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Abstract Nonlinear dynamics of a rotating flexible
slender beamwith embedded active elements is studied
in the paper. Mathematical model of the structure con-
siders possible moderate oscillations thus the motion
is governed by the extended Euler–Bernoulli model
that incorporates a nonlinear curvature and coupled
transversal–longitudinal deformations. TheHamilton’s
principle of least action is applied to derive a sys-
tem of nonlinear coupled partial differential equations
(PDEs) of motion. The embedded active elements are
used to control or reduce beam oscillations for various
dynamical conditions and rotational speed range. The
control inputs generated by active elements are rep-
resented in boundary conditions as non-homogenous
terms. Classical linear proportional (P) control and
nonlinear cubic (C) control as well as mixed (P − C)
control strategies with time delay are analyzed for
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vibration reduction. Dynamics of the complete sys-
tem with time delay is determined analytically solving
directly the PDEs by the multiple timescale method.
Natural and forced vibrations around the first and the
second mode resonances demonstrating hardening and
softening phenomena are studied. An impact of time
delay linear and nonlinear controlmethods on vibration
reduction for different angular speeds is presented.
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1 Introduction

Slender beam-like elements play an important role
in engineering and structural design. Typical applica-
tions might be cranes, aircraft wings, diving boards at
swimming pools, overhang structural elements of civil
engineering like masts or roof supports. When rotary
motion of the structure is considered further examples
might be wind turbines blades, helicopter blades, air-
craft propellers, etc.

Advances over the years in composite materials
technology as well as increasing demands particularly
from aeronautics and off-shore engineering have stim-
ulated the extensive use of light and flexible elements.
Predominantly, they are subjected to large elastic defor-
mations that affect the precision and stability of the
structure motion. Moreover, large deformations com-
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bined with low structural damping may lead to fatigue
damage and shorten the lifespan of the design. There-
fore, the attenuation of large vibrations observed in
highly flexible beam-like elements is a problem of pri-
mary importance.

Driven by practical needs as well as theoretical
challenges, efficient and accurate modeling of flexi-
ble beams dynamics and their control have received
great attention in the literature. Depending on complex-
ity, current compact beam theories can be divided into
three main groups: (a) un-shearable theory including
the classical Euler–Bernoulli one, (b) shear deformable
models— e.g., Timoshenko theory, the third-order
shear theory etc., and (c) three-dimensional beam the-
ories capturing different phenomena neglected by the
former two approaches. Typically, each of commonly
accepted theories can be formulated within linear or
nonlinear framework. Linear models are very useful
in a case of relatively stiff systems, performing small
oscillations. For thin slender flexible elements that
undergo large deformations, use of nonlinear theories
is much more favorable [32].

The dynamics of a rotating beam systemwithin non-
linear frameworkwas examined by several researchers.
Weidenhammer [44] studied rotating beams by adopt-
ing a (not-complete) nonlinear theory of Bernoulli–
Euler beams; the governing equations of motion were
derived applying Hamilton’s principle. The influential
work presenting a comprehensive nonlinear beam anal-
ysis was published by Crespo da Silva and Glynn in
[8,9]. The nonlinear-order three differential governing
equationswere derived byHamilton’smethod account-
ing for contributions resulting from nonlinear curva-
ture as well as nonlinear inertia. It was shown that both
these effectsmay had a significant influence on the non-
planar moderately large oscillations of the system. This
initial research was later enhanced to consider com-
plex deformations involving flexure along two prin-
cipal directions as well as torsion [7]. Later, author
extended his analytical model to a rotating beams case
with the main application to helicopter rotor blades
[10].

Hamdan and El-Sinawi in [16] studied the inexten-
sible nonlinear Euler–Bernoulli beam model account-
ing for relatively large planar deformations and exact
expression for the beamcurvature. Influenceof a setting
angle and other selected structural parameters on rotor
response characteristics for a prescribed hub torque
scenarios was discussed. It was shown that for a soft

base and a low preset angle unstable vibrations of the
rotor might have occur.

Fenili et al. [13] presented a nonlinear mathemat-
ical model of a flexible beam-like structure in slew-
ing motion. Authors used the method of multiple
timescales to find analytical solutions in selected pri-
mary and secondary resonance states. Recently, the
importance of nonlinear effects coming from the large
displacement oscillations observed in rotating inexten-
sible beams leading to rich dynamic behavior has been
presented by Thomas et al. in [38]. The performed
analysis demonstrated both softening or hardening fre-
quency response characteristics dependent on the reso-
nance order. Interestingly, the observed softening effect
originating from geometric nonlinearities prevailed the
centrifugal stiffening phenomenon.AlsoTian et al. [39]
presented a general formulation for nonlinear vibra-
tion analysis of rotating beams. The numerical solu-
tions demonstrated thatCoriolis effect could essentially
change dynamics of the hub–beam system in the case
of small hub radius, large beam slenderness, and high
angular velocity.

When considering structures made of composite
materials the kinematic relations become much more
complicated since geometrically originated couplings
are accompanied by strong directional properties of
the constituent material. Studies accounting for cou-
pling between flexural and longitudinal vibrationswere
published recently by Lenci and Rega [27] and next
by Babilio and Lenci [3,4]. Besides the mentioned
bending–axial couplings, authors took into account the
shear effect and imperfect boundary conditions. The
importance of the adopted definition of geometric cur-
vature was discussed by Lenci and his group in [24,26].
The proposed strict nonlinear shearable beam model
was solved analytically by attacking directly the non-
linear partial differential equations and the results were
verified by the Abaqus/CAE finite element analysis
[18,19]. The results showed softening versus harden-
ing dichotomy in the resonance curves and also strong
interactions between flexural and longitudinal (axial)
vibrations leading to internal resonances occurring for
specific combinations of beam to axial end spring
stiffness ratios. Analytical and numerical predictions
were accompanied by experimental studies on a slen-
der beam–spring system subject to kinematic excitation
in [20].

Widely reported large amplitudes observed in oscil-
lations of highly flexible beam-like elements motivated
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practicing engineers and scholars to extensively study
the methods of oscillations suppression and to improve
structural positioning accuracy. The fundamental idea
was the application of any control methods, that is
passive or active ones. Possibly the most promising
results can be obtained by closed-loop control strategy
achieved by the feedback of the system state recorded
by sensors to drive actuation forces/moments generated
by, e.g., piezoelectric devices [14].

With reference to large oscillations of the cantilever
beams the problem of structural control by means of
piezo sensor-actuator layers was studied by Rechdaoui
et al. in [36]. To mitigate vibrations the proportional
and time derivative potential feedback control was for-
mulated. It was shown by tuning the control parameters
and gains the nonlinear dynamic behavior of the struc-
ture could be actively suppressed. The problem of large
amplitude oscillations of beams and their control was
studied also by Nguyen et al. in [33] with reference
to marine risers represented by long tensioned Euler–
Bernoulli beam undergoing bending in two orthogonal
planes. Based on the set of equations, the boundary con-
troller applied at the top end of the riser was designed
using Lyapunov’s direct method. The proposed algo-
rithm was used to effectively stabilize the riser at its
equilibrium position. Similar problem was studied by
Do in [12]. The structure was modeled analytically
as extensible and shearable slender beam undergoing
large 3D translational and cross-section rotarymotions.
The control design and stability analysis were based on
two Lyapunov-type theorems developed for a class of
evolution systems in Hilbert space.

The control of complex flexural-torsional vibrations
of a rotating composite beam was studied also by co-
authors of this paper in [43]. It was proposed to use the
saturation control method to reduce vibrations of flex-
ible beam clamped to the hub that was excited by the
prescribed harmonic torque. Conducted tests showed
narrowing down the zones of effective suppression of
beam vibrations while increasing the rotating speed
of the structure. Other control methods exploited by
piezo actuator devices for beam oscillations suppress-
ing include LQR technique [5], LQG [30], P control
[28], PID control [35]. Further reading on beam vibra-
tions and various control laws can be found in a com-
prehensive book by He and Liu [17].

A significant effort and research works are also
focused on accounting for the effect of time delays as
present in all actual dynamical systems with system

control. Daqaq et al. [11] examined the effect of feed-
back delays on the nonlinear vibrations of a piezoelec-
tric actuated cantilever beam and analyzed the effect
of feedback delays on a blade when subjected to har-
monic base excitations. Alhazza et al. [1] investigated
the effect of time delays on the stability, amplitude
and frequency–response characteristics of a beam. The
authors found that even the small time delays could
completely altered the behavior and stability of the
parametrically excited beam and might lead to unex-
pected structural phenomena. Liu et al [29] studied
the piezoelectric based optimal delayed feedback con-
trol method when applied to large amplitude nonlin-
ear vibrations of a beam. The time-delayed feedback
control to reduce the nonlinear resonant vibration of a
piezoelectric elastic beam was studied also by Peng et
al. in [34]. Authors tested three different single-input
linear time-delayed feedback control methodologies,
namely displacement, velocity and acceleration time-
delayed feedback. It was shown the time-delayed feed-
back control could act as a vibration absorber at specific
values of time delay magnitude.

It is interesting to note the vast majority of papers
proposing the use of piezoelectric transducers for feed-
back structural control adopt the simplified mechan-
ical model of the piezoelectric active elements and
their mutual interaction with hosting structure. Most
of them capture just the phenomenological behavior of
the combined system involving functional material and
the hostmember. Thesemodels consider solely the con-
verse piezoelectric effect where the commanded actu-
ation strain is transferred as a shear force to the master
structure along the actuator–subsystem interface. This
force–since located off beam mid-line–generates the
control moment.

