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Abstract Unstable friction-induced vibrations are

considered an annoying problem in several fields of

engineering. Although several theoretical analyses

have suggested that friction-excited dynamical sys-

tems may experience sub-critical bifurcations, and

show multiple coexisting stable solutions, these phe-

nomena need to be proved experimentally and on

continuous systems. The present work aims to par-

tially fill this gap. The dynamical response of a

continuous system subjected to frictional excitation is

investigated. The frictional system is constituted of a

3D printed oscillator, obtained by additive manufac-

turing that slides against a disc rotating at a prescribed

velocity. Both a finite element model and an

experimental setup has been developed. It is shown

both numerically and experimentally that in a certain

range of the imposed sliding velocity the oscillator has

two stable states, i.e. steady sliding and stick–slip

oscillations. Furthermore, it is possible to jump from

one state to the other by introducing an external

perturbation. A parametric analysis is also presented,

with respect to the main parameters influencing the

nonlinear dynamic rcecsponse, to determine the

interval of sliding velocity where the oscillator

presents the two stable solutions, i.e. steady sliding

and stick–slip limit cycle.

Keywords Nonlinear behaviour � Bi-stable state �
Frictional system � Finite element model �
Experiments

1 Introduction

Friction-induced vibrations (FIV) [1] are ubiquitous in

mechanics and unstable FIV are considered a common

problem in several fields of engineering, ranging from

automotive [2], railways industry [3], aerospace [4–7]

and bioengineering [8, 9]. The problem is very

widespread as in engineering applications almost all

mechanical systems are assembled together and

include contacting interfaces, e.g. joints [8, 10, 11],

dampers and brake systems [12–14]. High amplitude
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FIV is commonly the consequences of friction insta-

bilities that give rise to tedious noise [15–18] usually

classified in squeal, groan or chatter depending on the

frequency band in which it occurs [19]. One of the

phenomena at the origins of such noises are stick–slip

[20]. The appearance of stick–slip instability is

influenced by the combination of several tribological

and dynamical processes and parameters [21, 22],

which in real systems are difficult to discern. One

cause of instability is a falling characteristic of the

friction coefficient with the relative velocity that may

lead to negative damping, causing stick–slip oscilla-

tions [23–25]. Another kinematic explanation for FIV

is the so called sprag-slip instability, which is caused

by ‘‘jamming’’ at the interface level [26]. Lastly,

‘‘flutter’’ (or mode-coupling) is an instability mecha-

nism which emerge when, while changing a system

parameter, two stable modes merge giving rise to one

stable and one unstable mode [27]. Not only the

sliding velocity but also damping plays a fundamental

role for the occurrence of instability. It has been shown

[28, 29] that the increase in the overall system

damping allows a smoother transition from micro-

slips to continuous sliding. Although several authors

have studied the problem of FIV, it remains today a

challenge to confidently predict the appearance of

FIV, mostly due to the inherent nonlinearity involved

in the analysis. Indeed the contact stiffness is generally

nonlinear [30] and the friction law is often multivalued

even in the most simple Coulomb model [31]. Several

authors have shown that due to the system nonlinear-

ity, the frictional system may experience subcritical

Hopf bifurcations, with multiple co-existing

stable states, i.e. full sliding and stick–slip vibrations

[23, 32–34]. Papangelo and co-authors [35] consid-

ered a mass-spring-damper system in contact with a

moving belt with velocity weakening characteristic of

the friction law. They showed that a certain region of

belt velocity exists, where two attractors are observed:

a steady-sliding solution, where small oscillations are

damped, and a stick–slip high amplitude limit cycle,

being the system state selected by the initial condi-

tions. The authors showed that the width of the bi-

stable region is reduced by decreasing the ratio static

(ls) to dynamic (ld) friction coefficient or by consid-

ering a strengthening term in the friction law. Similar

results have been obtained in alike lumped systems

[36] using a simple discontinuous Coulomb friction

law with ls[ ld. For the chosen parameters, the

investigated system becomes linearly unstable under

small oscillations above a critical friction coefficient,

but stick–slip limit cycle oscillations continue to exist

(when ls/ld[ 1) even for smaller velocities. In

multiple degrees of freedom system, vibration local-

ization may occur in certain regions of the governing

parameters, where multiple stable co-existing solu-

tions exist [34, 37]. Although several authors have

attempted to study experimentally the nonlinearity of

FIV, most of the literature results focus on lumped

systems (typically a concentrated mass connected to

springs and dampers and generally sliding on a

substrate). In general, such models do not face the

problem of the co-existence of multiple dynamical

states, assuming the solution ‘‘a regime’’ is unique for

a given set of system parameters [38, 39]. Neverthe-

less multiple states have been experimentally mea-

sured in mass-on-moving-belt lumped systems by

Saha et al. [40] and in a brake apparatus by Gräbner

et al. [41].

