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Abstract Neural activity alters with the changes in

cerebral blood flow (CBF) and blood oxygen satura-

tion. Despite that these changes can be detected with

functional magnetic resonance imaging (fMRI), the

underlying physiological mechanism remains

obscure. Upon activation of the specific brain region,

CBF increases substantially, albeit with 6–8 s delay.

Neuroscience has no scientific explanation for this

experimental discovery yet. This study proposed a

physiological mechanism for generating hemody-

namic phenomena from the perspective of energy

metabolism. The ratio of reduction (NADH) and

oxidation states (NAD?) of nicotinamide adenine

dinucleotide in cell was considered as the variable for

CBF regulation. After the specific brain region was

activated, brain glycogen was rapidly consumed as

reserve energy, resulting in no significant change in

the ratio of NADH and NAD? concentrations. How-

ever, when the stored energy in the cell is exhausted,

the dynamic equilibrium state of the transition

between NADH and NAD ? is changed, and the ratio

of NADH and NAD? concentrations is significantly

increased, which regulates the blood flow to be greatly

increased. Based on this physiological mechanism,

this paper builds a large-scale visual nervous system

network based on theWang–Zhang neuron model, and

quantitatively reproduced the hemodynamics

observed in fMRI by computer numerical simulation.

The results demonstrated that the negative energy

mechanism, which was previously reported by our

group using Wang–Zhang neuronal model, played a

vital role in governing brain hemodynamics. Also, it

precisely predicted the neural coupling mechanism

between the energy metabolism and blood flow

changes in the brain under stimulation. In nature, this

mechanism is determined by imbalance and mismatch

between the positive and negative energy during the

spike of neuronal action potentials. A quantitative

analysis was adopted to elucidate the physiological

mechanism underlying this phenomenon, which

would provide an insight into the principle of brain

operation and the neural model of the overall brain

function.

Keywords fMRI � Negative energy � Energetics
coding � Hemodynamics � Neural network � Brain
glycogen

J. Peng � Y. Wang � R. Wang (&)

The Institute for Cognitive Neurodynamics, East China

University of Science and Technology, No.130 Meilong

Road, Shanghai 200237, China

e-mail: rbwang@163.com

R. Wang � W. Kong � J. Zhang
Key Laboratory of Brain Machine Collaborative

Intelligence of Zhejiang Province, Hangzhou Dianzi

University, Hangzhou, China

123

Nonlinear Dyn (2021) 103:883–895

https://doi.org/10.1007/s11071-020-06040-4(0123456789().,-volV)( 0123456789().,-volV)

http://orcid.org/0000-0003-4110-2022
http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-020-06040-4&amp;domain=pdf
https://doi.org/10.1007/s11071-020-06040-4


1 Introduction

The study on coding and decoding of neural signals is

the essential and challenging part of neuroscience

[1–3]; however, several issues are yet to be elucidated

[4, 5]. At present, traditional coding theories, such as

frequency coding, phase coding and time coding, have

achieved a lot of research results. However, these

theories or hypotheses still have certain limitations,

and cannot explain how the brain encodes and decodes

from a global perspective. In the past decade, studies

from neuroscientists have relatively clarified the

following aspects: the specific spike patterns of

neurons in the visual cortex toward the physical

characteristics of object location, shape, and prove that

local field potential (LFP) contains useful information

for decoding visual attention [6–8]. These results

illustrate some of the characteristics of local coding in

the brain, but the cerebral nervous structure is complex

and multilevel; thus, an effective theory of neural

coding should be inferred from the overall concept of

the cerebral nerve activity. However, a mature theory

on neural coding of the large-scale neuronal popula-

tion is yet lacking, which is universally acceptable [9].

Also, a general coding theory to recognize and

decipher cerebral nerve activity is not yet proposed.

In the field of global coding research of the nervous

system, the electrical activity of neurons needs to

consume a lot of nerve energy in the brain, and the way

of operation of the brain must obey two basic

principles [10]: (1) Economy: the neuronal activity

under supraliminal and subliminal stimulation was

subjected to the energy minimization principle; (2)

High efficiency: the signal transmission efficiency in

the neural network was subjected to the principle of

maximum energy utilization. Under the constraints of

these two basic principles, how does neuroenergetics

regulate the brain’s operation and information coding?

Based on the data from neuro-electrophysiological

experiments, Wang–Zhang et al. initially proposed a

novel biophysical model for studying the electrical

properties of the coupled neurons [11], thereby

proposing the theory and method of energy coding

[12–16].

