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Abstract We theoretically and experimentally exam-
ine the effect of forcing and damping on systems that
can be described by the nonlinear Schrödinger equation
(NLSE), by making use of the phase-space predictions
of the three-wave truncation. In the latter, the spec-
trum is truncated to only the fundamental frequency
and the upper and lower sidebands. Our experiments
are performed on deep water waves, which are bet-
ter described by the higher-order NLSE, the Dysthe
equation. We therefore extend our analysis to this sys-
tem. However, our conclusions are general for NLSE
systems. By means of experimentally obtained phase-
space trajectories, we demonstrate that forcing and
damping cause a separatrix crossing during the evo-
lution. When the system is damped, it is pulled out-
side the separatrix, which in the real space corresponds
to a phase-shift of the envelope and therefore doubles
the period of the Fermi–Pasta–Ulam–Tsingou recur-
rence cycle. When the system is forced by the wind, it
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is pulled inside the separatrix, lifting the phase-shift.
Furthermore, we observe a growth and decay cycle for
modulated plane waves that are conventionally consid-
ered stable. Finally,we give a theoretical demonstration
that forcing the NLSE system can induce symmetry
breaking during the evolution.

Keywords Phase-shift ·NLS ·Gravity surface waves ·
Separatrix crossing · Symmetry breaking

1 Introduction

The nonlinear Schrödinger equation (NLSE) describes
the propagation of the field envelope in many dif-
ferent systems, for instance in optical fibers, Bose–
Einstein condensates, water waves, and Langmuir
waves in hot plasmas [1–4]. Elementary solutions of
the NLSE include plane waves, solitons and breathers.
The plane wave solution is subject to modulation insta-
bility (MI) [5]: the linear stability analysis of the
NLSE reveals that within a certain frequency band-
width, a modulation—perturbation—to the plane wave
will grow exponentially. It therefore modulates the
amplitude of the plane wave, generating a train of
sharp pulses [6]. Remarkably, the MI can exhibit
cyclic behavior, known as the Fermi–Pasta–Ulam–
Tsingou (FPUT) recurrence [7]: Despite complex non-
linear dynamics, the system returns to its initial condi-
tion.
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We are interested in the effect of forcing and
damping on the dynamics of the system, specifi-
cally on the recurrence cycle. Many systems that can
be described by the NLSE naturally undergo dissi-
pation, however, not many allow to be forced [8].
Water waves can undergo both: While viscosity is a
natural source of damping, wind can provide forc-
ing.

Thus we performed experiments in a wind-wave
facility to corroborate our theoretical results. To accu-
rately describe the nonlinear group velocity and asym-
metries in the spectrum of water waves that arise
due to the high steepness and spectral broadening
[9], the higher-order version of the NLSE, the Dys-
the equation [10] is required. Unlike the NLSE, there
are no known analytic solutions to the Dysthe equa-
tion.

To study the essential physical behavior of the
NLSE and allow explicit calculations, the spectrum
can be truncated to only three-wave components: the
main mode, and upper and lower sidebands [11]. A
phase-space can be spanned by the relative ampli-
tudes of sidebands with respect to the main mode ηF
and the relative phase ψ between the sidebands and
the main mode. In the same manner, a three-wave
truncation can be performed for the Dysthe equation
[12].

While the primary effect of forcing and damping
is to make the amplitude grow and decrease, respec-
tively, their influence on the phase-space is nontriv-
ial. In this paper, the three-wave truncation allows us
to trace the trajectory of the wave tank measurement
in the phase plane, offering an explicit understanding
of the complex evolution of the system. For modula-
tion frequencies inside the MI-band, we experimen-
tally demonstrate that dissipation attracts trajectories
outside the separatrix, whereas forcing attracts them to
the inside. As such, forcing and damping can cause a
separatrix crossing during the evolution of the system
[13,14]. Furthermore, while no modulation is expected
outside of theMI-band,we experimentally demonstrate
the growth and decay cycle of solutions as predicted by
[15] in this regime. In addition, we perform long dis-
tance simulations in which forcing induces a symme-
try breaking in the three-wave phase-space: By mov-
ing the modulation frequency inside the MI-band, the
Hamiltonian is transformed from a single to a double
well.