The discussed above new results obtained for non-
linear stationary beams, followed by the observed inter-
actions between transversal and longitudinal vibrations
and the dichotomy of softening and hardening response
behavior as well as the potential of feedback control
methods motivated authors of the present contribution
to a more detailed study of the problem under discus-
sion. In particular, the nonlinear phenomena observed
for the rotating inextensible beams [38,39] and pro-
vided conclusions suggested to analyze a more general
case of an extensible beam. As reported in the litera-
ture, the effect of longitudinal vibrations can be even
more important if the rotating beam carries a heavy
tip mass. A preliminary study of a rotating extensible
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beam model which takes into account transversal and
also longitudinal vibrations was presented in [41] and
then extended in [42]. In the current work, we con-
sider the configuration of the system corresponding to
an arbitrary preset angle of the beam and added tip
mass. We also modify definition of the beam curva-
ture adopted in the mathematical model, according to
the comments presented by Lenci in [25]. The model
studied in this paper considers an active structure with
embedded piezo-layers and a boundary control method
with time delay. On the basis of the proposed complete
active beam model we determine approximate solu-
tions on the basis of the multiple timescales method
applied directly to the partial differential equationswith
time delay and associated dynamic boundary condi-
tions.

Following the given above comments the rest of
this manuscript is organized as follows: In Sect. 2, the
dynamic nonlinear model of a highly flexible beam is
derived using the Hamilton’s principle and then solved
by the multiple timescales method in Sect. 2.2. Next,
identification of model parameters based on laboratory
experiment is presented (Sect. 3). Finally, results of
numerical simulations are presented in Sect. 4. The
paper is concluded by results discussion and final
remarks. “Appendix” contains listing of adopted shape
functions of the first- and second-order perturbation
solution.

2 Mathematical model of the rotor and extensible
beam

2.1 Derivation of governing equations

We consider a rotating hub–beam structure which
is carrying a tip mass mt as shown in Fig. 1. The
highly elastic isotropic and slender beam with span-
wise embedded piezo-layers is attached to the hub at
an arbitrary preset angle θ (Figs. 1b and 2b). In order to
describe motion of the structure, we introduce a fixed
(X0,Y0, Z0) coordinates system originated at the hub
centre C , a set of coordinates (X,Y, Z ≡ Z0) rotat-
ing with the hub and with the same origin, and a set
of local coordinates (x, y, z) fixed to the beam and ori-
ented along the symmetry axes of the undeformedblade
with the origin at clamping point 0.We assume the rota-
tion is performed about Z ≡ Z0 axis and it is described
by a temporary position angle ψ(T ).

The longitudinal and transversal displacements
u(x, T ) andv(x, T )of an elementary segment attributed
to point A, which is next moved to A′ position, are
defined in the rotating coordinate frame as presented in
Fig. 2a. Due to its high slenderness and low stiffness,
the beam can be deformed with large amplitudes. The
kinematics of the beam deformations at any arbitrary
time instant is shown in Fig. 2b where dx denotes the
initial length of an infinitesimal beam element, while
ds is its extended length. Moreover, we assume that the

(b)(a)

Sensor

controller
control signal

gain

C C

Fig. 1 Configuration of beam–hub structure with embedded PZT element with control subsystem (a), orientation of the preset angle θ

(b)
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(a)
(b)

Fig. 2 Top view on beam deformation plane xy (a), kinematics of infinitesimal beam element at arbitrary longitudinal position x (b)

beam is allowed to deform only in (x, y) plane because
of its high stiffness in the orthogonal direction z. For the
specific preset angle θ = 0, this plane would overlap
with the plane of rotation. Moreover, in the presented
analysis, twist of the beam is neglected leaving these
more general cases for future developments.

In its reference configuration, the beamhas length L ,
cross section A, second moment of inertia I , and mass
per unit length ρ1; finally the hub radius is denoted Rh

and its mass moment of inertia Jh.
Thekinematic relations in the extensible-unshearable

(Euler–Bernoulli) beam element are given as

cosϕ = 1 + u′
√

(1 + u′)2 + v′2 , tan ϕ = v′

1 + u′ ,

ϕ′ = v′′ + u′v′′ − v′u′′

(1 + u′)2 + v′2 , (1)

where (...)′ denote derivative with respect to spatial
coordinate ∂...

∂x , in the following notation
˙(...) describes

a time derivative ∂...
∂T .

Assuming the material to be uniform (the Young
modulus E is constant), the axial force N along the
deformed beam element is related to the axial stiffness
E A, and the bending moment M to the mechanical
curvature and bending stiffness E I as

N = E Aê, M = E Iκm, (2)

where elongation due to extension of the beam’s mid-
plane ê and mechanical curvature κm are given as

ê =
√

(1 + u′)2 + v′2 − 1, κm = ϕ′. (3)

Assuming the linear elastic behavior of the mate-
rial and given above kinematic relations, the potential
energy of the beam element is

Ṽ = 1

2

∫ L

0

(
E Aê2 + E Iϕ′2) dx . (4)

The kinetic energy of the beam-hub system has three
components, which arise from motion of the hub T̃h,
beam T̃b and tip mass T̃t:

T̃ = T̃h +
∫ L

0
T̃bdx + T̃t, (5)

where

T̃h = 1

2
Jhψ̇

2,

T̃b = 1

2
ρ1

{
u̇2 + v̇2 + 2

[
(Rh + x + u)v̇ − vu̇

]
ψ̇ cos θ

+ [
(Rh + x + u)2 + v2 cos2 θ

]
ψ̇2
}
,

T̃t = 1

2
mt

{
u̇2t + v̇2t + 2

[
(Rh + L + ut)v̇t − vt u̇t

]
ψ̇ cos θ

+ [
(Rh + L + ut)

2 + v2t cos
2 θ
]
ψ̇2
}
.

(6)
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The equations of motion are derived using the
Hamilton’s principle of the least action

∫ T1

T0

(
δT̃ − δṼ + δ D̃ − δW̃

)
dT = 0, (7)

where D̃ and W̃ are works done by dissipative and
nonconservative forces in the system, respectively

D̃ = 1

2
cuu̇

2 + 1

2
cv

[
v̇2 + 2(Rh + x)ψ̇ v̇ cos θ

]
,

W̃ = fv(x, T )v + fu(x, T )u, (8)

Terms cu , cv are two independent linear viscous damp-
ing coefficients in longitudinal (x) and transverse (y)
directions of the beam, respectively. Note that the y-
direction damping (second component of Eq. (8)1) con-
tains terms responsible for beams oscillation about xz
plane and slewing motion of the rotor. External excita-
tion applied to the structure can be represented by any
time-dependent force functions fv(x, T ) and fu(x, T ).

Variations of kinetic and potential energies, dissipa-
tion, and external works are given by

δṼ = ∂ Ṽ

∂u′ δu
′ + ∂ Ṽ

∂v′ δv
′ + ∂ Ṽ

∂u′′ δu
′′ + ∂ Ṽ

∂v′′ δv
′′,

δ D̃ = ∂ D̃

∂ u̇
δu̇ + ∂ D̃

∂v̇
δv̇,

δT̃ = ∂ T̃

∂u
δu + ∂ T̃

∂v
δv + ∂ T̃

∂ u̇
δu̇ + ∂ T̃

∂v̇
δv̇,

δW̃ = ∂W̃

∂u
δu + ∂W̃

∂v
δv.

(9)

Substituting Eqs. (1)–(6) and (8)–(9) into Eq. (7),
then integrating by parts, we get a set of partial differ-
ential equations ofmotion and corresponding boundary
conditions. Due to computational difficulties, we limit
ourselves to the specific case of constant hub speed
ψ̇(T ) = const. Moreover, since the problem will be
solved by themultiple timescalesmethod up to the third
order of approximation, the formulas (1) and (3) are
expanded in Taylor series up to fourth order of geomet-
ric nonlinearities. After some mathematical manipula-
tions, one arrives at the system of two nonlinear partial
differential equations governing the longitudinal and
transverse motion:

ρ1
[
ü − (Rh + x)ψ̇2 − 2ψ̇ cos θv̇ − ψ̇2u

]+ cuu̇

+ E A
(−u′′ − v′v′′ + v′2v′′ + 2u′v′v′′)

+ E I
(−v′′v′′′ − v′v′′′′ + 2u′′v′′2 + 4v′v′′u′′′

+ 5v′u′′v′′′ +3u′v′′v′′′ + v′2u′′′′ + 3u′v′v′′′′) = fu
(10)

ρ1
(
v̈ + 2u̇ψ̇ cos θ − vψ̇2 cos2 θ

)+ cv [v̇

+ (Rh + x) cos θψ̇
]

+ E A

(
−v′u′′ − u′v′′ + 2u′v′u′′ + u′2v′′ − 3

2
v′2v′′

)

+ E I
(
v′′′′ − 3v′′u′′′ − 4u′′v′′′ − v′u′′′′ + 2u′v′′′′

+ 8v′′2v′′ − 2v′′3 + 7v′u′′u′′′

+ 9u′v′′u′′′ + 12u′u′′v′′′ − 8v′v′′v′′′

+ 3u′v′u′′′′ + 3u′2v′′′′ − 2v′2v′′′′) = fv, (11)

as well as the associated boundary conditions
• At x = 0

u = 0, v = 0, v′ = 0 (12)

• At x = L

mt
[
ü − (Rh + L) ψ̇2 − 2v̇ψ̇ cos θ − uψ̇2]

+ E A

(
u′ + 1

2
v′2 − u′v′2

)

+ E I
(
v′v′′′ − 2v′u′′v′′ − v′2u′′′ − 3u′v′v′′′)

= Qup + Quc

mt
(
v̈ + 2u̇ψ̇ cos θ

−vψ̇2 cos2 θ
)

+ E A

(
u′v′ − u′2v′ + 1

2
v′3
)

+ E I
(−v′′′ + 2u′′v′′ + v′u′′′ + 2u′v′′′ − 2v′u′′2

−6u′u′′v′′ + v′v′′2 − 3u′v′u′′′ − 3u′2v′′′ + 2v′2v′′′) = 0

E I
(
v′′ − v′u′′ − 2u′v′′ + 3u′v′u′′ + 3u′2v′′ − 2v′2v′′)

= Qvp + Qvc

(13)

Theunderlined termsQup, Quc, Qvp andQvc present
on the right-hand side of conditions (13)1 and (13)3 are
artificiality introduced control generalized loads result-
ing from the action of piezoelectric actuators. It can be
shown if the active layer is distributed along the whole
span of hosting specimen (e.g., beam or plate), the
action of the piezoelectric actuators is mathematically
represented as non-homogenous boundary conditions
at the free end of the structure. These nonzero terms
represent the induced dynamicmoment/shear force and
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are effective and robust computational ways toward
the implementation of a feedback control in mathe-
matical models of active structures. Since the proposal
by Lagnese [21] this boundary control moment/force
methodology has been successfully adopted by many
investigators to study the behavior of the plates, shells,
and beam structures with feedback control [6,15,22,
31].