A critical feature of Wang–Zhang model lies in the

function acquisition of neuronal membrane potential,

which further revealed a unique corresponding rela-

tionship with the energy function [11]; this discovery

was well confirmed by the Hodgkin–Huxley model

[13]. The neuron encodes neural information via

various spike patterns of membrane potentials, while

the action potential and energy functions show a close

correlation that render encoding the neural informa-

tion possible by adopting the evolutionary pattern of

energy. Our previous studies have demonstrated that

the energetics method could be used to encode

information invoked by different stimulations, includ-

ing single neuronal spike and neural oscillations of

different frequencies at the level of the neural network

[12, 14, 16]. Since energy is a scalar unit, the energy

consumed by individual neurons of a population can

be superimposed on each other [15]. This calculation

method could be adopted to avoid the difficulty of

high-dimensional nonlinear coupling enclosed in the

other coding theory. On the basis of the single

neuronal energy function, we also probed the evolu-

tion of energy consumption of neuronal populations in

the network model. When the network generated one

pattern of energy distribution for one stimulation, we

defined that this specific energy distribution encodes

this one stimulation [12, 14, 16].

Presently, experimental studies on energy con-

sumption in the nervous system mainly focus on the

evaluation of experimentally observed and docu-

mented data. Current experimental neuroscience can

quantitatively evaluate the changes in cerebral blood

flow (CBF)-supplied energy demands according to

blood oxygen level-dependent (BOLD) contrast sig-

nals, which is recorded with functional magnetic

resonance imaging (fMRI) [17–22]. The identification

of the concealed rule, which governs neural activity,

from the experimental data is the key for research and

development of a robot with human-like brains or

intelligent computer. Differences in the CBF rise and

the oxygen consumption ratio induce changes in the

magnetic flux; as a result, fMRI can detect dynamic

changes in the local blood flow in the corresponding

brain regions within seconds of stimulation, i.e.,

termed as hemodynamics [23]. Generally, a significant

CBF increase in the nervous system occurs in about

6–8 s post-stimulation on cortical neurons. Based on

the relevant literature, an effective theory in current

neuroscience to scientifically and rationally explain

the phenomenon from the perspective of neural

mechanisms is not yet available [24]. In addition,

relevant studies on computer simulation of the exper-

imental discovery and hemodynamics by neural

modeling and calculation are lacking.
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Glycogen is the primary energy storage in the

human body, which is a large molecule polysaccharide

composed of multiple glucose molecules. It is the

energy reserve that the body can use rapidly. Glycogen

in the human body is primarily reserved in the muscle

and liver, accounting for 1–2% of the mass and

weighing about 400 g in the muscle, while 6–8% of

the mass and about 100 g in the liver. Additionally,

less glycogen is reserved in the brain, accounting for

0.1% of the total brain weight and about 0.5–1.5 g

[25], which is mainly stored in astrocytes. Pellerin and

Magistretti proposed astrocyte-neuron lactate shuttle

hypothesis (ANLSH) [26], which reflected the critical

role of astrocytes in neural energy metabolism and

hemodynamics. However, the function of brain glyco-

gen remains to be fully elucidated. A large volume of

studies [25, 27, 28] has revealed brain glycogen as a

vital energy reserve and the material basis for brain

activity—when the brain has increased activity, cor-

responding energy demands rise rapidly, whereas CBF

is unable to alter timely, thereby resulting in blood

glucose shortage. Consecutively, the glycolysis of

brain glycogen rapidly occurs to fulfill the energy

demands for the brain activity.

In addition to the critical role of NADH/NAD? in

cellular energy metabolism, the concentration ratio of

NADH/NAD? serves as the cell sensor for the

regulation of blood supply [29]. In the energy

metabolism of cells, including two different decom-

position processes of glucose and lactic acid, NADH

and NAD?, respectively, participate in different

decomposition processes as reactants (or products)

and products (or reactants), forming a dynamic cycle

between NADH and NAD?. In addition, the cell also

involves an important process of converting NADH to

NAD?, which occurs only when the cell is activated,

and is closely related to the regulation of subsequent

blood flow [29]. On the other hand, in the active state,

if the equilibrium state of the transition between

NADH and NAD? changes, the ratio of the NADH

and NAD? concentrations will change, and as the ratio

increases, the blood flow rise will be adjusted

accordingly.

In order to explore the CBF delay phenomenon as

observed in fMRI, this paper attempts to propose a

physiological mechanism to produce hemodynamic

phenomena from the perspective of energy metabo-

lism. The ratio of NADH/NAD? concentrations was

considered as the variable for CBF regulation, and

introduces the role of brain glycogen in energy

metabolism and hemodynamics. Based on this phys-

iological mechanism, this paper builds a large-scale

visual nervous system network based on the Wang–

Zhang neuron model, and energetics coding method

was adopted to experimentally decipher the physio-

logical mechanism under hemodynamics and the

corresponding changes in neuroenergetics. It quanti-

tatively reproduced the hemodynamics observed in

fMRI: a substantial CBF rise was delayed about 6–8 s

to neuronal activation. This study predicted the

negative energy during neural activity as the nature

of cerebral hemodynamics, which based on a novel

mechanism under neuronal activity identified in our

previous studies [11]. Therefore, the significance of

this study lies in providing a novel vision for

establishing a global neural model of brain function

and global neural coding in the future. Combined with

previous studies, the present study provided an insight

into the future scaffold of studies on brain working

[5, 11–16, 30, 31].