2 Theory

To take into account the viscous-damping and the
wind-forcing of water waves, we developed the forced-
damped Dysthe equation for the propagation of the
envelope [16]:
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where a is the envelope, ξ is adimensional space, τ adi-
mensional time, and δ0, δ1 the balance between forcing
and damping at the leading and higher order, respec-
tively. The steepness ε = A0k0

√
2, where A0 is the

reference amplitude of an ideally stable Stokes’ wave
and k0 the wavenumber. Quantities have been adimen-
sionalized in the following way:

t ′ = t − x/cg, lin a = ã/A0 (2)

τ = t ′/T0, T0 = 1/(ω0ε) (3)

ξ = x/L0, L0 = 1/(2ε2k0) (4)

δ0 = T0
2ε

(


 − 4k20ν
)

δ1 = 2T0
(


 − 5k20ν
)

(5)

where cg, lin = 1
2 (g/k)−1/2 is the linear group velocity

in the deep-water limit, ã the dimensional envelope, ν
the kinematic viscosity and 
 the wind growth rate.

The forced-damped Dysthe equation gives good
agreement with experiments thanks to the higher-order
terms that reproduce the asymmetries in the spectrum
[16]. The three-wave truncation allows the system to
be described more thoroughly as it enables to study its
dynamics explicitly. Below we briefly recall the rel-
evant notation and conclusions from an earlier work
[17].

Assuming that the system behavior can be ade-
quately described by restricting ourselves to three
modes, namely a main mode and two sidebands, we
can write for the envelope a:
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(a1) (b1) (c1)

(a2) (a3) (b2) (b3) (c3)

(c2)

Fig. 1 Conservative dynamics of the three-wavemodel based on
the Dysthe equation without the 2a2 ∂a∗

∂τ
term. a1, b1 Wrapped

phase-space of ηF and ψ . Initial conditions: ε = 0.05, α = 0.
a 
mod = 2.4: outside of the MI-band. Purple: ψ = 0,
δ0 = δ1 = 0. b 
mod = √

2: inside the MI-band, δ0 = δ1 = 0.

Green: ψ = π/2. Blue: ψ = 0. See also Supplementary movie
1. a2, b2 Corresponding evolution of ηF. a3, b3 Corresponding
evolution of ψ . c Evolution of the envelope in the Dysthe equa-
tion Eq. 2. c1 P2 solution (green in b), c2 AB with ξ0 = −5 and
c3 P1 solution (blue in b). (Color figure online)

a(ξ, τ ) = a0(ξ) + a1(ξ)e−i
τ + a−1(ξ)ei
τ (6)

That is, thewave is reduced to a harmonically perturbed
plane wave (HPPW). Inserting this into Eq. 2 gives a
system of three ordinary differential equations for ∂am

∂ξ

(Eq. (5) of [17]). Writing

am(ξ) = √

ηm(ξ)eiφm (ξ) , (m = 0,±1) (7)

allows to construct a closed system of equations, con-
sisting of an evolution equation in ξ for each of the
following quantities (Eq. (6) in [17]):

N3 ≡ η0 + η1 + η−1 Norm (8a)

ηF ≡ (η1 + η−1)/N3 Sideband fraction (8b)

ψ ≡ (φ1 + φ−1 − 2φ0) Relative phase (8c)

α ≡ (η1 − η−1)/N3 Sideband imbalance (8d)

This three-wave system closely describes the dynamics
of the full spectrum, where the sideband imbalance α

is the three-wave counterpart of the spectral mean, and
N3 that of the full norm.

