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Abstract The friction-induced vibration of a novel

5-DoF (degree-of-freedom) mass-on-oscillating-belt

model considering multiple types of nonlinearities is

studied. The first type of nonlinearity in the system is

the nonlinear contact stiffness, the second is the non-

smooth behaviour including stick, slip and separation,

and the third is the geometrical nonlinearity brought

about by the moving-load feature of the mass slider on

the rigid belt. Both the linear stability of the system

and the nonlinear steady-state responses are investi-

gated, and rich dynamic behaviours of the system are

revealed. The results of numerical study indicate the

necessity of the transient dynamic analysis in the study

of friction-induced-vibration problems as the linear

stability analysis fails to detect the occurrence of self-

excited vibration when two stable solutions coexist in

the system. The bifurcation behaviour of the steady-

state responses of the system versus some parameters

is determined. Additionally, the significant effects of

each type of nonlinearity on the linear stability and

nonlinear steady-state responses of the system are

discovered, which underlie the necessity to take

multiple types of nonlinearities into account in the

research of friction-induced vibration and noise.

Keywords Friction-induced vibration � Multiple

nonlinearities � Non-smooth � Linear stability
analysis � Transient dynamic analysis � Nonlinear
steady-state response

1 Introduction

Friction-induced vibration is widespread in mechan-

ical systems as well as in everyday life, e.g. the sound

of bowed instruments, the squeaking windscreen

wiper, the chattering machine tools, the stick–slip

oscillations of drill strings and the automobile brake

noise [1–3]. Among them, the automobile brake noise

attracts great attention of engineers and researchers

due to its noise impact and scientific intricacy of this

problem [3].

There have been a number of published studies

which revealed rich dynamic behaviours in the

friction-excited systems. Popp et al. [4, 5] studied

discrete and continuous models exhibiting a stick–slip

phenomenon, and rich bifurcation and chaotic beha-

viours were observed. Elmaian et al. [6] investigated

the friction-induced vibration of a 3-DoF model that

displayed three distinct dynamic states, i.e. stick, slip

and separation, and the variations of time ratios of the

three states in the whole process with the system

parameters which can be linked to the appearance of

different categories of noises. Zhang et al. [7] used a
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flexible pin-on-disc system to simulate how squeal

noise could be generated in frictional contact and the

features of time-varying squeal because of periodic

friction coefficient were studied. Kruse et al. [8]

explored the effect of joints on the stability and

bifurcation behaviour of a system subject to friction-

induced flutter. Brunetti et al. [9] studied the dynamics

of a periodic modular lumped model in which each

module consists of a mass in frictional contact with the

moving belt and a mass linked with the adjacent

modules. Pilipchuk et al. [10] examined the non-

stationary effects in friction-induced vibration of a

two-degree-of-freedom brake model. It was found that

the system responses experienced qualitative transi-

tions due to the linearly deceasing velocity of the belt.

Wei et al. [11] established a 3-DoF dynamic model of

a brake system consisting of two-layer pads and a rigid

disc and the bifurcation and chaotic behaviour of

system responses dependent on the variation of brake

pressure, and the parameters of double-layer pads

were observed. Denimal et al. [12] proposed a new

method called the Generalized Model Amplitude

Stability Analysis to identify the contributions of

unstable modes involved in the nonlinear self-excited

vibration response and to estimate the limit cycles.

Lima and Sampaio [13] analysed a multiphysics

system with stick–slip oscillations where a mechanical

subsystem interacts with an electromagnetic subsys-

tem. Papangelo et al. [14] presented multiple localized

vibration states in a chain of weakly coupled friction-

excited oscillators. Von Wagner et al. [15] analysed

the stability behaviour of a disc brake model with a

wobbling disc. Sui and Ding [16] investigated the

instability of a pad on disc in moving interactions and

carried out a stochastic analysis. In the works [17, 18],

both the numerical simulation on the low-degree-of-

freedom models and the experimental validation on

the real test rigs concerning the friction-induced

vibration of systems were implemented.

There are two main categories of methods for the

analysis of friction-induced-vibration problems, i.e.

the complex eigenvalue analysis (CEA) and the

transient dynamic analysis (TDA). The linear complex

eigenvalue approach is often employed for the stabil-

ity analysis of the steady-sliding state. If at least one of

the eigenvalues of the linearized system has positive

real part, the steady-sliding state becomes unstable and

the system will show self-excited vibration. Hoffmann

et al. [19] used a 2-DoF model to clarify the

mechanism of mode-coupling instability of friction-

induced vibration. It was observed that as the friction

coefficient increases, the imaginary parts of eigenval-

ues coalesce and one real part becomes positive, which

indicates the occurrence of self-excited vibration in

the system. Ouyang and Mottershead [20] introduced

the velocity-dependent friction with the Stribeck

effect into the moving-load model for the vibration

of a car disc brake. The dynamic instability of the

system was identified by solving a nonlinear complex

eigenvalue problem. Kang [21] analytically investi-

gated the mode-coupling instability of a stationary

disc and two stationary brake pads with circumferen-

tial friction under steady-sliding condition. Liu et al.