2 Biophysical model of a neuron

In order to grossly calculate the energy consumption

of neuronal network, Wang–Zhang et al. [11, 13, 30]

proposed a novel biophysical model, and the structure

is illustrated in Fig. 1. The differential equation is

described as follows:

Fig. 1 Wang–Zhang biophysical model of a neuron [11]. Cm

refers to the membrane capacitance, Im refers to the total current

input from external neurons, Um was the voltage source, rm
refers to the resistance cross Im, r0m refers to the resistance cross

Um, and the membrane resistance was divided into three parts of

r1m, r2m and r3m. Moreover, the influx and outflux of a variety of

charged ions through the ion channels generated a loop current,

triggering the self-induction effect, which was equivalent to an

inductor Lm
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Im ¼ i1m þ
Xn

j¼1

i0mðj� 1Þ sinðxmðj� 1Þðtj � tj�1ÞÞ
� �

þ i0mðnÞ sinðxmðnÞðt � tnÞÞ
ð1Þ

Um ¼ r0mI0m þ r1mI1m þ Lm _I1m

I0m ¼ I1m � Im þ Uim

rm
þ CmU0m

Uim ¼ Cmr3m _U0m þ U0m

8
>>><

>>>:
ð2Þ

Lm _I1m þ r1mIm ¼ K1m
_U0m þ K2mU0m � r2mIm ð3Þ

wherein, K1m ¼ Cm r2m þ r3m þ r2mr3m
rm

� �
,

k2m ¼ 1þ r2m
rm

Pm ¼ d1m _U2
0m þ d2m _U0m þ d3m _U0mU0m þ d4mU

2
0m

þ d5mU0m þ d6m

ð4Þ

As demonstrated in Fig. 2a, the neuronal action

potentials obtained by simulation with Wang–Zhang

neuron model were in agreement with the experimen-

tal data [11, 13]. However, the energetic changes in the

action potential (Fig. 2b) in the present study were

inconsistent with the conventional theory of neuroen-

ergetics. During the process of action potential

formation, the changes in the neuroenergetics were

composed of two parts: oxygenated hemoglobin from

blood, presenting as negative energy, which serves as

an energy reserve, and the deoxygenated hemoglobin,

presenting as positive energy, which serves as energy

consumption [11–16].

This novel energy calculation shows the neuron is

an energy consumption as well as an energy reserve

element. Zheng et al. and Parhizi et al. [28, 29]

postulated a qualitative explanation for neurons and

relevant gliocytes on the modulation of ion channel

switch/glutamic acid cycle/glucose during action

potential formation. The studies stated that the neg-

ative energy emerging in action potential was a

process of energy reserve. Also, glucose and oxygen

uptake from blood is greater than the consumption

demands. Intriguingly, the stimulation of neurons

triggers an increase in CBF, while depolarization

demands oxygen consumption (without oxygen con-

sumption yet at this point), mainly manifesting as

energy uptake. During neuron repolarization, the

energy reserve is exhausted, while the neuronal

oxygen consumption ascends substantially, manifest-

ing as energy consumption. Based on the action

potential, neuron firstly absorbed the energy from

CBF, followed by energy consumption, that goes

round and round to reach a dynamic homeostasis. This

indicates that the capability of the energy reserve is

limited to a single neuron. The supply of glucose and

oxygen in the bloodstream is usually sufficient, while

if the neuronal energy reserve does not reach the upper

limit, the neuron reserves energy. During the produc-

tion of action potentials, the negative energy (reserved

energy) will not be consumed, and the consumed

energy is completely provided by the blood glucose

while the negative energy is preserved by neuron for

subsequent neural activity. This phenomenon indi-

cates that the energy reserve of a single neuron should

be an integer as a multiple of the counterpart in one

action potential. Herein, e0 represents the energy

reserve of a single neuron in one action potential, ea
represents the average energy reserve of one neuron, ei
refers to the energy reserve of the ith neuron, and E0

refers to the energy reserve of the neural network.