2.1 Conservative dynamics

For the three-wave system, a phase-space (ηF cos(ψ),
ηF sin(ψ)) can be constructed as in Fig. 1. The level
sets mark a constant Hamiltonian of the conservative
Dysthe equation (δ0 = δ1 = 0), neglecting the term
2a2 ∂a∗

∂τ
that is partly responsible for the growth of the

spectral asymmetry [12]. It is well known that the lin-
ear stability analysis of the NLSE reveals that a plane
wave is unstable to perturbations with a modulation
frequency 
mod < 2, and a maximum instability at

mod = √

2. For the Dysthe equation the MI-band is
slightly modified, depending on the wave-steepness ε

[10]. Like for the conventional NLSE, see [18] for a
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comprehensive overview, the three-wave Hamiltonian
has a single-well shape when 
mod is outside the MI-
band (Fig. 1a1). When
mod is inside theMI-band, it is
a double-welled (Fig. 1b1). See Supplementary Movie
1 of this symmetry breaking as a function of 
mod.

2.1.1 Outside the MI-band

The oval shape of the Hamiltonian level sets in Fig. 1a
show that, contrary to the prediction of the linear sta-
bility analysis, there is an oscillation of the sideband
amplitude ηF (as exemplified by the purple trajectory
in (a2)), and thus a growth and decay cycle of the enve-
lope amplitude.

2.1.2 Inside the MI-band

For 
mod inside the MI-band (Fig. 1b, c), a separa-
trix marks the boundary in the double-welled land-
scape, separating the two types of trajectories in the
phase plane. The separatrix corresponds to the Akhme-
diev Breather (AB) solution in the conservative NLSE
frame. However, because the Dysthe equation is not
integrable, the separatrix corresponds to the AB solu-
tion only for small initial sidebands and neglecting
small fluctuation in the spectral mean.

Outside the separatrix (i.e., higher Hamiltonian val-
ues), trajectories (displayed in green inFig. 1b) undergo
a π phase-shift at each recurrence of ηF, so that the
period of the whole system is twice that of the ηF

1. We
therefore term these trajectories period-2 or P2 solu-
tions (green). As the phase crosses ψ = nπ (Fig. 1b3)
a phase-shift occurs. Fig. 1c1 shows the real-space evo-
lution of the solution in which the phase-shift is appar-
ent as a shift of the second focal point with respect to
the dashed line.

For lower Hamiltonian values, closed trajectories
remain within the separatrix and have the same period
for ψ and ηF. We term these period-1 or P1 solutions
(blue).

1 We use the term ‘recurrence’; however, strictly speaking, this
is a quasi-recurrence, since in the Dysthe equation there is no
an exact return to the initial conditions. This holds even stronger
when the system is damped and forced. However, we use this
term to refer to the general process of modulation–demodulation
and oscillation of ηF and ψ .

2.1.3 Link to Type A and Type B solutions

Ref. [19] derives a three parameter family of solu-
tions of the NLSE, of which the Akhmediev breather
(AB),Kuznetsov-MaandPeregrine breather are special
cases. In this framework, a phase-space can be spanned
by R(a(ξ, τm)), I(a(ξ, τm)), where τm = n/
mod is
the time-point where maximal modulation occurs, see
for instance [20].

The AB forms the separatrix between two types
of solutions, labelled type A and type B. Type A-
solutions share the characteristic phase-shift with the
three-wave P2 solutions, whereas type B solutions, like
P1 solutions, show no phase-shift and therefore have
a period half that of type A. Note, however, that in
this phase-space, type A solutions are on the inside
of the separatrix, and type B solutions are on the out-
side.

In addition, type A solutions can grow outside of
the MI-band, whereas type B solutions do not [15].
Differently put, based on the single well in Fig. 1a1,
only P2 or type A solutions exist outside of the MI-
band.

2.2 Nonconservative dynamics: damping and forcing

Based on the above reminders, it is clear that in a con-
servative system (δ0 = δ1 = 0), the initial condition
starts in either the P1 or a P2-basin and stays there. P1
and P2 trajectories have been experimentally observed
in fiber optics by choosing the corresponding initial
value for ψ [18,21].

For a non-conservative system, however, we deduce
in [17] that the attraction basin is determined by the
leading-order term of the forcing/damping balance
δ0. In the viscous regime (δ0 < 0), the solution is
attracted to the P2 solution outside the separatrix.
In the wind-forced regime (δ0 > 0), the solution is
attracted to the P1 solution, i.e., to an evolution with-
out phase-shift. Damping and forcing changes the norm
N3 and thus contracts / expands the phase space: as
such, the separatrix can be crossed during the evolu-
tion.