[22] investigated the effects of key parameters on the

dynamic instability of a finite element brake model by

employing the CEA method. Because the CEA allows

all unstable eigenvalues to be found in one run and is

thus computationally efficient, it becomes a standard

analysis tool to predict brake squeal propensity in

industry [23–25].

The transient dynamic analysis of friction-induced

vibration has been performed by numerous research-

ers. Li et al. [26] examined the dynamics of a 2-DoF

model with nonlinear contact stiffness and the effects

of separation and reattachment on the vibration

amplitudes of dynamic responses were studied. Liu

and Ouyang [27] studied the friction-induced vibration

of a slider on an elastic disc spinning at time-varying

speeds and observed that the time-varying disc speed

could be a cause for unstable vibration. Sinou [28]

studied the transient and stationary self-excited vibra-

tion in a nonlinear finite element model of a disc brake.

Soobbarayen et al. [29] presented a numerical analysis

of the influence of the loading conditions on the

vibration and acoustic responses of a finite element

model. The numerical results showed that a suffi-

ciently fast ramp loading can destabilize a stable con-

figuration predicted by the stability analysis.

Papangelo et al. [30] investigated the subcritical

bifurcation of a slider-on-belt system in the case of a

weakening–strengthening friction law, and the results

showed that there was a range of the belt velocity

where two stable solutions coexisted, i.e. a stable slid-

ing equilibrium and a stable stick–slip limit cycle.

Zhang et al. [31] examined the dynamics of a 4-DoF

friction oscillator and found the CEA under-predicts

the instability of the system due to its inability to

detect the subcritical Hopf bifurcation. From the
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studies above, the drawbacks of the CEA method for

the analysis of nonlinear friction-induced vibration

can be observed. Firstly, the CEA may miss the

dynamic instabilities in some situations, e.g. when

subcritical Hopf bifurcation exists. Secondly, the real

part and imaginary part of an unstable eigenvalue do

not necessarily describe the amplitude and frequency

of the steady-state response of the system.

The nonlinearities in friction-induced-vibration

problems can originate from multiple sources, e.g.

nonlinear contact stiffness [26, 28, 31–33], non-

smooth behaviours including stick–slip and contact/

separation [6, 27, 34–37]. Although quite a few

published papers on friction-induced vibration took

the nonlinearities into account, a comprehensive

analysis of the effects of multiple types of nonlinear-

ities on the friction-induced self-excited vibration is

still lacking. In this paper, the dynamics of a 5-DoF

friction-excited slider-on-moving-belt model is stud-

ied, in which three representative types of nonlinear-

ities in the friction-induced-vibration problems are

present. The first type of nonlinearity is the nonlinear

contact stiffness, the second is the non-smooth

behaviours including stick, slip and separation, and

the third is the geometrical nonlinearity brought about

by the moving-load feature of the slider on the belt.

Both the linear stability of the system and the steady-

state responses are investigated by means of the CEA

and the TDA, respectively.

The rest of the paper is arranged as follows. In

Sect. 2, the system configuration of the slider-on-belt

model is introduced and the equations of motion for

the system in three different states: slip, stick and

separation, are derived. The conditions for the transi-

tions among these states are determined. In Sect. 3, the

procedures of the linear stability analysis and numer-

ical simulation scheme of the transient dynamic

analysis are stated. In Sect. 4, the numerical study of

the linear stability and nonlinear steady-state

responses of the system is conducted, where the

effects of each type of nonlinearity are examined.

Finally, in Sect. 5 the important conclusions are

drawn.

2 The mechanical model and dynamic equations

The model of the 5-DoF frictional system is shown in

Fig. 1, which consists of two parts, i.e. the mass slider

and the belt. The point mass slider, with mass M, is

constrained by a spring k1 and a damper c1 in the

horizontal direction and a damper c2 in the vertical

direction. Besides, a spring k3 at 45 degree relative to

the horizontal direction, which couples the vibration in

the two directions, is connected to the slider. The belt,

Fig. 1 The model of the 5-DoF frictional system

123

Friction-induced vibration considering multiple types of nonlinearities 2059



with mass m and rotational inertia about the mass

centre J, is moving at a constant speed v around two

wheels what are constrained by a set of spring–damper

system (k4, c4) in the horizontal direction and two sets

of spring–damper systems (k5, c5 and k6, c6) in the

vertical direction. The vertical spring–damper sys-

tems, which are located at the centres of the two

wheels at distances l1 and l2 from the mass centre of

the belt, respectively, also constrain the rotational

motion of the belt. A preload F is applied to press the

slider to be in frictional contact with the moving belt,

and Coulomb’s law of friction is utilized to model the

friction force on the interface. The contact between the

slider and the belt is assumed to be unilateral, and a

combination of a linear spring k2 and a nonlinear

spring knl with cubic stiffness is used to model the

contact stiffness. In this model, the horizontal and

vertical motion of the slider, as well as the horizontal,

vertical and rotational motion of the belt, is investi-

gated. Without loss of generality, the slider is assumed

to be right above the mass centre of the belt at zero

displacements.

The equations of motion of the 5-DoF system can

be written as,

where FT and FN represent the tangential friction force

and the normal force between the slider and the belt,

respectively. As the system may experience non-

smooth behaviours including slip, stick and separa-

tion, FT and FN will take different forms in distinct

states of motion.