In the present work, a continuous oscillating system

in contact with a moving disk is investigated numer-

ically and experimentally to demonstrate the existence

of the bi-stable region. Numerical simulations of

multiple coexisting dynamical states are shown for the

same imposed velocity. An experimental setup has

been developed, and parametrical studies have been

performed to characterize the region of parameters for

which multiple dynamical equilibria coexist.

2 Methodology

As mentioned above, few contributions in literature

deal with bi-stable dynamical states in continuous

frictional systems. In this work the geometry shown in

Fig. 1, obtained experimentally by additive manufac-

turing, is used to analyse the nonlinear behaviour of

stick–slip instability. The proposed geometry is a

frictional oscillator, clamped at one side and in

frictional contact on the other one with a rigid steel

disc. Because the oscillator used in the experimental

campaign has been obtained by additive manufactur-

ing, the material properties are slightly different from

those of common steel material. While the density

(7450 kg/m3) has been calculated by its volume and

weight, the Young’s Modulus (131 GPa) has been

calculated by comparing its natural frequencies,

obtained experimentally and numerically.

123

1362 D. Tonazzi et al.



As multiple stable solutions exist for a certain

sliding velocity, it is of outmost importance to clearly

define the loading protocol used in both the numerical

and experimental analysis:

1. The normal load is first imposed by applying a

vertical displacement at the clamped end of the

oscillator; the imposed vertical displacement is

kept constant during the entire test.

2. The relative velocity between the oscillator and

the disc is increased up to a certain target velocity.

This phase is referred as the ‘‘acceleration phase’’

(see Fig. 2 and Table 2).

3. The velocity of the disc is kept constant for a

certain time.

4. The disc velocity is decreased up to the rest. This

phase is referred to as the ‘‘deceleration phase’’.

This trapezoidal profile (see Fig. 2) of the imposed

velocity allows for the determination of the so called

‘‘critical velocities’’ [35], i.e. the values of the imposed

velocity at which the system switches from stick–slip to

stable sliding and vice versa, when, respectively, the

system is either accelerating or decelerating. The

control parameter for switching from one state to

another is then the imposed velocity of the disc.

The aim is to retrieve, as obtained numerically in

lumped models [34, 35], the presence of the bi-

stable region, and to study the effects of the variation

of the key parameters. While numerically the effect of

the friction coefficients is investigated, the experi-

ments allow for investigating the effect of the

inclination angle and normal load.

3 Numerical analysis

3.1 Finite element model and frictional behaviour

A finite element model of the oscillator in contact with

the disc (Fig. 1) was developed using the commercial

Fig. 1 aGeometry of the oscillator obtained by additive manufacturing; b oscillator in contact with the disc with an inclination angle a
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code ANSYS WORKBENCH. To reduce the compu-

tational cost of a full transient frictional dynamical

simulation, we have exploited the symmetry of the

geometry to develop a 2D numerical model (Fig. 3).

Figure 3 shows the numerical model with the imposed

boundary conditions. The upper part of the oscillator is

constrained along the x-direction, while the normal

load is applied by imposing a displacement in the

vertical direction. The disc, instead, is constrained in

the vertical direction and can move in the horizontal

direction with a prescribed velocity profile (see

Fig. 2). In order to accurately model the contact zone,

the mesh is refined close to the contact interface up to

an element size of about 25 lm side length.

The friction law is introduced in the numerical

simulation by the definition of the ls/ld ratio (a) and a

decay constant (d), according to the following expo-

nentially decaying law:

l vrelð Þ ¼ ldð1þ a� 1ð Þe �d� vrelj jð Þ ð1Þ

If zero is set as value for d, the exponential law

reduces to a sudden drop, so that there is a discontin-

uous transition from the static to the dynamic friction

coefficient in the transition from sticking to sliding.

The transient simulation is solved by using implicit

Newmark time integration scheme [42], with a time

step of 1e-5 s and a number of 42,200 nodes. The

pure penalty method is implemented at the contact

interface, in both normal and tangential directions.

Fig. 2 Example of the

imposed displacement and

velocity profile both

numerically and

experimentally

Fig. 3 2D numerical model

(plane strain) with imposed

boundary conditions and

zoom on mesh refinement in

the contact area. System

acceleration along

X-direction is recovered at

point A
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3.2 Nonlinear frictional response

The numerical model is here implemented to repro-

duce numerically the existence of the bi-stable region.