Dissipation is naturally present in most systems. For
dissipative water waves, long-tank experiments have
demonstrated the phase-shifted P2 trajectories [3,22],
and consequently the doubling of the FPUT recurrence
frequency. In the present work, we shall experimen-
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Fig. 2 Wind-wave facility: side view and top view, not to scale.
The tank has a water depth of 80 cm. An 8-m sloping beach pre-
vents wave reflection. At the beginning of the tank, a 1.5-m-long
floating sheet damps possible high-frequency mechanical wave

modes and guides the incoming wind tangential to the water sur-
face. The air channel above the tank is 1.5 m high. Twelve wave
gauges were placed in the center of the tank, and 3 wave gauges
were placed 30 cm from the side wall

tally show that forcing attracts to P1 trajectories and
that damping and forcing allows to cross the separatrix
during the evolution.

3 Experimental setup and simulation parameters

The main goal of our experiment is to demonstrate
that wind-forcing can attract trajectories towards P1
solutions. In doing so, we use forcing to cross the
separatrix during the evolution. The attraction from
one regime to another can take several recurrence
cycles, depending on the initial distance to the sep-
aratrix. Therefore, the tank length is a critical limit-
ing factor. While for dissipative experiments very long
tanks (up to 250 meters [3,22]) are available, typically
closed air-loop wind-facilities are much shorter. Fur-
thermore, a certain amount of wind-forcing is needed
to overcome the viscous dissipation. However, too
much wind forcing induces wave breaking, which is
a form of dissipation and, therefore, sets an upper
bound to the amount of forcing. The combination
of these factors drastically narrows the window to
observe the opposing behavior of damping and forc-
ing.

In addition, we examine the behavior for an initial
condition outside the MI-band, for which we confirm
the prediction that there are indeed growth and decay
cycles in the damped case (i.e., the experiment is per-
formed without wind).

3.1 Experimental setup

Experiments have been performed in the 40-m-long
closed wind-wave facility at IRPHE/PYTHEAS (Lum-
iny) Aix Marseille University, see Fig. 2 for details on
the dimensions. Mechanical waves have been gener-
ated by an underwater piston wave maker. The system
was able to produce arbitrary surface gravity waves
in the frequency range up to 1.9 Hz. The wind was
generated by a closed-loop air flow system, in the
direction of the wave propagation, blowing continu-
ously. A total of 15 wave gauges were used, of which
12 were placed approximately evenly in the center of
the tank (central wave gauges), and 3 were placed
off-center (transverse wave gauges) to account for
transverse waves. All gauges had a sampling rate of
400 Hz.

3.2 Initial condition inside the MI-band

The initial condition has to be close to the separatrix, to
allow the transition of the solution from P2 to P1within
the available tank length. We therefore initialized the
wave maker with a signal reproducing the AB:

a(τ, ξ) =√
2A cos
modτ + (1 − 4A) cosh 2Rξ + i R sinh 2Rξ√

2A cos
modτ − cosh 2Rξ
eiξ

(9)
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Table 1 Experimental and simulation parameters. 
 in 10−3 1/s, ν in 10−6 m/s2

Wind (m/s) 
 Sim. ν Exp. ν Sim. δ0 Sim. 
mod f0 ε0 Experiment
Initial condition inside MI-band: Akhmediev breather

0 0 2 2 −0.007
√
2 1.70 0.12 �

3.1 6.0 – 2 0.032
√
2 1.70 0.12 �

4.0 – – – –
√
2 1.70 0.12 �

Initial condition outside MI-band: Harmonically perturbed plane wave

0 0 2 2 −0.006 3 1.35 0.10 �
0 0 2 2 −0.006 2.4 1.35 0.10 �
– – – – 0.05 2.4 1.35 0.10 x

where 
mod = 2
√
1 − 2A and R = √

8A(1 − 2A2).
In the Dysthe-based three-wave phase-space, this cor-
responds to starting slightly on the outside of the sep-
aratrix.