When the slider is in contact with belt, in the states

of slip and stick, the normal force is the resultant force

of the linear spring k2 and the nonlinear spring knl, i.e.

FN ¼ k2 y2 � x1 � x2ð Þu� y1ð Þ
þ knl y2 � x1 � x2ð Þu� y1ð Þ3: ð2Þ

The friction force takes different forms in the states

of slip and stick. In the state of slip, the friction force is

expressed as,

FT ¼ sgn vrð ÞlkFN: ð3Þ

where vr ¼ vþ _x2 � _x1 and lk is coefficient of kinetic
friction. The condition for the system to stay in the

state of slip is,

vr 6¼ 0

FN [ 0

�
ð4Þ

In the state of stick, the friction force serves to

sustain the relative static state, i.e. vr ¼ 0, and thus can

be obtained from the equations of motion of the

system, as shown in Eq. (1). As the absolute belt

velocity here is vþ _x2, which is not known a priori, the

tangential velocity of the slider _x1 during sticking is

not known a priori either. In the following, a method to

derive the state variables and the friction force during

sticking is presented.

Firstly, it is obtained from vr ¼ 0 that

_x2 ¼ _x1 � v
€x2 ¼ €x1
x2 tð Þ ¼ x1 tð Þ � x1 tsð Þ � v� t � tsð Þ þ x2 tsð Þ

8<
: ð5Þ

where ts is the time at the onset of stick. Then, by

adding the third equation in Eq. (1) into the first

equation in Eq. (1), it is obtained that

M €x1 þ m€x2 þ c1 _x1 þ c4 _x2 þ k1 þ
1

2
k3

� �
x1 �

1

2
k3y1

þ k4x2
¼ 0

ð6Þ

M €x1 þ c1 _x1 þ k1x1 þ
1

2
k3x1 �

1

2
k3y1 ¼ FT

M €y1 þ c2 _y1 �
1

2
k3x1 þ

1

2
k3y1 þ F ¼ FN

m€x2 þ c4 _x2 þ k4x2 ¼ �FT

m€y2 þ c5 _y2 þ l1 _uð Þ þ k5 y2 þ l1uð Þ þ c6 _y2 � l2 _uð Þ þ k6 y2 � l2uð Þ ¼ �FN

J €uþ c5 _y2 þ l1 _uð Þl1 þ k5 y2 þ l1uð Þl1 � c6 _y2 � l2 _uð Þl2 � k6 y2 � l2uð Þl2 ¼ FN x1 � x2ð Þ

8>>>>>>><
>>>>>>>:

ð1Þ
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By substituting Eq. (5) into Eq. (6), the terms

involving x2, _x2, €x2 in Eq. (6) can be eliminated, i.e.

M þ mð Þ€x1 þ c1 þ c4ð Þ _x1 þ k1 þ
1

2
k3 þ k4

� �
x1

� 1

2
k3y1

¼ c4vþ k4 x1 tsð Þ þ v� t � tsð Þ � x2 tsð Þ½ �
ð7Þ

Similarly, the expression of x2 in Eq. (5) is substi-

tuted into other equations in Eq. (1) to eliminate the

terms involving x2. Therefore, the original 5-DoF

equations of motion involving x1, y1, x2, y2,u and their

velocities and accelerations are converted into a 4-

DoF equations of motion involving x1, y1, y2, u and

their velocities and accelerations, in the state of stick.

By integrating the 4-DoF equations of motion, the

values of x1, y1, y2, u (also including velocities and

accelerations) during sticking are obtained, and the

values of x2 (also including velocity and acceleration)

during sticking can also be acquired from Eq. (5).

Besides, the value of friction force during sticking can

be derived from the first or the third equation in

Eq. (1). The condition for the system to stay in the

state of stick is,

jFTj � lsFN

FN [ 0

�
ð8Þ

where ls is the coefficient of static fn.
While in the state of separation, the slider and the