Therefore, the equations were as follows:

ea ¼ k1 � e0 ð5Þ

E0 ¼
X

ei ð6Þ

wherein, k1 refers to adjustable parameters, and ei
fitted the Gaussian distribution if ea was the mean, i.e.,

ei �Nðea; u2Þ.
Fig. 2 Action potential and the corresponding energy function.

a Shows the simulated neuron action potential; b shows the

neuron power consumption curve. (Color figure online)
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3 Gate control mechanism in hemodynamics

During neuronal excitation, the cyclic process

between NADH and NAD? is involved in the

decomposition of glucose and lactic acid. In cells,

the breakdown of glucose begins with the glycolytic

process of glucose. This process occurs in the cyto-

plasm, where glucose is broken down into pyruvate

and produces a small amount of ATP under the action

of enzymes, which is accompanied by the conversion

of NAD? to NADH. The decomposition of lactic acid

in cells involves both the process of decomposition

into pyruvate under the action of enzymes, with the

conversion of NAD? to NADH, and the process of

reduction of pyruvate to lactic acid under the action of

enzymes, which is an important way to convert NADH

to NAD?, and the transformation speed is very fast,

while the specific direction of lactic acid decomposi-

tion depends on the relative concentrations of lactic

acid and pyruvate in the cytoplasm. Eventually, the

pyruvate in the cells participates in the tricarboxylic

acid cycle (TCA), which is completely oxidized and

decomposed in the mitochondria, producing CO2 and

H2O and producing a large amount of ATP. In this

process, NADH is first lost in the cytoplasm to

generate NAD?, which is the basic pathway for

NADH to be converted into NAD?. Then, NAD ? is

converted into NADH again in the mitochondria by

enzymes.

From the perspective of energy metabolism, this

paper attempts to use the concentration ratio of

NADH/NAD? (r ¼ cðNADHÞ=cðNADþÞ) as the cell sen-

sor for the regulation of blood supply. Herein, v refers

to changes in r, as shown in Eq. (7):

mðtÞ ¼ sgnðrt � r0Þ ð7Þ

wherein, rt represents a concentration ratio of NADH

versus NAD? at certain time points (t), while r0 refers

to the concentration ratio under a resting state.

On the other hand, NADH/NAD? cycle includes a

transition of NADH into NAD? uniquely taking place

as a consequence of cell activation, and this process is

closely related to energy metabolism and the regula-

tion of blood supply [26]. Herein, we considered this

process as the release of reserved cellular energy and

introduce the role of brain glycogen in energy

metabolism and hemodynamics, underlying the mech-

anism of CBF regulation.

The changes in neural activity occur in ms after

stimulation, owing to which, the brain is rapidly

activated and accompanied by a rise in energy

demands. However, CBF has not yet been altered.

Therefore, the excessive energy demands trigger the

release of reserved energy from neurons and glycol-

ysis of glycogen in astrocytes. Thus, the excess energy

demands are fulfilled by the energy reserve in neurons

and glycogen in astrocytes (Fig. 3).

In Fig. 3, the energy demands rose in the brain upon

stimulation, which triggered the release of reserved

energy, thereby activating the transition of NADH into

NAD?, a process uniquely occurring as a result of cell

activation. On the other hand, a rise in energy demands

enhanced the lactate uptake from blood, thereby

accelerating the transition of NAD? into NADH.

Consequently, dynamic homeostasis of NADH and

NAD? concentrations was formed that enabled a

stable concentration ratio (r ¼ cðNADHÞ=cðNADþÞ), and

CBF remained unchanged. Moreover, a reduction in

blood lactate contents accelerated the glycolysis of

glycogen in astrocytes, which resulted in declining

glycogen contents.

When the reserved energy was exhausted, the

transition of NADH into NAD? would descend and

simultaneously the lactate uptake from blood acceler-

ated. Thus, the transition of NAD? into NADH was

enhanced, which resulted in a rapid rise of cellular

NADH contents and reduction of NAD? contents.

Thus, the r value increased rapidly, thereby regulating

the CBF rise (Fig. 4).

As shown in Fig. 4, after the reserved energy is

completely exhausted, the additional energy demands

of the brain were fulfilled by lactate breakdown, which

was taken from blood by the cells, and it further

Fig. 3 Physiological mechanism underlying the lack of CBF

alteration along with changing brain activity upon stimulation

(own study). (Color figure online)
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accelerated the lactate uptake. This process led to a

reduction in the content of blood lactate, thereby

prompting the breakdown of brain glycogen; on the

other hand, it resulted in an increased r value, thereby

regulating a CBF increase. Subsequently, the CBF rise

led to increased glucose uptake by astrocytes. This

process inhibited glycolysis of glycogen, which halted

the reduction of glycogen contents. When new

dynamic homeostasis of NADH/NAD? concentra-

tions was achieved in the cell, the substantially

increased CBF was stabilized, and glycolysis, synthe-

sis of astrocyte glycogen was balanced, that enabled

stable glycogen contents.