To get a maximal dimensionless distance, the carrier
wave frequency was chosen close to the upper limit of
the wavemaker at 1.70 Hz. To avoid wave breaking
(see Sect. 4.1) we limit our background steepness to
ε = 0.12. In addition, we started as close as possible to
the focal point without having too much deformation
of the initial condition: We used x f = −8 m (ξ =
−1.8) in Eq. 9 to have the focal point after 8 meters of
propagation. This wave-train was launched in different
wind conditions, with wind blowing at a continuous
speed of 0, 3.1 and 4.0 m/s.

Simulations were performed based on the complex
envelope extracted from the measurement of the first
wave gauge as initial condition. The viscosity ν was set
to a fixed value of 2 × 10−6 m/s2 for all simulations,
based on the dissipation value we calculated for the
runs without wind; see Table 1. This value is higher
than the theoretical value 1 × 10−6 m/s2 in order to
account for the damping due to the sidewalls. The wind
input parameter
 can be theoretically calculated using
the Miles mechanism [23,24] to be 4.8× 10−3s−1. As
this is only an estimation, we tuned this parameter such
that it matched what we observed in experiments, see
Table 1.

3.3 Initial condition outside the MI-band

To examine the behavior outside the MI-band, our ini-
tial condition was a plane wave seeded by an upper and
lower sideband, with sideband fraction ηF = 0.05,
unbalance α = 0, and relative phase ψ = −π/4. This

HPPW was launched for two different modulation fre-
quencies: 
mod = 2.4 (Fig. 8a) and 
mod = 3. As
the sidebands are further away from the main mode,
a lower carrier wave frequency was used than for the
AB: f0 = 1.35 Hz., to keep the higher modes within
reach of the wavemaker. Experiments were performed
without wind. For the simulations where the system is
forced, the three-wave model [17] was integrated with
the same initial conditions as the experiment.

3.4 Phase extraction

The phase information is crucial to trace out the tra-
jectory on the phase plane and distinguish P1 from
P2 trajectories (or Type A from Type B as in [15]).
However, to our knowledge, no publications exist that
show the experimental phase evolution of the complex
envelope. While the complex envelope can be recon-
structed from the real-valued surface elevation using
the Hilbert transform [25], in order to create the phase
space spanned byR(a(ξ, τm)), I(a(ξ, τm)), one has to
track exactly τm which will evolve with the nonlinear
group velocity. The noise of the Hilbert transform com-
bined with the uncertainty of the exact group velocity
give unreliable results.

Wemanage to experimentally obtain the phase infor-
mation with the help of the three-wave truncation, as
ηF and ψ are properties that can be obtained directly
from the complex spectrum of the surface elevation;
see Eq. 8b,c. Performing a fast Fourier transform on
the latter yields the phase φm and amplitude ηm of each
mode.This eliminates both the computation of the com-
plex envelope and the calculation of the group velocity
which are too noisy to provide reliable results.
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Fig. 3 a, b Surface elevation and envelope (thick line) in the
frame of the linear group velocity, offset by wave gauge position
for (a) no wind (b) wind speed of 3.1 m/s. Dashed lines corre-

spond to transverse modes. c, d Norm
∫ |a|2dt from simulations

and measurements for (c) no wind (d) wind speed of 3.1 m/s

4 Results and discussion

Figure 3a, b shows themeasured surface elevation (thin
lines) and envelope (thick lines) in the frame moving
at the linear group velocity, and offset by the wave
gauge distance, without wind (a), and for a wind speed
of 3.1 m/s (b). The envelope is obtained through the
Hilbert transform, neglecting the bound modes. The
dark dashed lines are the measurements of the trans-
versewavegauges.Thegroupvelocity (dashed red line)
increases and the modulation is amplified with wind.