belt are not in contact, therefore FN ¼ 0; FT ¼ 0. The

condition for the system to stay in the state of

separation is,

y2 � x1 � x2ð Þu� y1\0 ð9Þ

With the formulations of FT and in each of the three

states obtained, the equations of motion for each of the

states are determined. After separation, the condition

Eq. (9) is monitored for re-contact. Re-contact happens

when the slider’s vertical motion becomes equal to the

vertical motion of the belt at the contact point. And a

very short-lived impact force is considered to act

between the slider and the belt within a tiny time

duration of t�r ; t
þ
r

� �
. The method for determining the

values of the dynamic state variables immediately after re-

contact, which was given in [38], is employed in this

paper. For simplification, an assumption for the re-contact

is that the impact is perfectly plastic. Suppose the impulse

at tr is p and based on the theorem of conservation of

momentum, the velocity jump for the slider and the

belt due to the impact can be thus obtained as,

_y1 tþr
� �

� _y1 t�r
� �

¼ p

M
ð10Þ

_y2 tþr
� �

� _y2 t�r
� �

¼ � p

m
ð11Þ

_u tþr
� �

� _u t�r
� �

¼ p � x1 trð Þ � x2 trð Þð Þ
J

ð12Þ

For perfectly plastic impact, the slider has the same

vertical velocity as that of the belt at the contact point

at time tþr therefore

_y1 tþr
� �

¼ _y2 tþr
� �

� x1 trð Þ � x2 trð Þð Þ _u tþr
� �

ð13Þ

By substituting Eqs. (10–12) into Eq. (13), the values

of the impulse p and the state variables immediately

after re-contact can be obtained, which are,

p ¼
_y2 t�r
� �

� _y1 t�r
� �

� x1 trð Þ � x2 trð Þð Þ _u t�r
� �

1
M þ 1

m þ x1 trð Þ�x2 trð Þð Þ2
J

ð14Þ

_y1 tþr
� �

¼ _y1 t�r
� �

þ
_y2 t�r
� �

� _y1 t�r
� �

� x1 trð Þ � x2 trð Þð Þ _u t�r
� �

M 1
M þ 1

m þ x1 trð Þ�x2 trð Þð Þ2
J

h i

ð15Þ

_y2 tþr
� �

¼ _y2 t�r
� �

�
_y2 t�r
� �

� _y1 t�r
� �

� x1 trð Þ � x2 trð Þð Þ _u t�r
� �

m 1
M þ 1

m þ x1 trð Þ�x2 trð Þð Þ2
J

h i

ð16Þ

_u tþr
� �

¼ _u t�r
� �

þ
x1 trð Þ � x2 trð Þð Þ _y2 t�r

� �
� _y1 t�r

� �
� x1 trð Þ � x2 trð Þð Þ _u t�r

� �� �
J 1

M þ 1
m þ x1 trð Þ�x2 trð Þð Þ2

J

h i

ð17Þ

3 Linear stability analysis and transient dynamic

analysis

3.1 Linear stability analysis

In this section, the procedure to carry out the linear

stability analysis is introduced. Firstly, the equilibrium
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points of the system are determined by solving the

nonlinear static equations. Then, the equations of

motion of the system are linearized around the

equilibrium points and a linearized system is derived.

Finally, the eigenvalues of linearized system are

calculated to determine the stability of the steady-

sliding state for various values of key parameters.

3.1.1 Equilibrium points

By setting all the terms involving velocity and

acceleration in the equations of motion for the state

of slip to zero, the nonlinear algebraic equations

whose solutions are the equilibrium points are

obtained as

k1 þ
1

2
k3 � 1

2
k3 0 0 0

� 1

2
k3

1

2
k3 0 0 0

0 0 k4 0 0

0 0 0 k5 þ k6 k5l1 � k6l2

0 0 0 k5l1 � k6l2 k5l
2
1 þ k6l

2
2

2
6666666664

3
7777777775

x1

y1

x2

y2

u

2
6666664

3
7777775

þ

a1

a2

a3

a4

a5

2
6666664

3
7777775
¼

0

�F

0

0

0

2
6666664

3
7777775

ð18Þ

where

a1 ¼ �lk k2 y2 � x1 � x2ð Þu� y1ð Þ½

þknl y2 � x1 � x2ð Þu� y1ð Þ3
i

a2 ¼ �k2 y2 � x1 � x2ð Þu� y1ð Þ
� knl y2 � x1 � x2ð Þu� y1ð Þ3

a3 ¼ lk k2 y2 � x1 � x2ð Þu� y1ð Þ½

þknl y2 � x1 � x2ð Þu� y1ð Þ3
i

a4 ¼ k2 y2 � x1 � x2ð Þu� y1ð Þ
þ knl y2 � x1 � x2ð Þu� y1ð Þ3

a5 ¼ � x1 � x2ð Þ k2 y2 � x1 � x2ð Þu� y1ð Þ½

þknl y2 � x1 � x2ð Þu� y1ð Þ3
i

By solving Eq. (18), the equilibrium points can be

determined.

3.1.2 Complex eigenvalue analysis

By linearizing the nonlinear equations of motion

around the equilibrium points, a linearized system

results:

M€�xþ C _�xþK�x ¼ 0 ð19Þ

where �x ¼ x� xe, x ¼ x1; y1; x2; y2;u½ �T, xe ¼
x1e; y1e; x2e; y2e;ue½ �T is an equilibrium point. The

mass matrix, damping matrix and stiffness matrix of

the linearized system are,

M ¼ diag M;M;m;m; Jð Þ

C ¼

c1 0 0 0 0

0 c2 0 0 0

0 0 c4 0 0

0 0 0 c5 þ c6 c5l1 � c6l2
0 0 0 c5l1 � c6l2 c5l

2
1 þ c6l

2
2

2
66664

3
77775

and

K ¼

k1 þ
1

2
k3 þ Klkue � 1

2
k3 þ Klk �Klkue �Klk Klk x1 � x2ð Þ

� 1

2
k3 þ Kue

1

2
k3 þ K �Kue �K K x1 � x2ð Þ

�Klkue �Klk k4 þ Klkue Klk �Klk x1 � x2ð Þ
�Kue �K Kue Kþ k5 þ k6 �K x1 � x2ð Þ þ k5l1 � k6l2
�P K x1 � x2ð Þ P �K x1 � x2ð Þ þ k5l1 � k6l2 K x1 � x2ð Þ2þk5l

2
1 þ k6l

2
2

2
66666664

3
77777775
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K ¼ k2 þ 3knl y2e � x1e � x2eð Þue � y1e½ �2

P ¼ k2 y2e � y1e � 2ue x1e � x2eð Þ½ �

þ knl �3ue x1e � x2eð Þ y2e � x1e � x2eð Þue � y1e½ �2
n

þ : y2e � x1e � x2eð Þue � y1e½ �3
o

Then, the eigenvalues of the linearized system

above are calculated. If the real parts of all the

eigenvalues are negative, the equilibrium point corre-

sponding to the steady-sliding state is stable. If at least

one of the eigenvalues has a positive real part, the

equilibrium point is unstable, which leads to self-

excited vibration in the nonlinear system.