The subsequent terms Qup, Qvp, and Quc, Qvc rep-
resent proportional (subscript ’p’) and cubic (subscript
’c’) functions of longitudinal and transverse displace-
ments, respectively. Considering the time delay τ in the
system, these are expressed by formulas

Qup(L , T − τ) = ĝupuτ (L , T − τ),

Qvp = ĝvpvτ (L , T − τ),

Quc(L , T − τ) = ĝucu
3
τ (L , T − τ),

Qvc = ĝvcv
3
τ (L , T − τ).

(14)

2.2 Solution by perturbation method

The analysis is applied for the pure nth flexural mode
without internal resonance interactions. To solve the
problem, we introduce three timescales

t0 = T, t1 = εT, t2 = ε2T, (15)

where t0, t1, t2 are fast and slow timescales, respec-
tively. Parameter ε is a formal small parameter and
serves as a book keeping device grouping small terms
in a proper perturbation order. Thus using the chain rule
the first- and second-order time derivatives are

v̇(x, T ) = ∂v(x, T )

∂t0
+ ε

∂v(x, T )

∂t1
+ ε2

∂v(x, T )

∂t2
+ O(ε3),

v̈(x, T ) = ∂2v(x, T )

∂t20
+ ε

∂2v(x, T )

∂t0∂t1

+ ε2

[
∂2v(x, T )

∂t0∂t2
+ ∂2v(x, T )

∂t21

]

+ O(ε3).

Next, we seek the solutions in a series of small param-
eter at the subsequent three orders of perturbation:

v(x, T ) = εv0(x, t0, t1, t2) + ε2v1(x, t0, t1, t2)

+ ε3v2(x, t0, t1, t2) + O(ε4),

vτ (x, T, τ ) = εvτ0(x, τ, t0, t1, t2)

+ ε2vτ1(x, τ, t0, t1, t2)

+ ε3vτ2(x, τ, t0, t1, t2) + O(ε4),

(16)

where v(x, T ) denotes the solution without time delay,
and vτ (x, T, τ ) is its counterpart when time delay τ is
considered. The variables u corresponding to the lon-
gitudinal direction are expanded in the similar way. For
the sake of text brevity, they are deliberately omitted
here.

To decouple linear response of the structure, we
assume the angular speed to be of ε order (relatively
small quantity) and write

ψ̇ = ε�. (17)

By this assignment, the small book-keeping parameter
ε shifts the angular velocity � term from first to the
second and higher orders of the problem. Furthermore,
eliminating� from the first-order solutionwill result in
a classical cantilever beam equation (linear part of the
solution). Without this assumption, static predeforma-
tions due to constant angular speed could be studied.

The external excitations fu , fv present on RHS in
(10) and (11) as well as damping coefficients and con-
trol loads are shifted to the third and second perturba-
tion order of the problem, respectively. Following this
assumption, they are declared by

fv(x, T ) = ε3ξv(x) cos (ωvT )

= ε3ξv(x) cos (ω0vt0 + σvt2) ,

fu(x, T ) = ε3ξu(x) cos (ωuT )

= ε3ξu(x) cos (ω0ut0 + σut2) ,

cu = ε2Cu, cv = ε2Cv,

ĝup = ε2gup, ĝvp = ε2gvp,

ĝuc = ε0guc, ĝvc = ε0gvc

(18)

where ξv (ξu) describe the amplitudes of uniformly
distributed external excitations at frequencies ωv (ωu).
The later ones are expressed by corresponding natural
frequencies ω0v (ω0u) at the fast timescale and detun-
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ing parameters σv (σu) attributed to the second slow
timescale t2.

Inserting equations (15)–(18) into expressions (10)–
(13) and collecting ε power-like terms, we obtain the
following sets of equations and corresponding bound-
ary conditions
• O(ε1):

ρ1
∂2u0
∂t20

− E Au′′
0 = 0 ρ1

∂2v0

∂t20
+ E Iv′′′′

0 = 0 (19)

boundary conditions at x = 0

u0 = 0, v0 = 0, v′
0 = 0, (20)

and x = L

mt
∂2u0
∂t20

+ E Au′
0 = 0,

mt
∂2v0

∂t20
− E Iv′′′

0 = 0, v′′
0 = 0 (21)

• O(ε2):

ρ1
∂2u1
∂t20

− E Au′′
1 = − 2ρ1

∂2u0
∂t0∂t1

+ 2ρ1� cos θ
∂v0

∂t0

+ ρ1 (Rh + x) �2

+ E Av′
0v

′′
0 + E I

(
v′′
0v

′′′
0 + v′

0v
′′′′
0

)

ρ1
∂2v1

∂t20
+ E Iv′′′′

1 = − 2ρ1
∂2v0

∂t0∂t1
− 2ρ1� cos θ

∂u0
∂t0

+ E A
(
v′
0u

′′
0 + u′

0v
′′
0

)

+ E I
(
3v′′

0u
′′′
0 + E I

(
3v′′

0u
′′′
0

+ 4u′′
0v

′′′
0 + v′

0u
′′′′
0 + 2u′

0v
′′′′
0

)

(22)

boundary conditions at x = 0

u1 = 0, v1 = 0, v′
1 = 0, (23)

and at x = L

mt

[
∂2u1
∂t20

+ 2
∂2u0
∂t0∂t1

− 2 cos θ
∂v0

∂t0
� − (Rh + L)�2

]

+E A

(
u′
1 + 1

2
v′2
0

)
+ E Iv′

0v
′′′
0 = 0,

mt

(
∂2v1

∂t20
+ 2

∂2v0

∂t0∂t1
+ 2 cos θ

∂u0
∂t0

�

)

+E Au′
0v

′
0 + E I

(−v′′′
1 + 2u′′

0v
′′
0 + v′

0u
′′′
0 + 2u′

0v
′′′
0

) = 0,

E I
(
v′′
1 − v′

0u
′′
0 − 2u′

0v
′′
0

) = 0 (24)

• O(ε3):

ρ1
∂2u2
∂t20

− E Au′′
2 = ξu(x) cos (ω0ut0 + σut2) − Cu

∂u0
∂t0

+ ρ1

[

−∂2u0
∂t21

− 2
∂2u0
∂t0∂t2

− 2
∂2u1
∂t0∂t1

+2 cos θ�

(
∂v0

∂t1
+ ∂v0

∂t1

)
+ �2u0

]

+ E A
(
−v′2

0 u′′
0 − 2u′

0v
′
0v

′′
0

+v′
1v

′′
0 + v′

0v
′′
1

)

+ E I
(
−2u′′

0v
′′2
0 − 4v′

0v
′′
0u

′′′
0

− 5v′
0u

′′
0v

′′′
0 − 3u′

0v
′′
0v′′′

0

+ v′′
1v′′′

0 + v′′
0v′′′

1 − v′2
0 u′′′′

0

−3u′
0v

′
0v

′′′′
0 + v′

1v
′′′′
0 + v′

0v
′′′′
1

)

ρ1
∂2v2

∂t20
+ E Iv′′′′

2 = ξv cos(ω0v t0 + σv t2)

− Cv

[
∂v0

∂t0
+ (Rh + x) cos θ�

]

+ ρ1

[

−∂2v0

∂t21
− 2

∂2v0

∂t0t2
− 2

∂2v1

∂t0t1

+ cos θ�

(
−2

∂u0
∂t1

−2
∂u1
∂t0

)

+ cos2 θ�2v0

]

+ E A

(
− 2u′

0v
′
0u

′′
0 + v′

1u
′′
0 + v′

0u
′′
1

−u′2
0 v′′

0 + u′
1v

′′
0 + 3

2
v′2
0 v′′

0 + u′
0v

′′
1

)

+ E I
(
−8u′′2

0 v′′
0 + 2v′′3

0 − 7v′
0u

′′
0u

′′′
0

− 9u′
0v

′′
0u

′′′
0 + 3v′′

1u
′′′
0 + 3v′′

0u
′′′
1

− 12u′
0u

′′
0v

′′′
0 + 4u′′

1v
′′′
0 + 8v′

0v
′′
0v′′′

0

+ 4u′′
0v

′′′
1 − 3u′

0v
′
0u

′′′′
0 + v′

1u
′′′′
0

+ v′
0u

′′′′
1 − 3u′2

0 v′′′′
0 + 2u′

1v
′′′′
0

+2v′2
0 v′′′′

0 + 2u′
0v

′′′′
1

)
(25)

boundary conditions at x = 0

u2 = 0, v2 = 0, v′
2 = 0, (26)
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and at x = L

mt

[
∂2u2
∂t20

+ ∂2u0
∂t21

+ 2
∂2u0
∂t0∂t2

− �2u0 + 2
∂2u1
∂t0∂t1

−2 cos θ�

(
∂v0

∂t1
+ ∂v1

∂t0

)]