4 Visual neural network and computing model

The visual system holds a distinct hierarchical struc-

ture as well as parallel and independent information

processing pathways in response to different visual

information [32, 33]. Given these two characteristics,

the present study established a multilevel and multi-

branch network (Fig. 5), starting from the photore-

ceptor in the retina and ending at the V2 region of the

visual cortex. The network encompassed six levels:

the first level was comprised of cells in the retina

(except for ganglion cells), the second level consti-

tuted the retinal ganglion cells, LGN was the third

level, the fourth level consisted of the 4Ca layer and

4Cb layer in V1 regions, the fifth level comprised of

the III and IVB layers of V1 region, and the sixth level

encompassed the V2 region (The 4 layer of V1 region

can be further divided into three sublayers of 4A/4B/

4C, and 4C can be divided into further two sublayers

of 4Ca and 4Cb. The neurons in 4Ca project to 4B

layer, while neurons in the 4Cb project to layer 3.

Therefore, the fifth level was constituted by layer 3

and 4B in V1 region). Considering the characteristics

of visual neural network transmission and the neuro-

electrophysiological phenomenon in experiments, the

network input was designed as follows: an external

stimulus was firstly imposed on a few photoreceptor

cells in the first level that evoked activity of the other

neurons within the same level via the inter-neuron

coupling effect. Simultaneously, some neurons in the

first level transmitted the neural activity to the second

level via coupling with some neurons, and the signal

reached the second level, which was gradually

activated due to the intra-level coupling effect.

Similarly, the signal was transmitted until the activa-

tion of large-scale neural network occurred at the last

level (this study hypothesized that the inter-level

transmission was unidirectional).

The number of individual types of cells in the

pathway of rhesus macaques retina/LGN/cortex cited

the data from their neurophysiological experiments

[34]. Based on this statistic, in order to simplify the

calculation without impacting the calculation effect,

this study adopted the similarity principle on scaling-

down of the statistical data. Furthermore, the ratio of

various cells was close to the following: photoreceptor

cell:ganglion cell:LGN cell:cell in the 4 layer of V1

region:cell in the 3 layer of V1 region:cell in V2

region = 100:1:2:50:20:120.

Table 1 shows the appropriate selection of multiple

parameters. N(i) refers to the number of neurons in the

functional cell population i, and Nc(k) refers to the

number of neurons in the k level of the network, where

the inter-neuron coupling probability in each func-

tional cell population was reflected by P(k).M(i) refers

to the number of neurons in the functional cell

population i, which were also influenced by the

previous level of the network (functional cell popu-

lation 1 and 2 at the first level referred to those

receiving external stimulation). Thus, only M(i) neu-

rons in the functional cell population i had a synaptic

contact with the neurons in the previous level.

In the process of neural information transmission,

coupled neurons in the network transmit signals by

chemical synaptic contact, with synaptic delays of

about 0.5–2 ms. In this study, smj refers to the

transmission time-lag when presynaptic neuron j

transmitted the signal to the postsynaptic neuron m.

This study presumed that all neurons in the network

were excitatory neurons, and inter-neuron synaptic

coupling strength was conventionally a random value

within the range of uniform statistical distribution

Fig. 4 Physiological mechanism underlying the increase in

CBF (own study). (Color figure online)
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[35]. In order to stably probe the spike feature of the

large-scale neuronal network, we postulated the

coupling strength of two randomly coupled neurons

as a fixed value (0.06) in the subsequent calculations.

Moreover, according to the Hebbian principle of

plasticity [36], each time when the presynaptic neuron

j spikes an action potential, its coupling effect with the

linked postsynaptic neuron would be enhanced during

the neural pulse transmission. In addition, the present

study simplified the plasticity of synapse and postu-

lated that the increasing value of each coupling

strength was L-fold of the initial value, which was

reflected by the equation: x ¼ x � ð1þ LÞ. In the

simulation, it was designated as L = 0.02.