3.2 Transient dynamic analysis

Because FT and FN take different mathematical forms

in distinct states of motion, the dynamic system in

question is non-smooth, which brings about a diffi-

culty in numerical integration. To obtain the whole

time histories of the dynamic responses of the system,

the fourth-order Runge–Kutta method [39] is

employed to calculate the responses in every single

state, while conditions for the transition of states are

monitored at each time step. Within the time step in

which the transition of states occurs, the bisection

method is employed to capture the precise transition

time instant. After the transition point, the state

changes and the original set of equations of motion

is replaced by another one. The details of the algorithm

for the transient dynamic analysis are described in the

form of a flowchart in Appendix.

4 Numerical study

4.1 Stability analysis

According to the procedure given in Sect. 3.1, the

stability of the system at the equilibrium point is

analysed in this section, where the effects of different

types of nonlinearities are examined. As the focus of

this paper is on the effects of nonlinearities on the

friction-induced dynamics, some basic parameters are

assigned constant values if not specified otherwise,

which are listed in Table 1.

The results show that the mode-coupling instability

arises in the system with the variations of parameter

values; namely, the imaginary parts of two eigenval-

ues coalesce, and one of the real parts becomes

positive. In Figs. 2 and 3, the complex eigenvalues of a

pair of modes as a function of the friction coefficient

lk with a different nonlinear contact stiffness knl are

exhibited. For each value of knl, the mode-coupling

instability occurs in the system with the increase of lk.
The value of the friction coefficient at which the

instability occurs can be called the critical friction

coefficient. The comparison between the results of

different knl indicates that a larger nonlinear contact

stiffness leads to a smaller critical friction coefficient

for the instability. Besides, the comparison between

Figs. 2 and 3 suggests that the preload also influences

the critical friction coefficient. The relationship

between the critical friction coefficient and the preload

is depicted in Fig. 4, from which it is seen that the

critical friction coefficient for the instability decreases

with the increase in the preload.

Next, the effect of the geometrical nonlinearity

(GN) in the system on the stability is investigated. The

geometrical nonlinearity in the system is produced by

the combination of the relative motion between the

slider and the belt with the rotational motion of the

belt. In Fig. 5, the critical friction coefficient for the

instability as a function of the preload when the

Table 1 The values of the constant system parameters

M m J c1 c2 c4 c5 c6 v

1 kg 1 kg 0:1 kg m2 0:1 N m s 0:1 N m s 0:1 N m s 0:1 N m s 0:1 N m s 1 m=s

k1 k2 k3 k4 k5 k6 l1 l2

104 N=m 5 � 103 N=m 6 � 103 N=m 104 N=m 104 N=m 104 N=m 0.2 m 0.2 m
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rotational motion of the belt is not considered, i.e.

without the geometrical nonlinearity, is compared

with that of the original 5-DoF system, i.e. with the

geometrical nonlinearity. It is clearly observed that the

critical friction coefficient for the instability with the

geometrical nonlinearity is quite smaller than without.

In another word, the geometrical nonlinearity pro-

motes the occurrence of the instability. Besides,

another effect of the geometrical nonlinearity on the

stability is found. Figure 6 shows the complex eigen-

values analysis results of the system in the two

situations, i.e. with and without geometrical nonlin-

earity, when F ¼ 1000N, l1 ¼ 0:1m, l2 ¼ 0:3m. It is

seen that the system with the geometrical nonlinearity

exhibits more complex behaviour of instability than

without. For the system without the geometrical

nonlinearity, there is only one instability when lk is

larger than its critical value. For the system with the
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geometrical nonlinearity, however, two instabilities

arise (the real parts of two pairs of conjugate

eigenvalues become positive) when lk is within a

certain range and one of the instabilities disappears for

large value of lk. This example indicates that the

geometrical nonlinearity increases the complexity of

the instability in the system.

Lastly, the nonlinearity with respect to the non-

smooth behaviours has no effect on the stability of the

system at the equilibrium point because the system is

in the state of slip near the equilibrium point.