+ E A
(
u′
2 − u′

0v
′2
0 + v′

0v
′
1

)

+ E I
(
−2v′

0u
′′
0v

′′
0 − v′2

0 u
′′′
0 − 3u′

0v
′
0v

′′′
0 + v′

1v
′′′
0

+v′
0v

′′′
1

) = gupuτ (L , T − τ) + gucu
3
τ (L , T − τ),

mt

[
∂2v2

∂t20
+ 2 cos θ

(
∂u0
∂t1

+ ∂u1
∂t0

)
�

+∂2v0

∂t21
+ 2

∂2v0

∂t0∂t1
− cos2 θv0�

2 + 2
∂2v1

∂t0∂t1

]

+ E A
[
−u′2

0 v′
0 + u′

1v
′
0 + 0.5v′3

0 + u0v
′
1

]

+ E I
[
−v′′′

2 − 2v′
0u

′′2
0 − 6u′

0u
′′
0v

′′
0

+ 2u′′
1v

′′
0 + 2v′

0v
′′2
0 + 2u′′

0v
′′
1 − 3u′

0v
′
0u

′′′
0

+ v′
1u

′′′
0 + v′

0u
′′′
1

− 3u′2
0 v′′′

0 + 2u′
1v0

′′′ + 2v′2
0 v′′′

0 + 2u′
0v

′′′
1

]
= 0,

E I
[
v′′
2 − v′

1u
′′
0 − v′

0u
′′
1 + 3u′2

0 v′′
0 − 2u′

1v
′′
0

− 2v′2
0 v′′

0 + u′
0(3v

′
0u

′′
0 − 2v′′

1 )
]

= gvpvτ (L , T − τ) + gvcv
3
τ (L , T − τ).

(27)

2.2.1 First-order solution

The solutions to the first-order problem Eqs. (19)–(22)
are given as products of time dependent functions and
linear mode shapes

u0(x, T ) =
[
A(t1, t2) e

iω0u t0 + Ā(t1, t2) e
−iω0u t0

]
φ̂u(x),

v0(x, T ) =
[
B(t1, t2) e

iω0v t0 +B̄(t1, t2) e
−iω0v t0

]
φ̂(x),

φ̂u(x) = sin(φux),

φ̂(x) = r1 sin(φx) + r2 cos(φx)

+ r3 sinh(φx) + r4 cosh(φx), (28)

where A(t1, t2), Ā(t1, t2) and B(t1, t2), B̄(t1, t2) are
complex amplitudes dependent on both slow timescales
and the over bar symbol denotes complex conjugate.
Parameters r1-r4 are trigonometric coefficients which
satisfy the boundary value problem (20)–(21).

When considering the time delay the sought delayed
solutions to the first-order problem uτ0, vτ0 are again
defined as products of time dependent amplitude func-
tions and linearmode shapes.However, the former ones
are shifted by appropriate timedelays τu and τv whereas
the deformation modes stay similar to their counter-
parts in regular solution as given by Eq. (28)3,4

uτ0(x, T, τ ) =
[
A(t1, t2) e

i(ω0u t0−τu)

+ Ā(t1, t2) e
−i(ω0u t0−τu)

]
φ̂u(x),

vτ0(x, T, τ ) =
[
B(t1, t2) e

i(ω0v t0−τv)

+B̄(t1, t2) e
−i(ω0v t0−τv)

]
φ̂(x).

(29)

This treatment of time delay effect within the mul-
tiple timescales method framework was successfully
adopted by Rusinek et al. in [37].

The natural frequencies ω0u , ω0v in axial and trans-
verse directions are given by

ω0u =
√

E Aφ2
u

ρ1
, ω0v =

√
E Iφ4

ρ1
, (30)

respectively,whileφu andφ have to be foundby solving
the transcendental equations

ρ1 cos(φu L) − mtφu sin(φu L) = 0,
ρ1+ cosh(φL)[ρ1 cos(φL) − mtφ sin(φL)]+mt cos(φL) sinh(φL)

ρ1[cos(φL)+ cosh(φL)] + mt[sinh(φL) − sin(φL)] = 0. (31)

Subsequent roots determine the mode shapes
Eq. (28)3,4 and corresponding natural frequencies
Eq. (30).
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2.2.2 Second-order solution

Considering the second-order problem, we solve Eqs.
(22)–(24). Namely, in the first attempt, we are focused
on secular generating terms (the ones containing
e±iω0u t0 and e±iω0v t0 ) to vanish. Following this, the solv-
ability conditions are

∫ L

0

(

ρ1
∂2u1
∂t20

− E Au′′
1

)

u0dx

=
∫ L

0

(
−2ρ1

∂2u0
∂t0∂t1

)
u0dx,

∫ L

0

(

ρ1
∂2v1

∂t20
+ E Iv′′′′

1

)

v0dx

=
∫ L

0

(
−2ρ1

∂2v0

∂t0∂t1

)
v0dx .

(32)

After integration by parts and substituting the
boundary conditions Eqs. (23)–(24) and performing
simple algebraic manipulations, we get

∂A

∂t1
= ∂ Ā

∂t1
= ∂B

∂t1
= ∂ B̄

∂t1
= 0. (33)

Then analyzing Eqs. (22)–(24), we decompose har-
monics, calculate time derivatives, and then reduce par-
tial differential equations to ordinary differential ones.
Finally, the second-order solutions are given by

u1(x, T ) = r5�
2 + r6Rh�

2 + r7B B̄

+ ir8 cos θ�B eiω0v t0

− ir8 cos θ�B̄ e−iω0v t0

+ r9B
2 e2iω0v t0 +r9 B̄

2 e−2iω0v t0 ,

v1(x, T ) = ir10� cos θ A eiω0u t0 −ir10� cos θ Ā e−iω0u t0

+ r11AB eiω0u t0 eiω0v t0

+ r11 Ā B̄ e−iω0u t0 e−iω0v t0

+ r12AB̄ eiω0u t0 e−iω0v t0

+ r12 ĀB e−iω0u t0 eiω0v t0 .

(34)

where r5–r12 are real valued functions dependent
on A, E, I, ρ1, ω0u, ω0v that represent mode shapes,
while using parameters Rh,� and θ we canmanipulate

their magnitudes. To keep the length of the paper con-
cise these functions are reported just graphically only
for a set of fixed parameters as given in “Appendix A”.

Studying the Eq. (22) and associated boundary con-
ditions (23)–(24) one observes the time delays to be
absent at this order of perturbation. Therefore, the
second-order solution of time-delayed problem is iden-
tically zero.

2.2.3 Third-order solution

In the third-order problem Eqs. (25)–(27), we con-
sider only terms proportional to e±iω0v t0 and e±iω0u t0 ,
to which solvability conditions are applied (multiply
functions by linear solutions and next integrate by parts
in 0 to L limits). After cumbersome computations, tak-
ing into account boundary conditions (26)–(27), one
obtains the following set of four modulation equations
in the slow timescale t2:

∂A

∂t2
= q1ξu e

iσu t2 +q2Cu A + iq3gupA e−τu

+ iq4gucA
2 Ā e−τu +iq5AB B̄

+ iq6�
2A + iq7�

2A cos2 θ,

∂ Ā

∂t2
= −q1ξu e

−iσu t2 +q2Cu Ā

− iq3gup Ā eiτu

− iq4gucAĀ
2 eiτu −iq5 ĀB B̄ − iq6�

2 Ā

− iq7�
2 cos2 θ Ā,

∂B

∂t2
= ip1ξv e

iσv t2 +p2CvB + ip3gvpB e−iτv

+ ip4AĀB + ip5B
2 B̄

+ ip6gvcB
2 B̄ e−iτv +ip7�

2B + ip8Rh�
2B

+ ip9�
2 cos2 θB,

∂ B̄

∂t2
= −ip1ξv e

−iσv t2 +p2Cv B̄ − ip3gvp B̄ eiτv

− ip4AĀB̄ − ip5B B̄
2

− ip6gvcB B̄
2 eiτv −ip7�

2 B̄

− ip8Rh�
2 B̄ − ip9�

2 cos2 θ B̄,

(35)

where q1–q7 and p1–p9 are real valued coefficients cal-
culated during integration process. We preferentially
convert the above equations expressing complex ampli-
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tudes in their polar form by introducing new variables

A = 1

2
a(t2) e

iβa(t2), Ā = 1

2
a(t2) e

−iβa(t2),

B = 1

2
b(t2) e

iβb(t2), B̄ = 1

2
b(t2) e

−iβb(t2),

(36)

and obtain a modified set of four modulation equations
of amplitudes a, b and phase angles βa , βb

∂a

∂t2
= −2q1ξu sin (t2σu − βa) + q2Cua

+ q3gupa sin τu + 1

4
q4guca

3 sin τu,

a
∂βa

∂t2
= 2q1ξu cos (t2σu − βa) + q3gupa cos τu

+ 1

4
q4guca

3 cos τu + 1

4
q5ab

2

+ q6�
2a + q7�

2 cos2 θa,

∂b

∂t2
= −2p1ξv sin (t2σv − βb) + p2Cvb

+ p3gvpb sin τv + 1

4
p6gvcb

3 sin τv,

b
∂βb

∂t2
= 2p1ξv cos (t2σv − βb) + p3gvpb cos τv

+ 1

4
p4a

2b + 1

4
p5b

3 + 1

4
p6gvcb

3 cos τv

+ p7�
2b + p8Rh�

2b + p9�
2 cos2 θb.

