the left eigenvectors y±, i.e.,
ȳT±q = 0. From this condition, by coming back to
the true time and unrescaled quantities, the bifurcation
equation is drawn:

Ṙ = R
(
d1ΔŪ

)+ (c3r + ic3i ) R
2 R̄

+ (c5r + ic5i ) R
3 R̄2 (62)

where the following real coefficients, depending on the
splitting parameters, have been introduced:

c3r := 4d3
Ūc

σ 2, c3i := d3d1
Ū 2
c

σ 2û2

�
,

c5r := 16d5
Ū 3
c

σ 4

(
1 + d21 û

2

2σ 2

)
,
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c5i := 12d5d1
Ū 4
c

σ 4û2

�

(
1 + d21 û

2

4σ 2

)
(63)

Finally, by separating the real and imaginary parts, Eq.
(39) are recovered.

Appendix C: Finite difference analysis

Aimed tovalidate asymptotic results, a finite-dimensional
model of bridge is formulated. The finite-difference
method is applied to transform the partial integro-
differential equations (6), in which the operators are
defined in Eq. (57), into a set of ordinary differential
equations (67), to be numerically integrated for given
initial conditions.

The [0, 1] space domain is divided in N > 2 equi-
spaced sub-intervals of amplitude h := 1/N . The fol-
lowing notation is adopted:

s j := j h, j = −1, . . . , N + 1,

v j := v
(
s j , t
)
, j = −1, . . . , N + 1.

(64)

in which two external nodes, j = −1, N+1, have been
introduced.

The space derivatives are expressed via the central
finite differences:

f ′′′′ = f j−2 − 4 f j−1 + 6 f j − 4 f j+1 + f j+2

h4

f ′′ = f j+1 − 2 f j + f j−1

h2

(65)

and the integral term via the trapezoidal rule:

1∫
0

f dx = h
N−1∑
j=1

f j (66)

in which the boundary conditions f0, fN = 0 have
been accounted for. The field equation in (6) accord-
ingly becomes:

v̈ j + �2 v j−2 − 4v j−1 + 6v j − 4v j+1 + v j+2

h4

+�2ηb
v̇ j−2 − 4v̇ j−1 + 6v̇ j − 4v̇ j+1 + v̇ j+2

h4

−v j+1 − 2 v j + v j−1

h2
− v̇ j+1 − 2 v̇ j + v̇ j−1

h2
ηc

+Λ2h
N−1∑
j=1

v j + Λ2ηch
N−1∑
j=1

v̇ j

+(ce + b1Ū
)
v̇ j+b3

Ū
v̇3j + b5

Ū 3
v̇5j +

(
b1v̇ j − b3

Ū 2
v̇3j

−3b5
Ū 4

v̇5j

)
û cosΩt = 0 j = 1, . . . , N − 1

(67)

and the boundary equations read:

v0 = 0

�2 v1 − 2 v0 + v−1

h2
+ v̇1 − 2 v̇0 + v̇−1

h2
ηb�

2 = 0

vN = 0

�2 vN+1 − 2 vN + vN−1

h2

+ v̇N+1 − 2 v̇N + v̇N−1

h2
ηb�

2 = 0 (68)

Equations (67) and (68) are a set of N + 3 ordinary
differential and algebraic equations for the unknown
nodal displacements v j (t), j = −1, . . . , N + 1.
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32. Szabelski, K., Warmiński, J.: Parametric self-excited non-
linear system vibrations analysis with inertial excitation. Int.
J. Non-linear Mech. 30(2), 179–189 (1995)

33. Abdel-Rohman, M.: Effect of unsteady wind flow on gal-
loping of tall prismatic structures. Nonlinear Dyn. 26(3),
233–254 (2001)

34. El-Bassiouny, A.F.: Principal parametric resonances of non-
linear mechanical system with two-frequency and self-
excitations. Mech. Res. Commun. 32(3), 337–350 (2005)

35. Luongo, A., Zulli, D.: Parametric, external and self-
excitation of a tower under turbulent wind flow. J. Sound
Vib. 330(13), 3057–3069 (2011)

36. Zulli, D., Luongo, A.: Bifurcation and stability of a two-
tower system under wind-induced parametric, external and
self-excitation. J. Sound Vib. 331(2), 365–383 (2012)

37. Kirrou, I., Mokni, L., Belhaq, M.: On the quasiperiodic gal-
loping of awind-excited tower. J. SoundVib. 332(18), 4059–
4066 (2013)

38. Belhaq,M.,Kirrou, I.,Mokni, L.: Periodic and quasiperiodic
galloping of a wind-excited tower under external excitation.
Nonlinear Dyn. 74(3), 849–867 (2013)