Figure 3c, d shows the measured and simulated evo-
lution of the norm. The fluctuations in the experimental
norm can be attributed to the transverse modes excited
in the relatively wide wave tank. Figure 4 shows the
instability region defined by [26,27]. Due to the tank
width b, there is an unstable band of the adimensional
modulation in the transverse direction μ = k⊥

k0
, where

k⊥ = π/b, as the longest transverse standing wave
has a wavelength of 2b. The longitudinal modulation
wavenumber λ is based on the linear stability analy-
sis of the broader bandwidth modified NLSE [28]. For
the AB, transverse modes (green cross in Fig. 4) are
predicted, that cannot be accounted for by our one-
dimensional model. As the central gauges lie on the
nodes of the transverse modes, the most reliable source
of the evolution of the norm are the transverse gauges.
Only the latter are therefore used to estimate the growth
and decay rates for the simulations (solid line in Fig. 3c,
d). Without wind, the norm decreases (Fig. 3c); when

0

μ

0.1 0.2 0.3 0.4

0.1

0.2

0.3

0.4

0

λ

+
+

Unstable region HPPW

Unstable region AB

Fig. 4 Instability region of the BMNLS equation [26], for trans-
verse (μ) and longitudinal wavenumbers (λ). Green area: unsta-
ble region for the AB with f0 = 1.70 Hz, ε = 0.12. Green
cross: initial condition 
mod = √

2. Purple area gives the unsta-
ble region for the HPPW of f0 = 1.35 Hz, ε = 0.1 of Sect. 4.2,
where
mod = 2.4 (circle) and
mod = 3 (cross) both lie outside
the longitudinal MI-band

the wind is blowing at 3.1 m/s, the norm increases
(Fig. 3d)

The evolution of the envelope in the frame of the lin-
ear group velocity is displayed in Fig. 5, in the forced
and damped regimes, respectively. Panels a and b show
the simulations, where the limit of the tank-length is
indicated by the black-dashed line. Panels c,d show
the corresponding experimental measurements. With-
out wind, i.e., when the system is damped, the envelope
shifts in phase, indicated by a shift from the red dashed
line for the second (quasi) recurrence cycle, both for the
simulation (Fig. 5a) and the measurement (Fig. 5c).
This indicates a P2 solution. When wind is blowing
at 3.1 m/s, the system is forced, and the phase-shift
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2392 D. Eeltink et al.

Fig. 5 Evolution of the envelope |a| in ξ . The horizontal dashed line indicates physical tank limit. a Forced-damped Dysthe simulation:
Wind = 0 m/s, b Simulation: Wind = 3.1 m/s, c Experiment: Wind = 0 m/s, d Experiment: Wind = 3.1 m/s

disappears: the modulation-crest of the second quasi-
recurrence cycle is in line with that of the first, i.e.,
the crest follows the red-dashed line, indicating a P1
solution.

Figure 6a shows the simulatedmode evolution with-
out wind. The standard FPUT pattern unfolds: The
main mode decreases and the sidebands reach a max-
imum at the focal point (ξ = 2, x = 12 m). After the
focus, the modulation is reversed. This pattern is also
found in the experiments (Fig. 6b) where however the
lower sideband is more dominant. This downshift of
the peak can be attributed to the transverse modes [27].
The system crosses the vertical axis of the phase plane
for both simulation and experiment (Fig. 6g), corre-

sponding to the phase-shift observed in the real space
in Fig. 5a, c. This a consequence of the monotonically
increasing trend of the phase ψ , displayed in the inset
of Fig. 6e2, giving a vertical-crossing every time ψ

crosses nπ . The sideband fraction ηF (Fig. 6e1) deter-
mines radial coordinate distance in the phase-space.

Withwindblowing at 3.1m/s theunbalanceobserved
between the sidebands, as well as its underestimation
by the simulations, are increased (Fig. 6b, d). As this
movement was already there in the case without wind,
it is amplified by the presence of wind. The phase evo-
lution in Fig. 6f2 shows that the phase decreases before
the π limit, avoiding the crossing of the vertical axis in
the phase plot (h), confirming that we are dealing with
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(a) (b)

(e1)

(g) (h)

(e2) (f1) (f2)

(d)