(37)

Coefficients q1–q7 and p1–p9 contain terms of
first- and second-order solutions and can be calculated
numerically for fixed properties of the beam. Mate-
rial data and geometry of the structure used to derive
approximate solution were measured within laboratory
experiment described in Sect. 3. Further parametric
analysis of the system is presented in Sect. 4.

Finally, the approximate solutions of Eq. (16) take
the form

u(x, T ) = εa sin(φux) cos(ω0ut0 + βa)

+ ε2
[
(r5 + r6Rh)�

2 + r7
4
b2

− r8� cos θb sin(βb + ω0vt0)

+ r9
2
b2 cos(2ω0vt0 + 2βb)

]
+ O(ε3),

uτ (x, T, τ ) = εa sin(φux) cos(ω0ut0 + βa − τu)

+O(ε3),

v(x, T ) = εb [r1 sin (φx)+r2 cos (φx)+r3 sinh (φx)

+ r4 cosh (φx)] cos (ω0vt0 + βb)

+ ε2 [−r10� cos θa sin (ω0ut0 + βa)

+r11
2
ab cos (ω0ut0 + ω0vt0 + βa + βb)

+ r12
2
ab cos (ω0ut0 − ω0vt0 + βa − βb)

]

+O(ε3),

vτ (x, T, τ ) = εb [r1 sin (φx) + r2 cos (φx)

+ r3 sinh (φx) + r4 cosh (φx)]

× cos(ω0vt0 + βb − τv) + O(ε3),

(38)

where (38)1,3 are solutions to the regular problem, and
(38)2,4 are their counterparts if time delay is accounted
for.

2.3 Stability analysis

Stability analysis of analytical solutions is performed
on the basis of modulation equations (37) which are
rewritten in a shorter form

ȧ = f1 (a, βa, b, βb) ,

β̇a = f2 (a, βa, b, βb) ,

ḃ = f3 (a, βa, b, βb) ,

β̇b = f4 (a, βa, b, βb) ,

(39)

where “dot” means time derivative with respect to
timescale t2. In the steady state the right-hand sides
of Eq. (39) are equal to zero. The solutions of Eq. (39)
are disturbed in the vicinity of the steady state. Sub-
stituting perturbed solutions into Eq. (39), then sub-
tracting from unperturbed ones and expanding the dis-
turbed functions f1, f2, f3, f4 in Taylor series in the
neighborhood of the steady state and considering the
linear terms we obtain a set of linear, homogeneous
differential equations in variations

δ̇a = ∂ f1
∂a

δa + ∂ f1
∂βa

δβa + ∂ f1
∂b

δb + ∂ f1
∂βb

δβb ,

δ̇βa = ∂ f2
∂a

δa + ∂ f2
∂βa

δβa + ∂ f2
∂b

δb + ∂ f2
∂βb

δβb ,

δ̇b = ∂ f3
∂a

δa + ∂ f3
∂βa

δβa + ∂ f3
∂b

δb + ∂ f3
∂βb

δβb ,

δ̇βb = ∂ f4
∂a

δa + ∂ f4
∂βa

δβa + ∂ f4
∂b

δb + ∂ f4
∂βb

δβb ,

(40)
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Fig. 3 Experiment setup; a laser scanning head with camera, b
computer with scanning unit, c anti-vibrational table, d compos-
ite specimen

where δ means variation of the selected variable and
the derivatives are computed for a steady state. The
stability of the solutions depends on eigenvalues of the
Jacobian matrix

J =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

∂ f1
∂a

∂ f1
∂βa

∂ f1
∂b

∂ f1
∂βb

∂ f2
∂a

∂ f2
∂βa

∂ f2
∂b

∂ f2
∂βb

∂ f3
∂a

∂ f3
∂βa

∂ f3
∂b

∂ f3
∂βb

∂ f4
∂a

∂ f4
∂βa

∂ f4
∂b

∂ f4
∂βb

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(41)

If any of the eigenvalue has a positive real part, the
system becomes unstable.

3 Laboratory experiment

To identify the coefficients of the analytical model
the laboratory experiment was conducted. The test

stand comprised the laser vibrometer PSV-500 camera
system—see Fig. 3 marks (a,b), and a highly flexible
specimen (d) mounted to a dedicated grip fixed to an
anti-vibrational slip table TIRA TGTMO 48XL (c). A
series of reflective markers were sticked on the beam
surface to be traced by the scanning laser. Moreover,
piezoelectric macro fiber composite (MFC) patches
M8528-P1 by Smart-Material Corp. were bonded on
the tested blade as shown in Fig. 4. These are the ele-
ments operating in d33 mode, so the piezoceramic pol-
ing direction (being in-plane of the transducer) when
oriented along the beam span axis x excites the speci-
men bending (note also Fig. 1). To amplify the signal
from the vibrometer generator, a dedicated MFC high-
voltage amplifier was used.

The beam was made of multilayered ThinPregTM

120EP-513/CF resin reinforced with M40JB-12000-
50B (TORAY) carbon fibers composite. The laminate
stacking sequence was a special 18-layered configu-
ration [0,−602, 0,−60, 603,−602, 02,−60, 02, 602,
−60] ensuring the macroscopically isotropic proper-
ties of the material [40]. One of numerous advantages
of this composite material is its susceptibility to large
deformationswithin elastic regime. The geometric data
of the beam and resulting material properties are gath-
ered in Table 1, while outcomes of identification tests
are displayed in Fig. 5.

The above data of the tested prototype have been
adopted for the numerical investigations. In the fur-
ther analysis, the governing equations and BCs are
transformed to dimensionless forms. The space coor-
dinates are normalized to the beam length: x̄ = x/L ,
ū = u/L , v̄ = v/L , R̄h = Rh/L and angles remain as
they are θ̄ = θ, ψ̄ = ψ . Dimensionless time is defined

as t̄ = t/ω�, where ω� =
√

E I
ρ1L4 , and thus correspond-

ing dimensionless natural frequencies and dimension-
less angular velocity are now given by ω̄u = ωu/ω

�,
ω̄v = ωv/ω

�, �̄ = �/ω�, respectively.

Fig. 4 Section of the MFC
patch (orange colour)
bonded onto the composite
specimen (black). (Color
figure online)
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Table 1 Dimensions of the blade (length, width, thickness) and laminate material properties: density, mass per unit length, longitudinal
Young modulus, transversal Young modulus, shear modulus, Poisson’s ratio

L [mm] b [mm] h [mm] ρ [kg/m3] ρ1 [kg/m] E [GPa] G [GPa] ν [−]

595 35 0.9 1350 0.042525 55.7225 20.4862 0.36

Fig. 5 Experimental free
oscillations of the beam and
matched logarithmic
decrement of damping (a);
and fast Fourier transform
of the beams response (b).
Linear mode shapes
corresponding to the first
two flexural (c) and the first
longitudinal (d) natural
frequencies (FE analysis
made in commercial
Abaqus software)

The adopted transformation rules result in the
dimensionless bending and axial stiffnesses normal-
ized as Ē I = 1, Ē A = E AL2

E I , dimensionless beam
mass per unit length ρ̄1 = 1 and dimensionless tip
mass m̄t = mt

ρ1L
. Dimensionless values of the physical

parameters given in Table 1 are

L̄ = 1, Ē I = 1, Ē A = 5.24481 × 106, ρ̄1 = 1,

(42)

and the tip mass is equal to zero for the studied case,
m̄t = 0.

Coefficients q1–q7 and p1–p9 present in Eq. (35)
were calculated for two basic cases:
• The combination of first longitudinal and the first
flexural mode

q1 = −0.00008848 q2 = 0.5 q3 = −0.00027798

q4 = −0.00083394 q5 = 7070.1147 q6 = −0.00013899

q7 = 0.00055597

p1 = −0.11134646 p2 = 0.5 p3 = −0.78299175

p4 =1.4467399×107 p5 = 0.272619 p6=−2.34897526

p7 = 0.16969987 p8 = 0.22338865 p9 = −0.14220694

(43)

• The combination of first longitudinal and the second
flexural mode

q1 = −0.00008848 q2 = 0.5 q3 = −0.00027798

q4 = −0.00083394 q5 = 180241.709 q6 = −0.00013899

q7 = 0.00055597

p1 = −0.00984674 p2 = 0.5 p3 = −0.43393589

p4 = 5.88527845 × 107 p5 = −569.351085 p6 = −1.30180768

p7 = 0.14700054 p8 = 0.19621623 p9 = −0.02269225. (44)

These values are used in numerical analysis given in
the following section.

4 Parametric studies of the system

The derived analytical solutions of the governing
equations expanded up to ε3 approximation order as
obtained in Sect. 2.2 enable comprehensive parametric
study of the system. To this aim, bifurcation diagrams
are constructed to present the effects of various struc-
tural parameters on system response characteristics. In
particular, parameters �, σv , ξ , Rh, θ are kept in Eq.
(37) and thus can be used in these analyses.

The modulation equations obtained from MTS
method involve also control signalsCu ,Cv . They canbe
modified according to the adopted control law to meet
the required beam behavior. In this paper, we consider
two control strategies, namely a proportional P control
and cubic control C . Proportional strategy considers
the input signal multiplied by a gain coefficient gp and
supplied with some time delay τ to the actuators. In the
case of nonlinear cubic C control, the signal is raised
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to power 3, gained by gc factor and than supplied with
delay τ .