Fig. 5 The anatomical structure of the visual system and the

hierarchical structure of the corresponding visual neural

network. In the network, the hollow circle refers to the

functional cell population constituted by relevant cells (namely

a functional regional network); the straight line represents the

synaptic contact between two functional cell populations; the

number represents the label given according to the functional

cell population: 1/2 (photoreceptor, bipolar cell), 3/8 (non-P/

non-M type nerve cell), 4/7 (P type ganglion cell), 5/6 (M type

ganglion cell), 9/10/19/20 (granular cell in LGN), 11/12/17/18

(small cell in LGN), 13/14/15/16 (large cell in LGN), 21/22/27/

28 (cell in the 4Cb layer of V1 region), 23/24/25/26 (cell in the

4Ca layer of V1 region), 29/32 (cell in the 3 layer of V1 region),
30/31 (cell in the 4B layer of V1 region), and 33 (cell in V2

region)

Table 1 Parameter selection for the visual neural network

Functional cell

population

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N(i) 1500 1500 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

M(i) 300 5

Layer k 1 2 3

P(k) 0.3 1 1

Nc(k) 3000 30 60

Functional cell population 21 22 23 24 25 26 27 28 29 30 31 32 33

N(i) 100 100 100 100 100 100 100 100 300 300 300 300 3600

M(i) 20 60 800

Layer k 4 5 6

P(k) 0.8 0.5 0.3

Nc(k) 800 1200 3600
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Nonetheless, the plasticity of synaptic coupling

strength has an appropriate threshold [37] that does

not alter while ascending to a specific degree; in this

study, value 1.5 was designated as the upper limit of

the coupling strength.

The operation mode of this network was as

described below:

1. Stimulation received by neuron i at time t was:

SmðtÞ ¼
X

xmj � Qðt � smj; jÞ ð8Þ

2. Current received by neuron i at time t was:

ImðtÞ ¼

im1 þ
Pn

j¼1

½i0m j� 1ð Þ sinðxmðj� 1Þðtj � tj�1ÞÞ� þ i0mðnÞ sinðxmðnÞðt � tnÞÞ

if SmðtÞ[ th

im1 if SmðtÞ\th

8
>>><

>>>:

ð9Þ

3. ImðtÞ was substituted into Eq. (3) to obtain the

solution of membrane potential U0mðtÞ
4. The calculated value of Eq. (3) U0mðtÞ was

substituted into Eq. (4) for power calculation to

obtain the solution of neuronal power consump-

tion PmðtÞ
5. The total energy consumed by the neural network

PðtÞ was:

PðtÞ ¼
X

PmðtÞ ð10Þ

6. According to the above proposed physiological

mechanism, the energy source consumed by the

neural network included three parts: the main part

was derived from blood glucose breakdown,

marked as Pg1ðtÞ, while the remaining parts were

obtained from the energy reserve and glycolysis of

brain glycogen, marked, respectively, as PsðtÞ and
Pg2ðtÞ. The equation was as follows:

PðtÞ ¼ Pg1ðtÞ þ Pg2ðtÞ þ PsðtÞ ð11Þ

Among these:

Pg1ðtÞ ¼ a � PðtÞj j þ vðtÞ � f ðtÞ � PðtÞj j
PsðtÞ þ Pg2ðtÞ ¼ b � PðtÞ � vðtÞ � f ðtÞ � PðtÞj j
PsðtÞ ¼ c � sgnðEðtÞÞ � PðtÞ

8
><

>:

In the above equations, SmðtÞ represents the sum of

stimulation neuron m received at the time t; Qðt; jÞ
indicates the action potential release state of the jth

neuron at time t, the neuron resting value is 0, and the

action potential is 1 when the action potential is issued.

In the simulations, since the neurons of the first level

only generated grading changes in the membrane

potentials, the Q value of the first-level neurons is

taken as: Q ¼ SðtÞ. f ðtÞ represents the blood flow rise

function. This paper uses a one-dimensional quadratic

function to simulate, which is taken as:

f ðtÞ ¼ �½t � ðtm � t0Þ�2

k2 � t2m
þ 1

k2
ð12Þ

wherein, t0 represents the time when the stored energy

is exhausted, and other parameters were taken as

values according to the relevant experiment results

[38]: a = 20/23, b = 3/23, c = 7/115, k2= 3,

tm= 1000 ms.

5 Results and analysis of model computing

Relevant network parameters are listed in Table 1.

Moreover, individual neurons in the network were

assigned sequence numbers: 1–1500 responded to

neurons in the first functional cell population; 1501–

3000 responded to neurons in the second functional

cell population; the last 3600 numbers responded to

neurons in the 33rd functional cell population of the

last level. The total number of neurons in the network

is N = 8690, which were sequentially numbered from

1 to 8690. Based on the above mathematical models,

the simulation was conducted using MATLAB soft-

ware. Continuous application of current stimulation

imposed on a small portion of neurons in the network,

including 1–300 neurons in the first functional cell

population and 1501–1800 neurons in the second

functional cell population of the first level, the

stimulation intensity is IðtÞ ¼ 70:7 lA. Figure 6 dis-

plays the overall network neural activity and changes

in the blood glucose energy supply.