Fig. 6 a–d Evolution of the five main modes of the spectrum:
a Forced-damped Dysthe simulation: Wind = 0 m/s, b Forced-
damped Dysthe simulation:Wind = 3.1 m/s, c Experiment:Wind
= 0m/s, d Experiment:Wind = 3.1m/s. Simulation andmeasure-
ment of ηF without wind (e1) and Wind = 3.1 m/s (f1). Three-

wave simulation and measurement of ψ without wind (e2) and
Wind = 3.1 m/s (f2). Three-wave simulated and measured evo-
lution in the phase-space spanned by ηF and ψ without wind (g)
and Wind = 3.1 m/s(h)
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(a) (b)

Fig. 7 a Envelope evolution at strong wind forcing (4.0 m/s),
showing a phase-shift. b Corresponding spectral evolution. The
lower sideband stays dominant after the first recurrence cycle.

This permanent downshift is indicative of wave breaking, and
consequently dissipation of the breather

P1 solutions. As the initial condition was outside the
separatrix (P2 regime), the crossing of the separatrix
occurred during the evolution.

An alternative approach to achieve separatrix cross-
ing during the propagation can be achieved by propa-
gating waves over an smoothly increasing finite depth
[29].

4.1 Balance between dissipation and forcing

If the wind is not sufficient to outbalance the viscous
damping the solution will not cross the separatrix.With
our specific initial condition, dissipation stayed domi-
nant for wind speeds below 2.5 m/s. On the other hand,
if the wind is too strong, as for W = 4.0 m/s in Fig. 7,
wave breaking will occur, which is a form of dissipa-
tion.

In an FPUT recurrence cycle, the maximum modu-
lation at the focal point coincides with the maximum
spectral width. After focusing, the initial main mode
will become dominant again. However, if the initial
steepness is too high, or wind forcing too strong, wave
breaking will cause a permanent downshift to the lower
sideband. Figure 7a shows the resulting phase-shift of
the envelope. This might also be the start of soliton fis-
sion, which occurs when two sidebands are within the
MI range [22]. Wind forcing expands the MI-range,
allowing the second mode 2
mod = 2.82 to lie within
the unstable range. From both observation by eye and
the permanent downshift shown in Fig. 7b, we can con-
clude that a wave breaking event has indeed occurred.

4.2 Behavior outside the MI-band

We examined the evolution of initial conditions where

mod is outside the MI-gain band. While the linear
stability analysis predicts no growth of the modulation
outside this limit, Fig. 1a shows an oscillation of ηF and
thus of the amplitude for 
mod > 2. A similar growth
is predicted for Type A solutions of the conservative
NLSE in [15].
The measured envelope evolution of the HPPW for

mod = 2.4 (Fig. 8c) and 
mod = 3 (Fig. 8d) con-
firm the existence of this growth and decay cycle. Pan-
els (a) and (b) display the corresponding simulations
based on Eq. 2. Following the dashed line of the group
velocity, we indeed also observe the expected phase-
shift of the envelope as only P2 solutions exist in this
regime (see Fig. 1a). In addition, comparing the dif-
ferent modulation frequencies shows that the spatial
recurrence period (in ξ ) is inversely proportional to the
temporal modulation period
mod, as theorized in [15].

This experimental result provides an important san-
ity check for the model. In addition, despite the spec-
tral asymmetries and viscous dissipation present in the
water waves, we still observe the same type of behavior
as a solution to the ‘pure’ conservative NLSE.

We now ask ourselves what happens if we include
forcing. Figure 9 shows the result for the three-wave
simulations for the same initial conditions as Fig. 8a,
undergoing damping (δ0 = −0.006), indicated by the
yellow line, and forcing (δ0 = 0.05) indicated by the
colored line. The yellow crosses show the measure-
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(a) (b)

(c) (d)

Fig. 8 Phase-shifted evolution of the envelope of a harmoni-
cally perturbed plane wave without wind, for 
mod outside the
MI-band. Wave properties: f0 = 1.35 Hz, α = 0, ηF=0.05. The

horizontal dashed line indicates physical tank limit. a Simula-
tion: 
mod = 2.4. b Simulation: 
mod = 3.0, c Experiment:

mod = 2.4, d Experiment: 
mod = 3.0

ments. For the length of the tank (ξ ≤ 2.3), the forced
and damped trajectory are nearly identical. Propaga-
tion length, wave breaking and transverse modes make
deep water waves an impractical system to observe
long-term or strong forcing. We therefore turn to sim-
ulations to examine the general behavior of a forced
NLS-system, not limited to water waves.