4.2 Nonlinear steady-state responses

In this section, the nonlinear steady-state responses of

the system are investigated by means of the transient

dynamic analysis. The values of the basic system

parameters are the same as those in Table 1. The

effects of different types of nonlinearities on the

steady-state responses of the system are examined.
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4.2.1 The characteristics of the steady-state

responses of the system

Firstly, the time responses of the system under three

different values of lk 0:3; 1:4; 2:5ð Þ with ls ¼ 3, knl ¼
104 N=m and F ¼ 200N are obtained in Fig. 7. For

each lk, the solutions of the nonlinear algebraic

equations in Eq. (18) consist of a solution of real

numbers and a pair of solutions of conjugate complex

numbers. The solution of real numbers is the equilib-

rium point of the system, which is,

xe ¼ �0:0042 m;�0:0304 m;�0:0036 m;½
�0:0061 m;�0:0001 rad�T; for lk ¼ 0:3;

xe ¼ �0:0053 m;�0:0263 m;�0:0147 m;½
�0:0053 m; 0:0026 rad�T; for lk ¼ 1:4;

xe ¼ 0:0124 m;�0:0233 m;�0:0232 m;½
�0:0046 m; 0:0041 rad�T for lk ¼ 2:5:

It is worth noting that a mode-coupling instability

happens in the system with the increase of lk. The

eigenvalues of the coupled modes for the three values

of lk are �0:05� 100i;�0:04� 89:4i½ �, �0:05�½
98:7i;�0:048� 93:7i� and 11:98� 102:6i;�12:08�½
102:6i�, respectively; therefore lk ¼ 0:3 and 1:4 lead

to a stable equilibrium point, and lk ¼ 2:5 leads to an

unstable equilibrium point. In Fig. 7, the exhibited

time responses for each value of lk are acquired from

two different initial conditions, i.e. one near the

equilibrium point and the other far from the equilib-

rium point. When lk ¼ 0:3, the dynamic responses

from both initial conditions approach the equilibrium

point, indicating there is only one stable solution for

the system responses, i.e. the equilibrium point. When

lk ¼ 2:5, the dynamic responses from both initial

conditions approach the same limit cycle, indicating

there is only one stable solution for the system

responses, i.e. the limit cycle vibration. When

lk ¼ 1:4, however, the two initial conditions lead to

different steady-state responses. The dynamic

responses from the initial condition near the equilib-

rium point approach the equilibrium point, while the

dynamic responses from the initial condition far from

the equilibrium approach the limit cycle vibration,

Fig. 7 The time responses of the system under three different values of lk 0:3; 1:4; 2:5ð Þ with ls ¼ 3, knl ¼ 104 N=m and F ¼ 200N

from two different initial conditions: a, c, e near the equilibrium point and b, d, f far from the equilibrium point
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which indicates the coexistence of two stable solutions

in the system. This example shows that the linear

stability analysis at the equilibrium point in the

friction-excited system fails to detect the occurrence

of self-excited vibration when the system is bi-stable,

which can only be found out by a transient dynamic

analysis.

In Fig. 8, the steady-state limit cycle vibration

when lk ¼ 1:4 and lk ¼ 2:5 is further compared in

terms of the contact forces, the phase plots and the

frequency spectra. It is deduced from Fig. 8a, c, e that

the steady-state dynamic responses of the systemwhen

lk ¼ 1:4 are periodic with the frequency of around

1:58Hz, while Fig. 8b, d, f demonstrates that the

steady-state dynamic responses when lk ¼ 2:5 are

non-periodic. Therefore, the system responses bifur-

cate with the variation of lk and the bifurcation

behaviour of the system with the given parameter

values is displayed in Fig. 9, which shows the values

of x1 at the transition points from slip to stick. It shows

that the system has periodic steady-state responses

when 0:9� lk\1:8 and non-periodic responses when

0:4� lk\0:9 or 1:8� lk\3. Besides, an index is

Fig. 8 The steady-state limit cycle vibration in terms of the contact forces, the phase plots and the frequency spectra: a, c, e lk ¼ 1:4
and b, d, f lk ¼ 2:5
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Fig. 9 The bifurcation behaviour of the steady-state limit cycle

vibration of the system
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defined to measure the intensity of steady-state

vibration of the system, which is,

Ls ¼
X5
i¼1

rT Xi � Xieð Þ2
h i

dt

T
ð20Þ

where Xi i ¼ 1; 2; 3; 4; 5ð Þ represents the dynamic

response x1, y1, x2, y2, u, respectively; Xie is the value

of the equilibrium point and T represents a time period

in the steady state. Index Ls as a function of lk is

shown in Fig. 10, from which it is observed that the

system has a single stable equilibrium point when

lk\0:4 and a single stable limit cycle when lk [ 1:5,

while two stable steady-state solutions coexist when

lk 2 0:4; 1:5½ �.

4.2.2 The effects of nonlinearities on the steady-state

responses of the system

First of all, the effects of the nonlinear contact stiffness

on the steady-state responses are investigated. With

different values of knl and the same values of other

parameters as those in Sect. 4.2.1, the bifurcation

behaviours of the steady-state limit cycle vibration of

the system, which reveal the periodicity of the steady-

state responses with the variation of lk, are shown in

Fig. 11. By comparing the results in Fig. 11 with those

in Fig. 9, it is observed that the bifurcation behaviours

of the steady-state responses when knl ¼ 0 and knl ¼
104 N=m are alike, while the bifurcation behaviour of

the steady-state responses when knl ¼ 107 N=m is

quite different. Figure 11(a) shows that the system in

the case of knl ¼ 0 also has periodic steady-state

responses when 0:9� lk\1:8, except lk ¼ 1:3.