Moreover, by calculating coefficients pi (i =
1, . . . , 9) and qi (i = 1, . . . , 7) as present in (35) for
individual longitudinal and transverse vibration modes
the multiple different dynamic states of the system can
be considered.

We start the analysis from solving the modulation
equations analytically. To this aim, we introduce new
variables γ like

γa(t2) = σat2 − βa(t2), γb(t2) = σbt2 − βb(t2),

and next substitute them into Eq. (37). In a steady state
a′(t2) = 0, β ′

a(t2) = 0, b′(t2) = 0, γ ′(t2) = 0; there-
fore, themodulation formulas simplify to the set of non-
linear but algebraic equations. Solution to this system
involve response amplitude as a function of selected
bifurcation parameters including the detuning parame-
ters σu and σv . Moreover, these relations can be used to
tune control parameters for effective vibration reduc-
tion.

We note that for a general case all four modulation
Eq. (37) are involved in the solution. However, if we
neglect axial excitation and control in this direction,
one can set a′(t2) = 0 followed by a(t2) = 0 relation
due to damping. Then, the dynamics of the structure is
governed only by the third and the forth equations of
the system. It should be emphasized this simplification
can be done if we confine the transverse excitation fre-
quency only to the vicinity of the corresponding natural
frequency and exclude the possibility of internal reso-
nance. Study of the structural dynamics involving the
internal longitudinal–transversal resonances for simply
supported beams can be found in [23]. This problem for
rotating beams with a tip mass will be discussed in a
separate contribution.

4.1 Natural vibrations

We start the analysis from analytical solutions to deter-
mine backbone curves which represent nonlinear nat-
ural vibrations around the first and second flexural fre-
quencies. Dimensionless values of the linear natural
frequencies corresponding to non-rotating system con-
figuration are:

– The first flexural natural frequency:ω01 = 3.51602
(16.5774 rad/s),

– The second flexural natural frequency: ω02 =
22.034492 (103.889 rad/s),

– The first longitudinal natural frequency: ω0u =
3597.37 (16 961.0 rad/s).

It can be observed for the adopted structural param-
eters the first longitudinal frequency ω0u is located far
away from the flexural ones. Thus, as it has been men-
tioned above, the internal resonance case does not occur
in the given problem formulation.

To obtain the expressions for backbone curves, we
substitute zero values on the excitation, damping, and
control gains in Eq. (37). Then, we get the final expres-
sion

b4 +
(
c1σv + c2�

2
)
b2 + c3σ

2
v + c4σv�

2 + c5�
4 = 0

(45)

where σv = ω0v − ω0. The individual coefficients are

• c1 = −29.345, c2 = 2.129, c3 = 215.282,
c4 = −31.236, c5 = 1.133 and

• c1 = 0.014, c2 = −2.30×10−3, c3 = 4.94×10−5,

c4=−1.628 × 10−5, c5 = 1.33 × 10−6

for the first and second flexural modes, respectively.
When analyzing the relation (45), one observes the
presence of terms involving the rotor angular velocity
� in power 2 and 4.

Theplotted shapeof the backbone curve correspond-
ing to fundamental vibration mode and zero angular
velocity (non-rotating structure) is presented in Fig. 6a.
The curve reveals the evident hardening nature. If the
angular speed � is increased, the curve gets shifted
right toward higher frequencies, and its hardening-like
property is maintained (Fig. 6b). The linear natural fre-
quency increases as a parabolic function of rotor angu-
lar speed � which is presented in Fig. 6c.

In contrast to the first mode, the backbone curve
for second flexural mode exhibits a softening (Fig. 7a)
behavior for non-rotating structure. This nature of the
curve is preserved also for rotating system—cases of
� = 2, � = 3, � = 5 presented in Fig. 7b. It is
interesting to note that the inherent softening behavior
is strong enough to prevail the stiffening effect due to
centrifugal loadings.

The proposed analytical model of the structure and
obtained approximate solutions show that both modes
exhibit opposite characteristics. This fact is in an agree-
ment with results published by Thomas [38] consider-
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(c)

(b)(a)

Fig. 6 Backbone curves for selected angular velocities a � = 0 and b � = 0 (black), � = 1 (blue), � = 2 (red), and c effect of
angular velocity on natural vibrations frequency; first flexural vibration mode. (Color figure online)

Fig. 7 Backbone curves for
selected angular velocities a
� = 0 and b � = 0 (black),
� = 2 (blue), � = 3 (red),
and � = 5 (green); second
flexural vibration mode.
(Color figure online)

(a) (b)
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ing relatively small rotations, but in contrast to Arvin et
al. [2] where the introduced so-called equivalent non-
linearity coefficient depends on the rotor angular speed
as well. Based on the analytical results, we may con-
clude the angular velocity does not affect neither hard-
ening nor softening features of the backbone curves but
just shifts them toward higher frequencies. This means
the linear part of the stiffness matrix gets larger if rota-
tion increases. But the nonlinear effect resulting from
large amplitude oscillations maintains the samemagni-
tude revealing stiffening/softening features depending
on mode order. The first and the second modes having
opposite nature will be studied for excited vibrations
and structural control.

4.2 Forced vibrations

Forced vibrations of the rotating beam structure are
studied assuming the excitation is imposed in the trans-
verse direction only. Presuming steady-state vibrations
and neglecting excitation in axial direction in Eq. (37),
the last two formulas yield

Cv p2b(t2) +
[
gvp p3 + 1

4
gvc p6b

2(t2)
]
b(t2) sin τv

= 2p1ξv sin γb(t2)

σvb(t2) −
(
p7 + p8Rh + p9 cos

2 θ
)

�2b(t2)

− 1

4
p5b

3(t2) = 2p1ξv cos γb(t2)

+
[
gvp p3 + 1

4
gvc p6b

2(t2)
]
b(t2) cos τv

(46)

Eliminating phase angle γb(t2) and after mathematical
transformations, we get

α1b(t2)
6 + α2b(t2)

4 + α3b(t2)
2 − 2p21ξ

2
v = 0 (47)

where

α1 = 1

32

(
p25 + g2vc p

2
6 + 2gvc p5 p6 cos τv

)

α2 = 1

4

{
p5
[
�2

(
p7 + p8Rh + p9 cos

2 θ
)

− σv

]

+gvp p3(gvc p6 + p5 cos τv)

+Cv p2 p6gvc sin τv + p6gvc

[
�2

(
p7 + p8Rh

+p9 cos
2 θ
)

− σv

]
cos τv

}

α3 = 1

2

{
C2

v p
2
2 + g2vp p

2
3 +

[
σv − �2

(
p7

+p8Rh + p9 cos
2 θ
)]2}

+gvp p3
{
Cv p2 sin τv −

[
σv − �2

(
p7

+p8Rh + p9 cos
2 θ
)]

cos τv

}

In the above equation, we can distinguish terms
dependent on angular velocity�, hub radius Rh, exter-
nal excitation ξv , and related to linear gvp and nonlinear
gvc control laws and time delay τv . Equating to zero
the control parameters, we get equations of the reso-
nance curves around the first and the second resonance
zones as a function of the angular velocity and the pre-
set angle θ . For the following analysis, we assume that
the preset angle is equal zero (θ = 0). This corre-
spond for the beam oscillating in the rotor plane (see
Fig. 5). Modal damping is approximated on the base
of experimental tests as 2% of first natural frequency
value: Cv = 0.07032 and 1% for the second mode
Cv = 0.22035. Amplitude of excitation ξv is varied as
reported in figure captions.

Resonance curves around the first flexural frequency
are presented in Fig. 8. Despite that large oscillations in
the system just a very faint stiffening effect is observed
for this mode (Fig. 8a), much too small for the jump
phenomenon to occur. This feature is observed for zero
angular velocity and also for rotating structure—cases
� = 2, � = 3 and � = 5 corresponding to blue,
red and green curves, respectively (Fig. 8b). Again the
results are similar to the backbone curves, the so-called
stiffening effect due to rotation leads solely to the right
shift of the curves without a change of the stiffening
effect caused by the nonlinear beam oscillations.

For the second resonance zone, nonlinear softening
is rather strong. In Fig. 9a, computed for � = 0, the
softening behavior is observed for amplitudes below of
8% of the beam length. As it is demonstrated in Fig. 9b
the increased angular speed (cases � = 2, � = 3,
� = 5) does not change the intensity of softening phe-
nomenon but just shifts the resonance zone. Stability
of frequency response curves is studied by computing
eigenvalues of Jacobian matrix (41); dashed line repre-
sents unstable part of the solution and solid line defines
stable solution in the following Figures.

The results presented in this section shall be used
in the next steps when the proportional and cubic con-
trol strategies are engaged in order to reduce vibrations
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Fig. 8 Resonance curves
for selected angular
velocities a � = 0 and b
� = 0 (black), � = 2
(blue), � = 3 (red), and
� = 5 (green); first flexural
vibration mode; ξv = 0.1,
Cv = 0.07032. (Color
figure online)

(a) (b)

Fig. 9 Resonance curves
for selected angular
velocities a � = 0 and b
� = 0 (black), � = 2
(blue), � = 3 (red), and
� = 5 (green); second
flexural vibration mode;
ξv = 0.4, cv = 0.220345.
(Color figure online)

(a) (b)

around the discussed resonance zones. The outcomes
obtained in this section are consistent with authors pre-
vious work in [42].