The forced trajectory in Fig. 9 shows that forcing the
systemcan induce a symmetry breaking during the evo-
lution, that is, reshaping the potential landscape from
a single well (Fig. 1a1) to a double well (Fig. 1b1), by
moving 
mod from outside to inside the MI-band.

The trajectory undergoes three stages, indicated by
different colors i) Purple: the initial condition is in a
single-potential well. ii) Green: forcing increases the

width of the MI-band, such that during the evolution

mod will move inside the MI-band, creating a double-
well potential, but the trajectory will still be outside
of the separatrix (P2). iii) Blue: in the double poten-
tial well landscape, the trajectory is attracted to the P1
solution due to forcing. After crossing the separatrix it
therefore remains in one lobe in Fig. 9a. Indeed, Fig. 9d
shows thatψ increases until
mod enters inside the sep-
aratrix at ξ = 7, as indicated by the dashed line, and
ψ starts to oscillate within a range of width π . As the
behavior of the trajectory in stages (i) and (ii) is qual-
itatively the same, the phase-locked behavior in stage
(iii) shows that indeed a double well potential is formed
and thus symmetry breaking has occurred.
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(a) (b)

(c) (d)

Fig. 9 Three-wave simulated evolution of damped wave outside
theMI band (yellow line), and of a forcedwave (line colored from
purple to green to blue for increasing distance). The experimen-
tal measurements of the damped wave that correspond to Fig. 8c

are indicated by the yellow crosses. a Wrapped phase space. b
Unwrapped phase-space. c Evolution of sideband-fraction ηF .
d Evolution of relative phase ψ . The dashed line indicates the
separatrix crossing

We note that a physical counterpart to this long-
duration, linear forcing is challenging to find, as the
forcing will likely become saturated or nonlinear.
Nevertheless, this simulation demonstrates the drastic
effect of the expansion of the MI-band due to forcing
on the NLSE behavior.

5 Conclusion

We experimentally and theoretically examine the effect
of forcing and damping on the recurrence cycle
of NLSE-type solutions. Deep-water waves are well
suited for our experimental study, as this system can
be both forced (by wind) and damped (by viscosity).
We distinguish between the cases where modulation
frequency 
mod is inside and outside the MI-band.

We contribute five novel findings. 1) Our main find-
ing is the experimental demonstration that when wind
forcing is sufficient to overcome the viscous damping,
the system is attracted toward P1 solutions, inducing
a separatrix crossing during the evolution. We demon-
strate such P1 behavior in the real space, by showing
that the P2 phase-shift of the envelope is lifted. 2) We
are able to reconstruct the phase-space trajectory from
experiments using the three-wave truncation, allowing
us to demonstrate the difference between P1 and P2
trajectories. 3) We show that if the wind forcing is

too strong, it induces wave breaking, which is a form
of energy dissipation that restores the P2 phase-shift.
4) We experimentally show that while no growth is
expected outside the MI-band based on a linear stabil-
ity analysis, there is in fact a growth and decay pattern
of P2 solutions here, confirming the theoretical find-
ings in Ref. [15]. 5) We theoretically show that forcing
the system can induce symmetry breaking during the
evolution, by moving 
mod from outside to inside the
MI-band.

We note that the asymmetries of the upper and lower
sideband described by the forced-dampedDysthe equa-
tion and its three-wave truncation do not significantly
influence the value of the total sideband fraction ηF .
The only difference between the three-wave truncation
of the NLSE and the Dysthe equation is a slight modifi-
cation of the recurrence period. Our conclusions there-
fore also hold for the forced-damped NLSE.

Since NLSE-type solutions are found in systems
other thanwater waves, we expect that our findings will
be confirmed in different experimental setups under the
effect of positive and negative forcing.
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