Figure 6a demonstrates a rapid transmission of

information in the neural network. At the time point of

about 1200 ms, the overall neural activity reached a

peak and stabilized gradually that indicated the state of

synchronous oscillation was achieved rapidly by the

overall network. While comparing Fig. 6a with b, the

starting phase of stimulation revealed that the energy

supply of blood glucose rose along with increased

neural activity in the network; when the neural activity
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peaked and gradually moved to stabilization, the same

trend was shown in energy supply of blood glucose.

However, until by about 6500 ms, this stabilization

was interrupted, and the neural network activity was

still stabilized, whereas the energy supply of blood

glucose increased substantially rising, which was

stabilized by 7500 ms. Figure 7 displays the magni-

fied illustration of this process.

The simulation results show that the neural activity

of the whole network peaks at around 1200 ms, while

the blood glucose supply peaks at around 7500 ms,

with a delay of about 6300 ms. On the other hand, the

energy supply of glucose in the blood can indirectly

reflect the change of blood flow, where the glucose

supply increases greatly at around 6500 ms, which can

directly reflect the large increase of blood flow.

Therefore, the simulation results reproduce the hemo-

dynamic phenomenon in fMRI experiments: after

6–8 s of activation of the brain region, cerebral blood

flow will increase significantly.

Figure 8 displays the changes in the network neural

activity and energy consumption during the above

process. The figure showed that before 1200 ms, the

starting phase of stimulation, network energy con-

sumption rose along with increasing neural activity,

while after 1200 ms, when the neural activity peaked

and stabilized gradually, the corresponding energy

consumption as well reached a peak and gradually

moved to stabilization. This phenomenon indicated

that the network energy consumption corresponded to

the neural activity. The combination of Figs. 6 and 8

showed that after 1200 ms, the neural network activ-

ity, and corresponding energy consumption were

constantly in the stable state, thereby indicating the

Fig. 6 Neural activity of the visual neural network and energy

supply of blood glucose at the corresponding time points. The

horizontal ordinate represents time points, and persistent strong

stimulation was imposed on a portion of network neurons starting

fromthe timepoint of10 ms.aThevertical ordinate represents the
overall network spike rateRðtÞ ¼ nðtÞ=N, in which, n(t) refers to
the total number of neurons across the entire network,

generating pulse spike at the time point t. b The vertical

ordinate represents the power of energy supply by blood glucose

during the entire process of network operation. (Color

figure online)

Fig. 7 Magnified diagram of 6400 * 7500 ms. a Shows the

neural activity of the visual neural network; b shows the energy

supply of glucose in the blood. (Color figure online)

Fig. 8 Neural activity and energy consumption in the network.

a Recorded the changes in overall network spike rate, while

b reflected the energy consumption at the corresponding time

points. (Color figure online)

123

Neural coupling mechanism in fMRI hemodynamics 891



substantial rise of blood glucose energy supply at

about 6500 ms was no result of elevated energy

consumption by the neural network. This implied that

the delay in the increase of blood glucose energy

supply was caused due to other reasons.

To explore the relationship between energy con-

sumption and blood glucose supply in the network, we

also recorded the energy consumption of the network

and the change in blood glucose supply over time (see

Fig. 9). The figure showed the blood sugar supply

initially increases with the increase of energy con-

sumption of the network. At about 1200 ms, the

energy consumption of the network reaches a peak and

tends to be stable, and the blood sugar supply tends to

be stable. However, the energy consumption of the

network is significantly higher than that of the blood

glucose, indicating that the energy supply of glucose

in the blood cannot fully satisfy the energy demand of

the neural network. When this state continues until at

about 6500 ms, the energy consumption of the

network is still stable, but the blood glucose supply

begins to increase substantially until peaks and

stabilizes again at about 7500 ms. At this time, the

blood glucose supply is significantly higher than the

energy of the network consumption.

According to the physiological mechanism pro-

posed, the capacity of glucose energy supply was

limited under the normal blood flow, and when the

entire neural network was activated, the energy

consumption was maximal and the energy supply by

glucose was maximal with respect to the normal blood

flow; however, it still could not fulfill the energy

demands of the entire neural network, which is

consistent with the results of Fig. 9. On the other

hand, r ¼ cðNADHÞ=cðNADþÞ acted as a cell-based

biosensor in the CBF regulation, and when the

network energy reserve was completely exhausted,

the r-value would rapidly rise to a raised CBF

increase, thereby elevating the capacity of blood

glucose energy supply. In this regards, we focused on

the changes in the energy reserve of the neural network

and the energy supply of blood glucose during the

entire process. Figure 10 documents the altered net-

work energy reserve and energy supply of blood

glucose over a period during the entire process.