5 Controlled forced vibrations

The derived analytical model of the active blade and
approximate solutions to governing equations enable
analysis of the system under assumed control law. This
involves additional terms present in the boundary con-
ditions Eq. (35) and later modulation equations—see
terms with gup, guc, and gvp, gvc in formulas (37).
They represent loads generated by control unit accord-
ing to the boundary control method approach adopted
in this research. In a real set-up structural control can
be achieved by the controlled voltage supplied to active
elements. The mathematical model of the combined

blade-control unit structure considers also a time delay
τv whichmay occur due to inherent properties of actual
devices or can be added intensionally to enhance sys-
tem’s performance.

It was decided to study two control strategies,
namely the linear control (P) and cubic control (C). In
the linear control method, the input signal is multiplied
by a gain coefficient gp and supplied to the actuators.
In the case of nonlinear C control the signal is raised
to power 3 and gained by gc factor.

Remembering that dynamics of the beam close to its
first natural frequency is almost linear, we apply P con-
trol with time delay. Based on the Eq. (47), substituting
gvc = 0 we get
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b6 + b4
(
c1pσv + c2p�

2 + c3pgvp cos τv

)

+ b2
[
c4p + c5pg

2
vp + c6pσ

2
v + c7p�

4

+ c8pgvpσv cos τv

+ �2 (c9pσv + c10pgvp cos τv

)

+c11pgvp sin τv

]+ c12pξ
2
v = 0,

(48)

where

c1p = −29.345, c2p = 2.12886,

c3p = −22.9769, c4p = 0.266137,

c5p = 131.984, c6p = 215.282,

c7p = 1.13302, c8p = 337.128,

c9p = −31.2357, c10p = −24.4573,

c11p = −11.8534, c12p = −10.6763.

Equation (48) depends on controller gain, time delay
τv , angular velocity�, and amplitude and frequency of
excitation, ξv and σv , respectively. Therefore, we can
evaluate the effectiveness of the controller at various
combinations of excitation conditions.

The response of the system for fixed amplitude of
excitation ξv = 0.1 and activated linear controller is
shown in Fig. 10. The figures present an overview of
the response for fixed gain value gvp = 0.2with respect
to detuning frequency σv and time delay τv varied in
〈−2π , 2π〉 interval. The computed 3D surface shows
periodically repeated peaks where the applied control
does not work properly. However, there are also val-
leys corresponding to small amplitudes and effective
vibrations suppression. Comparing graphs for � = 0
(Fig. 10a) and � = 2 (Fig. 10b), we observe the con-
troller works in a very similar way. The only difference
is the shift of the response surface toward higher fre-
quencies. This is visible by localization of peaks along
σv axis (note that scales for σv are different on both
plots). Studying these plots, one may also conclude
about the influence of the time delay. It is evident the
proper tuning of the τv parameter with respect to time
delay the effective suppression of vibrations may be
achieved.

The selected cross sections of these 3D surfaces are
presented in Fig. 11a and b for the stationary and rotat-
ing configuration, respectively. In Fig. 11a the reso-
nance curve of the system without control is sketched
by the grey line. If the P controller is engaged and the
input signal is supplied with zero time delay then the

curve is just shifted toward lower frequencies without
any amplitude change (black line). However, if the time
delay is introduced, then we may simultaneously shift
the resonance curve and reduce vibrations. As it is seen
in Fig. 11a the amplitude can be decreased even over
three times for τv = 2.0 (orange curve).

In the case of the rotating beam (Fig. 11b), the res-
onance curve without control due to rotation is shifted
toward higher frequencies (magenta line with respect
to grey curve as copied from (a)). Then if the P con-
troller is operational without time delay (τv = 0) the
curve is shifted back toward lower frequencies (black
continuous line). Similar to the stationary configuration
case, the proper selection of time delay τv may signif-
icantly reduce vibration amplitudes—see, e.g., orange
curve corresponding to τv = 2.0. However, the opti-
mal delays are different than for non-rotating system.
It should be also noted the response amplitude can be
not only reduced, but also magnified to large values
if the time delay is tuned improperly. Meanwhile, the
characteristics are shifted toward higher or lower fre-
quencies as it is presented in Fig. 11c for τv = 3 (blue)
and τv = 6.5 (red) in Fig. 11d, respectively.

Direct comparison of P control effectiveness around
the first resonance zone for fixed excitation amplitude
and frequency is presented in Fig. 12. The detuning
of excitation frequency σv is selected close to the first
resonance and time delay is varied within 〈−2π, 2π〉
interval. As reported above, the proper selection of time
delay results in a large reduction of vibration ampli-
tudes both for stationary (Fig. 12a) and rotating beam
(Fig. 12b). Furthermore, one observes the zones of
effective vibrations suppression are significantly wider
for the rotating beam case.

As the second option, we propose to apply the non-
linear cubicC controller. Thus the P control is switched
off by setting gvp = 0. Substituting the condition to
equations (47) we get

b6
(
c1c + c2cg

2
vc + c3cgvc cos τv

)

+ b4
{
c4cσv + c5c�

2 − gvc

[(
c6cσv

+ c7c�
2
)
cos τv + c8c sin τv

]}

+ b2
(
c9c + c10cσ

2
v + c11cσv�

2

+ c12cσv�
4
)

+ c13cξ
2
v = 0,

(49)
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Fig. 10 Amplitude of system response for P control against detuning frequency σv and time delay τ for a � = 0 and b � = 2; first
flexural vibration mode; gvp = 0.2, ξv = 0.1, cv = 0.07032

where:

c1c = 0.00232254, c2c = 0.172428,

c3c = 0.0400235, c4c = −0.0681548,

c5c = 0.00494436, c6c = −0.587244,

c7c = 0.0426023, c8c = 0.0206475,

c9c = 0.000618113, c10c = 0.5,

c11c = −0.0725461, c12c = 0.00263147,

c13c = −0.0247961.

Solutions of Eq. (49) enable to determine impact of
C control on the system response. The idea of this con-
troller is to influence mainly the fundamental property
of the structure characteristics that is represented by
the slope of the backbone curve. In fact, setting time
delay τv = 0 and varying gain gvc we may modify the
properties of the system from hardening to softening
(Fig. 13a) behavior. For the gain gvc = 0.12, we may
obtain linear-like response (red curve in Fig. 13a).

Results of the rotating system analysis are presented
in Fig. 13b. The introduced rotation does not affect the
controller performance apart from the fact that the res-
onance curves are shifted and their slopes are modified
around the shifted linear natural frequency value.

The effectiveness of theC controller as well as com-
bined P − C control we demonstrate for the second

natural frequency. Due to its strong nonlinear soften-
ing effect, the comparison of nonlinear versus linear
control strategy is more appealing.

The analysis of the second-mode dynamics is started
from P control governed by Eq. (48). The coefficients
for the second mode take values

c1p = 0.0140511, c2p = − 0.00230271,

c3p = 0.00609727, c4p = 5.99109 × 10−7,

c5p = 9.29417 × 10−6, c6p = 0.0000493582,

c7p = 1.32562 × 10−6, c8p = 0.0000428366,

c9p = − 0.0000161778, c10p = − 7.02012 × 10−6,

c11p = − 4.71942 × 10−6, c12p = − 1.91428 × 10−8

Since vibrations amplitudes around this resonance
zone are much smaller then for the first resonance the
gain gvp need to be adjusted to higher values. Based
on experimental data, we accept gvp = 1 as a reference
value. The second-mode response surface plots are pre-
pared keeping the excitation amplitude fixed ξv = 0.4
and varying detuning parameter σv (excitation fre-
quency) and time delay τv . The amplitudes of oscilla-
tions for the stationary and the rotating beam configura-
tion� = 5 are presented in Fig. 14a and b, respectively.

The darker blue surfaces represent the desired con-
troller performance with just a few hills corresponding
to slightly increased amplitudes. Studying the plots it
may be concluded for the given excitation frequency
one may adjust the time delay to maximize the effec-
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Fig. 11 Resonance curves
of the system with P control
with various time delay; a
for � = 0, τv = 0 (black),
τv = 0.5 (blue), τv = 1.0
(green), τv = 1.5 (pink),
τv = 2.0 (orange), τv = 2.5
(magenta), b � = 2,
gvp = 0 (magenta), τv = 0
(black), τv = 0.5 (blue),
τv = 1.0 (green), τv = 1.5
(pink), c � = 0, τv = 3.0
(blue), τv = 3.5 (green),
and d � = 0, τv = 6
(black), τv = 6.5 (red); grey
line denotes resonance
curve for � = 0 and no
control; first flexural
vibration mode; gvp = 0.2,
ξv = 0.1, cv = 0.07032.
(Color figure online)

(a) (b)

(c) (d)

Fig. 12 Response of the
system with P control and
various detuning parameter;
a for � = 0, σv = −0.2
(blue), σv = 0 (black),
σv = 0.1 (red), σv = 1.5
(green), and b � = 2,
σv = −0.2 (blu2), σv = 0
(black), σv = 0.1 (red),
σv = 0.15 (green); first
flexural vibration mode;
gvp = 0.2, ξv = 0.1,
cv = 0.07032. (Color figure
online)

(a) (b)
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Fig. 13 Resonance curves
of the system with C control
and fixed time delay τv = 0
for a � = 0 and b � = 2;
gvc = 0.2 (blue), gvc = 0.5
(green), gvc = 0.12 (red),
gvc = −0.5 (orange),
gvc = −1.0 (magenta); grey
line: gvc = 0 and � = 0;
first flexural vibration mode;
ξv = 0.1, cv = 0.07032.
(Color figure online)

(a) (b)

Fig. 14 Amplitude of system response for P control against detuning frequency and time delay for a � = 0 and b � = 5; second
flexural vibration mode; gvp = 1.0, ξv = 0.4, cv = 0.220345

tiveness of the controller and retain possibly lowest
vibration amplitudes. The summits of pale blue hills are
located right at the second natural frequency (i.e., for
σv = 0) in the case of the non-rotating beam or shifted
toward higher frequencies to about σv = 4 for the
� = 5 rotatingbeam.This offset results purely from the
centrifugal stiffening effect. Nevertheless, the inherent
strong nonlinear behavior (softening type see Fig. 9)
of the second mode brings additional large amplitudes
solutions represented by orange surfaces in Fig. 14 even
if P controller is on.