Besides, the system when knl ¼ 0 has stable periodic

limit cycle vibration at lk ¼ 0:05, which is different

from the result of the system with knl ¼ 104 N=m.

Figure 11b demonstrates that the system has periodic

steady-state responses when 0:75� lk � 2:9 or

lk ¼ 0:1, and the values of x1 at the transition points

from slip to stick are approximately identical when lk
lies in the above range, as shown in the figure,

indicating that the system responses in the above range

of lk are close. In Fig. 12, index Ls as the function of

lk with three values of knl, i.e. knl ¼ 0, 104 N=m and

107 N=m, is depicted. The range of lk in which two

stable steady-state solutions (the equilibrium point and

the limit cycle) coexist in the system is identified,

which is 0:4; 1:5½ � for both knl ¼ 0 and knl ¼ 104 N=m,

and 0; 0:6ð � for knl ¼ 107 N=m. Besides, the values of

Ls as the function of lk roughly reflect the intensity of
steady-state vibration of the system at different values

of lk. For knl ¼ 0 and knl ¼ 104 N=m, the steady-state

Fig. 11 The bifurcation behaviours of the steady-state limit cycle vibration of the system with different values of knl a knl ¼ 0 and b

knl ¼ 107 N=m
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vibration generally gets stronger for larger values of

lk. For knl ¼ 107 N=m, however, the steady-state

vibration is weaker when 0:75� lk � 2:9, namely,

when the system has periodic oscillations, than that

when the system has non-periodic oscillations. Based

on the above observations, it is concluded that the

nonlinearity from the contact stiffness has a significant

effect on the steady-state responses of the system.

Secondly, the effects of the geometrical nonlinear-

ity in the system on the steady-state responses are

investigated. To reveal the effects of the geometrical

nonlinearity, the steady-state responses of the system

without the geometrical nonlinearity are calculated

and compared with the results of the original system

with the geometrical nonlinearity. In Fig. 13, the

bifurcation behaviours of the steady-state limit cycle

vibration of the system without the geometrical

nonlinearity are plotted. It is seen that the system

experiences nearly unchanged periodic oscillations

when lk varies within 0:38; 2:95½ � in the case of knl ¼
0 and knl ¼ 104 N=m, and the representative phase-

plane plots of the periodic oscillations are depicted in

Fig. 13d, e. In the case of knl ¼ 107 N=m, the system

has non-periodic steady-state responses when lk is

very small and similar periodic responses as lk varies
within 0:05; 2:95½ �. The representative phase-plane

plot of the periodic responses is depicted in Fig. 13f,

which is different from those in the case of knl ¼ 0 and

knl ¼ 104 N=m. Index Ls as a function of lk for the

system without the geometrical nonlinearity is pre-

sented in Fig. 14, which shows a much more steady

pattern of the values of Ls with the variation of lk than
the counterpart of the system with the geometrical

nonlinearity. Besides, the steady-state responses with

different values of preload F when lk ¼ 2:5 and knl ¼
107 N=m in the two situations, i.e. with and without

the geometrical nonlinearity, are calculated, and the

bifurcation behaviours and index Ls are shown in

Fig. 15. By the comparison between the results in the

two situations, it is clearly seen that the system

responses with the geometrical nonlinearity experi-

ence more fluctuations than those without the geo-

metrical nonlinearity as preload F varies, in terms of

the periodicity and intensity of the steady-state

Fig. 13 The bifurcation behaviours of the steady-state limit cycle vibration (a–c) and phase-plane plots when lk ¼ 2 (d–f) for the

system without the geometrical nonlinearity: a, d knl ¼ 0, b, e knl ¼ 104 N=m and c, f knl ¼ 107 N=m
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vibration. Based on the above observations, it is

concluded that the geometrical nonlinearity has a

significant effect on the steady-state responses of the

system, and the system responses in the presence of

geometrical nonlinearity are more changeable with the

variations of parameters (e.g. lk and F) than those

without geometrical nonlinearity.

Thirdly, the effects of the non-smooth behaviours

on the steady-state responses of the system are

investigated. Many previous studies [7, 8, 31, 40] only

took the state of relative sliding into account when

investigating the dynamics of frictional systems, while

the states of stick and separation will actually happen

in the vibration of frictional systems because of the

discontinuous friction force and the unilateral contact.

To reveal the effects of the non-smooth behaviours

including stick–slip and contact/separation on the

steady-state responses of the system, the dynamic

responses when the non-smooth behaviours are not

considered, i.e. there exists the single state of relative

sliding in the vibration, are calculated and compared

with the results of the original system. In Fig. 16, the

dynamic responses of the system in the two situations,

i.e. including and excluding the non-smooth
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behaviours, are depicted for comparison, where

lk ¼ 2:5, ls ¼ 3, knl ¼ 107 N=m, F ¼ 800N and the

values of other basic parameters are the same as those

in Table 1 except k4 ¼ k5 ¼ k6 ¼ 5 � 106 N=m in this

example. From this figure, it is observed that the

amplitudes of dynamic responses when excluding the

non-smooth behaviours are much larger than those

when including the non-smooth behaviours in the

vibration. It should be noted here the contact between

the slider and the belt is assumed to be bilateral (i.e.

maintained) when the non-smooth behaviours are

excluded; therefore, normal force FN is allowed to

become negative. With the values of other parameters

unchanged and lk as the control parameter, the

bifurcation behaviour and index Ls of the steady-state

responses in the two situations are plotted in Fig. 17.