Figure 10a records the changes in energy reserve of

the entire network, while Fig. 10b records the corre-

sponding changes in the energy supply of blood

glucose. The figure displayed that before 1200 ms, no

obvious changes occurred in the network energy

reserve, while energy supply of the blood glucose

gradually rose; after 1200 ms, the network energy

reserve underwent a significant decline, while the

energy supply of blood glucose peaked and stabilized

gradually. Furthermore, by about 6500 ms, the net-

work energy reserve was completely exhausted, and

the corresponding energy supply of blood glucose

started a substantial rise (Fig. 11).

The above simulation results revealed that at about

1200 ms, the neural network was gradually activated,

Fig. 9 The energy consumption of the network and the of blood

glucose supply. Red indicates the energy consumption curve of

the network; blue indicates the curve of blood glucose energy

supply over time. (Color figure online)

Fig. 10 Network energy reserve and changes in glucose energy

supply. a Records the energy storage changes of the entire

network, and b records the changes in the corresponding blood

glucose supply. (Color figure online)
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and energy consumption in the neural network rose

substantially, and although the energy supply of the

blood glucose reached a maximum of normal blood

flow, it could not meet the energy demands completely

that led to the consumption of the energy reserve. At

about 6500 ms, the energy reserve in the neural

network was completely exhausted, causing the ratio

r to increase rapidly, causing a large increase in blood

flow, at which time the supply of glucose in the blood

begins to increase substantially.

6 Summary

Hemodynamics intuitively reflected the relationship

between activation of brain regions and CBF, as well

as that between CBF and energy metabolism. This

study proposed a physiological mechanism for gener-

ating hemodynamic phenomena from the perspective

of energy metabolism, which predicts the nature of

brain hemodynamics is the negative energy mecha-

nism during neural activity. In a cell, r ¼
cðNADHÞ=cðNADþÞ acts as a cell-based biosensor in the

CBF regulation that increases with increasing r. The

greater the Dr, the greater the DCBF. Under normal

condition, cellular NADH and NAD? are in the state

of mutual transition, reaching a dynamic homeostasis,

that does not enable any obvious changes in the ratio

r. When the brain receives external stimulation or

brain activity increases suddenly, the energy con-

sumption rises rapidly, causing shortage blood glu-

cose. Thus, cellular energy reserve and brain glycogen

are rapidly consumed as the emergency energy. In this

process, the consumption of energy reserve prompts

the transition of NADH into NAD?, while the

glycolysis of brain glycogen suppresses the transition

of NADH into NAD? but promotes the transition of

NAD? into NADH, that enables no obvious changes in

the ratio r, thereby avoiding significant changes in

CBF. By the time, the energy reserve of the neural

network is completely exhausted, the transition of

NADH into NAD? loses one pathway, and the

glycolysis of brain glycogen is accelerated. This

further suppresses the transition of NADH into

NAD? while promoting the transition of NAD? into

NADH, consequently increasing r and causing a

substantial increase in CBF. Conversely, increased

CBF suppresses the glycolysis of brain glycogen, and

CBF is elevated considerably to peak prior to stabi-

lization until new dynamic homeostasis of NADH/

NAD? mutual transition is reached. At this point, the

energy consumption of the neural network can be

provided sufficiently by blood glucose and oxygen.

Based on the above theories and physiological

mechanisms, the present study built a large-scale

visual neural network according to the anatomical

structure of the visual system by using Wang–Zhang

neuron model. A computer simulation was adopted to

calculate the changes in neural activity of network

neurons and network energy consumption within

8000 ms. The results showed that within 1200 ms

after stimulation, the neural activity of network

neurons and energy consumption presented stepwise

changes over time, which was in agreement with the

level-to-level transmission of network information.

Subsequently, the energy reserve of the neural

network started to decline obviously, and by

6500 ms, the energy reserve was exhausted com-

pletely, while the energy supply of blood glucose

increased substantially prior to stabilization. Taken

together, the energy supply of blood glucose could

indirectly reflect the CBF changes and a substantial

rise in energy supply of blood glucose at about

6500 ms reflected a substantial CBF rise. Until

7500 ms, the glucose supply peaked, which was

delayed by about 6300 ms compared to the time when

the neural activity of the neural network peaked,

thereby reproducing the hemodynamics observed with

fMRI: the level of CBF would not rise substantially

until 6–8 s after activation of brain regions [23].

Fig. 11 Magnified illustration of 6400–7500 ms. (Color

figure online)
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This study proposed a physiological mechanism for

generating hemodynamic phenomena from the per-

spective of energy metabolism, which predicts the

nature of brain hemodynamics is the negative energy

mechanism during neural activity. It would provide a

scientific basis for establishing the nerve model of the

overall brain function and neural coding. Thereby, this

study can reveal the overall nature of functional brain

activity that would provide a novel viewpoint and

method for theoretical study, modeling, and comput-

ing [39–42].
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