The individual response curves for selected time
delays are clearly presented in Fig. 15. The resonance
curve of the system without control is marked by grey
line. When the control is triggered, the overall perfor-
mance of the system is quite similar to the first mode.
Increase in time delay first shifts the curves slightly
toward lower frequencies (Fig. 15a), but next the trend
is reversed and peaks are shifted a bit to the right
(Fig. 15b). By proper tuning of the time delay param-
eter τv , we can decrease amplitudes of the response
while keeping the natural frequency almost unchanged.
Meanwhile, the softening type of the characteristics
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Fig. 15 Resonance curves
of the system with P control
for � = 0 and various time
delay; a τv = 0 (green),
τv = 0.5 (black), τv = 1.0
(red), τv = 1.5 (blue) and b
τv = 2.0 (black), τv = 2.5
(blue), τv = 3.0 (green),
τv = 3.5 (red); grey line
denotes resonance curve for
� = 0 and no control;
second flexural vibration
mode; gvp = 1.0, ξv = 0.4,
cv = 0.220345. (Color
figure online)

(a) (b)

is maintained. On the other hand the poor choice of
time delay causes the dramatic increase in vibrations
amplitudes and enhances nonlinearity of the system as
presented in Fig. 15a for τv = 0.5 and Fig. 15b for
τv = 3.0. These cases correspond to orange areas in
Fig. 14. Possible consequences of the poorly tuned P
control are presented also in Fig. 16. Adjusting time
delay, wemay get low amplitude oscillations butmean-
while above these low amplitude sections there are iso-
lated closed loops representing large amplitude oscil-
lations with unstable bottom part of the “isola.” For
specific time delays where the “isolas” exist the basins
of attractions of all possible solutions have to be care-
fully checked.

To eliminate the presented above drawbacks of P-
controlwe propose to applyC strategywhich—as it has
been demonstrated earlier—allows to modify the slope
of the resonance curve. The coefficients of the govern-
ing equation Eq. (49) for the second mode take values

c1c = 324161.0, c2c = 1.6947,

c3c = −1482.37, c4c = 4554.81,

c5c = −746.448, c6c = −10.4145,

c7c = 1.70674, c8c = 1.14739,

c9c = 0.194208, c10c = 16,

c11c = −5.2442, c12c = 0.429713,

c13c = −0.00620533.

First it should be noted the value of the cubic control
gain gvc may get even two orders higher values than its
counterpart applied for the first mode. This is related to
the fact that the secondmode dimensionless amplitudes
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Fig. 16 Response of the system with P control and various
detuning parameters for � = 5, σv = 2.5, σv = 3.0, σv = 3.5,
σv = 4.0,σv = 4.5, σv = 5.0, σv = 5.5; second flexural vibra-
tion mode; gvp = 1.0, ξv = 0.4, cv = 0.220345

are much smaller than the first mode ones. Since these
values are put to the power 3 the difference must be
“compensated” by higher magnitudes of gain at second
mode. Accordingly, the second mode cubic gain may
approach values of about 1500 but we decided to take a
smaller value setting gvc = ± 500 as a reference level.

In contrast to the first-mode analysis now, we show
that the C-control strategy applied to mode 2 can mod-
ify the slope of the response characteristics by tuning
the time delay. The original resonance curve (grey line
in Fig. 17a) can be modified in terms of amplitudes and
also its slope can be changed from softening to harden-
ing.Moreover, the further increase in time delay results
in reduced amplitudes combinedwith amplified soften-
ing behavior evidenced by increased slope (Fig. 17b).
However, for negative time delays, the reduction of
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Fig. 17 Resonance curves
of the system with C control
at fixed gain and varied time
delay a τv = 0 (black);
τv = 0.2 (blue), τv = 0.5
(green), τv = 1.0 (red); b
τv = 2.0 (black); τv = 2.5
(blue), τv = 3.0 (green),
τv = 3.5 (red), and c
τv = −2.0 (black);
τv = −2.5 (blue),
τv = −3.0 (green),
τv = −3.5 (red); second
flexural vibration mode;
gvc = −500, ξv = 0.4,
cv = 0.220345; grey line
denotes resonance curve for
�=0 and no control. (Color
figure online)

(a) (b)

(c)

response is not so evident. Furthermore, the double
nonlinearities, namely the structural and control ones
result in presence of additional solutions observed by
isolated curves (Fig. 17c) of high amplitude. The spot-
ted additional solutions are adverse events in terms of
vibration reduction but they may be interesting while
designing the energy harvesters.

Having above results now we apply mixed P − C
control for the nonlinear second mode resonance. To
benefit from advantages of both controllers, we apply
cubic controller to get a pseudo-linear system and then
the linear controller to reduce vibrations. Therefore, we
set gvc = −500 and τv = 1 for the analysis which cor-
respond to linear-like response in Fig. 17 (red curve).
Next, we are to adjust the settings of the additional P
controller. The response surface in Fig. 18 presents the
characteristics of the beam against detuning parameter
σv and gain gvp. Obviously, for gvp = 0 we get purely Fig. 18 Amplitude of system response for P−C control against

detuning frequency and gain gvp; � = 0; second flexural vibra-
tion mode; gvc = −500, ξv = 0.4, cv = 0.220345
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Fig. 19 Resonance curves
of system for P − C
control; second flexural
vibration mode; a � = 0,
gvp = −1, τv = 1 (black),
gvp = 1, τv = −1.5 (red),
and b � = 5, gvp = −1,
τv = 1; gvc = −500,
ξv = 0.4, cv = 0.220345.
(Color figure online)

(a) (b)

cubic control strategy. To get more reduction, we have
to avoid the peak and select value out of this zone.

The resonance curve with activated P−C controller
at timedelay τv = 1 is presented inFig. 19aby theblack
line. The vibrations amplitude is reduced and the only
one solution exists. For comparison we study control
setting τv = −1.5 (red line)where the greater reduction
of the amplitude can be achieved. However, in this case,
additional isolated solutions exist (red isola), and they
are of large amplitude. Such situation requires a care-
ful detection of their basins of attraction to guarantee
safe system dynamics. The parameters of the combined
P − C controller can be applied for rotating beam as
well. The only difference is that the resonance curve
is shifted toward higher frequencies, as presented in
Fig. 19b.

6 Conclusions

The presented mathematical model of the rotating can-
tilever beam structure with active elements enables
analysis of free and forced oscillations of the struc-
ture corresponding to moderate-large amplitudes. The
partial differential equations and associated boundary
conditions are derived considering longitudinal and
transversal vibrations of the beam rotating with fixed
angular velocity� and preset to the hub at any arbitrary
angle. The performance of active elements has been
represented by non-homogenous terms in BCs. These
involved linear and nonlinear (cubic) control signals
with time delay. The set of partial differential equations
and associated BCs have been solved directly by the

multiple timescalesmethod up to the third-order pertur-
bation. The physical parameters of the model including
electromechanical parameters of the active elements
have been determined within the laboratory tests.

The analytically derived modulation equations of
the beam dynamics include most important structural
parameters and control gains that may be considered
as bifurcation parameters. The performed analysis of
the solutions revealed hardening for the first mode
and softening of the second vibration bending mode.
These effects are maintained also if angular velocity
is increased. It has been shown the rotation does not
change the curve slope (hardening or softening) but
just shifts the resonance zones toward higher frequen-
cies which is in an agreement with results presented in
paper [38] if angular velocity is not high.

To reduce vibrations of the system the linear pro-
portional P controller, nonlinear cubic C controller
and finally mixed P − C controller is proposed. It has
been shown for theweakly nonlinear system around the
first resonance the P controller is effective both for the
stationary as well as rotating beam. For the moderate
or strongly nonlinear system behavior corresponding
to second natural frequency multiple solutions occur
and thusmore advanced control techniques are applied.
The suggested strategy is based on the cubic or mixed
linear-cubic control results. It has been shown these two
approaches are capable to significantly reduce nonlin-
earities and to eliminatemultiple solutions. By a proper
tuning of control gains and time delaywe can determine
analytically domains of systemparameters correspond-
ing to unique (single) solution and zones with safe con-
troller performance. Therefore, it is possible to adjust
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controller parameters for safe operation of the system
at large oscillations and various angular speeds of the
beam.

The additional nonlinearity coming from controller
combined with beam’s second mode structural nonlin-
earity may lead to additional isolated solutions corre-
sponding to large amplitudes. That specific operation
of the system can be exploited in terms of energy har-
vesting when nonlinear oscillations are much desired
effect. The obtained analytical results will be tested in
the laboratory for actual implementations.
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Appendix A

For the coefficients presented in the Eq. (34) the first
longitudinal mode has coefficient φu = 0.5π , while
the flexural modes have ratios
• First mode:

φ = 1.8751, r1 = 0.367048, r2 = 0.5,

r3 = −0.367048, r4 = −0.5,

• Second mode:

φ = 4.69409, r1 = 0.509234, r2 = −0.5,

r3 = −0.509234, r4 = 0.5,

Fig. 20 Functions r5-r12
for the first flexural mode
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Fig. 21 Functions r5-r12
for second flexural mode

and graphical representation of functions r5-r12 get the
forms shown in Figs. 20 and 21, respectively.
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