In the bifurcation diagram for the situation when the

non-smooth behaviours are excluded, the values of x1
when _x1 ¼ 0 at each lk are displayed, which indicate

that the steady-state dynamic responses are periodic

for all lk � 1:4. The bifurcation diagram for the

situation when the non-smooth behaviours are

included, however, shows that the steady-state

dynamic responses are non-periodic for most values

of lk. Another difference between the results in these

two situation is that the limit cycle vibration appears

from very small lk (0.15) when the non-smooth

behaviours are included, while in the situation of

excluding non-smooth behaviours, the limit cycle

vibration arises from lk ¼ 1:4, which is only slightly

smaller than the critical friction coefficient for the

instability of the equilibrium point that is 1:735 in this

example, as indicated in Fig. 17c. Besides, the values

of index Ls in these two situations in Fig. 17c

demonstrate that the steady-state vibration when

excluding non-smooth behaviours is much stronger

than that when the non-smooth behaviours are

included. Based on the above observations, it is

concluded that the nonlinearity of the non-smooth

behaviours in the system also has a significant effect

on the steady-state responses of the system. Therefore,

it is indispensable to incorporate all non-smooth

behaviours including stick, slip and separation in

order to accurately acquire the dynamic responses of

the frictional systems.

The unstable eigenfrequencies obtained from the

CEA are usually regarded as the frequencies of the

self-excited vibration in the brake system in industry,

which may not be accurate as the nonlinearities in the

brake system can cause the frequencies of the self-

excited vibration to be quite different from the

unstable eigenfrequencies in the linearized system.

To clarify their differences, the frequencies of the

steady-state responses are compared with the unsta-

ble eigenfrequencies in the linearized system in a

numerical example, where the values of other param-

eters are the same as those in Fig. 17. The colour in

Fig. 18 indicates the response amplitude, and the dark

marked lines exhibit the unstable eigenfrequencies in

the linearized system with the variation of lk. It is
observed from Fig. 18a that the frequencies of the

steady-state responses in this nonlinear frictional

system deviate markedly from the unstable eigenfre-

quencies in the linearized system. To reveal the effects

of each type of nonlinearity, the comparisons are also

made when a single type of nonlinearity exists in the
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system and displayed in Fig. 18b–d, which show that

the frequencies of the steady-state responses are close

to the unstable eigenfrequencies in the situation of the

single geometrical nonlinearity, while in the situations

of the single nonlinearity of contact stiffness and

the single nonlinearity of non-smooth behaviours,

there exist larger differences between the frequen-

cies of the steady-state responses and the unstable

eigenfrequencies.

5 Conclusions

In this work, the dynamics of a novel 5-DoF mass-on-

belt frictional model with three different types of

nonlinearities is investigated. The first type of nonlin-

earity is the nonlinear contact stiffness, the second is

the non-smooth behaviour including stick, slip and

separation, and the third is the geometrical nonlinear-

ity caused by the moving-load feature of the mass on

the rigid belt. Both the linear stability of the system

and the nonlinear steady-state responses are studied.

The effects of each type of nonlinearity on the system

dynamics are revealed. Based on the observations

from the numerical study, the following conclusions

are reached,

1. The mode-coupling instability arises in the system

with the increase in the coefficient of kinetic

friction lk. The critical friction coefficient for the

instability decreases with the increase in the

preload.

2. The nonlinearity of contact stiffness and the

geometrical nonlinearity have significant effects

on the linear stability of the system. The increase

in nonlinear contact stiffness leads to the decrease

in critical friction coefficient for the instability.

The presence of geometrical nonlinearity con-

tributes to the decrease in critical friction coeffi-

cient for the instability and increases the

complexity of the instability in the system.

3. There is coexistence of two stable solutions, i.e.

the equilibrium point and the limit cycle vibration,

in the system in a certain range of lk, and the

linear stability analysis fails to detect the occur-

rence of self-excited vibration when the system is

bi-stable, which can only be found out by the

transient dynamic analysis. Besides, the bifurca-

tion behaviour of the steady-state responses of the

system with the variation of lk is found.

Fig. 18 The frequencies of the steady-state responses of the

system and unstable eigenfrequency of the linearized system

a with all three types of nonlinearities, b with the single

nonlinearity of contact stiffness, c with the single geometrical

nonlinearity and d with the single nonlinearity of non-smooth

behaviours
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4. Each of the three different types of nonlinearities

has significant effects on the steady-state

responses of the system, which are demonstrated

in the numerical study.

5. Frequencies of the steady-state responses in this

nonlinear frictional system deviate markedly from

the unstable eigenfrequencies of the linearized

system, and each type of nonlinearity has different

effects on the deviation of vibration frequencies

from the unstable eigenfrequencies.

Fig. 19 The flowchart of the algorithm for the transient dynamic analysis of the system
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Appendix

The flowchart of the algorithm for the transient

dynamic analysis of the system is shown in Fig. 19.
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