39. Zulli, D., Di Egidio, A.: Galloping of internally resonant
towers subjected to turbulent wind. Contin. Mech. Thermo-
dyn. 27(4–5), 835–849 (2015)

40. Warminski, J.: Nonlinear dynamics of self-, parametric, and
externally excited oscillator with time delay: van der pol
versus rayleighmodels. NonlinearDyn. 99(1), 35–56 (2020)

41. Parkinson, G.V., Wawzonek, M.A.: Some considerations of
combined effects of galloping and vortex resonance. J.Wind
Eng. Ind. Aerodyn. 8(1–2), 135–143 (1981)

42. Mannini, C., Marra, A.M., Bartoli, G.: Viv-galloping insta-
bility of rectangular cylinders: review and new experiments.
J. Wind Eng. Ind. Aerodyn. 132, 109–124 (2014)

43. Mannini, C.,Marra, A.M., Bartoli, G.: Experimental investi-
gationonviv-galloping interactionof a rectangular 3:2 cylin-
der. Meccanica 50(3), 841–853 (2015)

44. Seyed-Aghazadeh, B., Carlson, D.W., Modarres-Sadeghi,
Y.: Vortex-induced vibration and galloping of prisms with
triangular cross-sections. J. Fluid Mech. 817, 590–618
(2017)

45. Sourav,K., Sen, S.: Transition of viv-onlymotion of a square
cylinder to combined viv and galloping at low reynolds num-
bers. Ocean Eng. 187, 106208 (2019)

46. Luongo, A., D’Annibale, F., Ferretti, M.: Hard loss of stabil-
ity of ziegler’s column with nonlinear damping. Meccanica
51(11), 2647–2663 (2016)

47. Di Nino, S., Luongo, A.: Nonlinear aeroelastic in-plane
behavior of suspension bridges under steady wind flow.
Appl. Sci. 10(5), 1689 (2020)

48. Nayfeh,A.H.: Introduction toPerturbationTechniques. John
Wiley and Sons, New Jersey (2011)

49. Luongo, A.: On the use of the multiple scale method in
solving ’difficult’ bifurcation problems. Math. Mech. Solids
22(5), 988–1004 (2017)

123



Nonlinear interaction between self- and parametrically excited 101

50. Luongo, A., Di Egidio, A., Paolone, A.: On the proper form
of the amplitudemodulation equations for resonant systems.
Nonlinear Dyn. 27(3), 237–254 (2002)

51. Luongo, A., Paolone, A., Egidio, A.D.: Sensitivities and
linear stability analysis around a double-zero eigenvalue.
AIAA J. 38(4), 702–710 (2000)

52. Belhaq, M., Houssni, M.: Quasi-periodic oscillations, chaos
and suppression of chaos in a nonlinear oscillator driven by
parametric and external excitations. Nonlinear Dyn. 18(1),
1–24 (1999)

53. Melan, J.: Theory of Arches and Suspension Bridges. Clark
Publishing Company, London (1913)

54. Bleich, F.: The Mathematical Theory of Vibration in Sus-
pension Bridges: A Contribution to the Work of the Advi-
sory Board on the Investigation of Suspension Bridges. US
Government Printing Office, Washington (1950)

55. Luco, J.E., Turmo, J.: Linear vertical vibrations of suspen-
sion bridges: a review of continuum models and some new
results. Soil Dyn. Earthq. Eng. 30(9), 769–781 (2010)

56. Irvine, M.: Torsional vibrations in boxgirder suspension
bridges. Earthq. Eng. Struct. Dyn. 3(2), 203–213 (1974)

57. Irvine, H.M., Caughey, T.K.: The linear theory of free vibra-
tions of a suspended cable. Proc. R. Soc. Lond. A Math.
Phys. Sci. 341(1626), 299–315 (1974)

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

123


	Nonlinear interaction between self- and parametrically excited wind-induced vibrations
	Abstract
	1 Introduction
	2 Aeroelastic model
	2.1 Aerodynamic model
	2.2 Single degree-of-freedom system

	3 Bifurcation equation
	3.1 Cartesian form
	3.2 Polar form

	4 Linear stability analysis
	5 Nonlinear analysis
	5.1 Limit cycles
	5.2 Tori

	6 Numerical results
	6.1 Linear analysis
	6.2 Limit cycle analysis in the resonant case
	6.3 Limit cycle analysis in the quasi-resonant case
	6.4 Torus analysis

	7 Conclusions
	Appendix A: Illustrative example
	7.1 Background
	7.2 Aero- and visco-elastic model

	Appendix B: Torus asymptotic analysis
	Appendix C: Finite difference analysis
	References