Then, the effect of the friction coefficients, a param-

eter that cannot be easily varied experimentally, is

investigated in the occurrence of the instability and the

bi-stable velocity interval. It should be kept in mind

that the imposed velocity and acceleration are higher

than in the experiments (see Sect. 4). This is due to the

need in reducing the overall computational time in

simulating a nonlinear transient finite element analy-

sis. Nevertheless, the objective is to verify if the bi-

stable region is retrieved and to highlight the trend

with respect to the friction parameters. The experi-

ments will then allow for retrieving the same data with

more realistic acceleration values. At this first stage,

the friction law has been set with a nil value for the

decay constant d, so that the focus has been set on the

effect of the ratio between static and dynamic friction

coefficients. Figure 4 shows the results of the transient

simulation obtained with ls equal to 0.4 and ld equal
to 0.2. In the beginning of the acceleration phase, the

oscillator experiences stick–slip limit cycle oscilla-

tions. At a velocity of about � 110 mm/s there is a

sudden drop in the horizontal acceleration signal,

which indicates a transition to steady sliding. The disc

velocity reaches a maximum of 150 mm/s, is kept

constant for 0.1 s, then starts to decrease. While the

disc decelerates, steady sliding remains stable up to

about � 3 0 mm/s, then for lower velocity, stick–slip

oscillations take place. The differing ‘‘critical veloc-

ities’’ obtained during the acceleration and decelera-

tion phases clearly show that a bi-stable region, with

two coexisting stable solutions, have been identified in

the numerical results.

Figure 5 shows the corresponding bifurcation dia-

gram, where the amplitude of the vibration (moving

acceleration RMS) is plotted against the driving

imposed velocity. The blue dotted curve (circles) is

related to the acceleration phase, while the red dotted

curve (triangles) is related to the deceleration phase.

The following three regions can be observed:

• At high imposed driving velocity stable sliding is

observed both in acceleration and deceleration;

• At lower imposed driving velocity stick–slip is

observed both in acceleration and deceleration; the

curve in acceleration (dotted-blue) starts at a

velocity different from zero (about 27 mm/s)

because, when the lower surface starts moving

(from 0 to 27 mm/s), the oscillator deforms to

reach its equilibrium state before sliding at the

interface;

• The bi-stable zone is obtained, where stick–slip

instability and stable sliding solutions coexists; in

this region, the system shows stick–slip vibrations

Fig. 4 Acceleration along the x-direction obtained for a simulation with ls equal to 0.4 and ld equal to 0.2; imposed initial normal

load = 30 N/mm
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when coming from lower velocities (stick–slip

initial condition) and shows stable sliding when

coming from higher velocities (stable sliding).

The bifurcation diagram shows then that the bi-

stable region has been obtained for a continuous

system in frictional contact with a moving counterpart.

3.3 Critical velocity versus friction

A parametrical analysis has been then performed to

ascertain the effect of the ratio static to dynamic

friction coefficient on the velocity interval (difference

between upper and lower critical velocity) in which

the system exhibits a bi-stable behaviour. The same

value of the static and dynamic friction coefficient

brings to an overall stable sliding condition. On the

other hand, when the two friction values are set

different, with higher static friction, the stick–slip

instability occurs within different velocity interval.

The results are summarised in Table 1 and Fig. 6 for

ls=ld that ranges between 1.14 and 2.5.

The first evidence from Table 1 and Fig. 6 is that

the ratio between the two friction coefficients deter-

mines the spread between the two critical velocities,

increasing the length of the velocity interval of the bi-

stable region. Another important aspect to notice is

that, while the acceleration critical velocity presents

large variations according to the change in the ratio

between the friction coefficients, the critical velocity

in deceleration stays almost constant. Its small vari-

ation, instead, seems to be correlated rather with the

change in the dynamic friction coefficient: with an

increase in ld, a slight increase in the critical velocity

in deceleration is observed. The larger increase in the

critical velocity in acceleration, with respect to the one

in deceleration, according to the ls/ld ratio, has been
observed as well numerically on lumped models [35].

4 Experimental results

4.1 Test-bench

A dedicated test bench (Fig. 7), developed for the

study of contact instabilities [43–45], has been adapted

to reproduce the nonlinear dynamic response of the

investigated system. The oscillator is put in contact

with its counterpart, a steel disc driven by a brushless

electric engine, imposing a vertical displacement to its

clamped end. The clamping is obtained by a massive

block, in order to isolate as much as possible the

dynamics of the oscillator [46]. To obtain a better

clamping condition and avoid micro sliding at the

interface with the clamping block, the upper part of the

oscillator has been designed with a thicker section and

the corresponding fillet radius (Fig. 7a). Both the

normal and the tangential forces are acquired with a

3-axial piezoelectric transducer (Kistler 9017C)

located on the upper side of the oscillator. In order

to follow the dynamic response of the system, an

accelerometer (B&K type 4397) has been positioned

at one side of the oscillator, close to the contact

interface. A micrometric positioning system is used to

apply the load by imposing a vertical displacement to

the oscillator, while the inclination angle (see Fig. 1)

is obtained by an angular positioning system.

Fig. 5 Bifurcation diagram

obtained with the

acceleration data shown in

Fig. 4
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The geometry of the oscillator, at the contact side,

has been set with two curvature radii (Fig. 7) in order

to have a barrel-like shape and ensure the contact in

well-localized area in the middle of the oscillator

plane, avoiding misalignment issues that would have

led to strong asymmetry in the contact zone. The

oscillator has been printed by additive technology in

steel material.

It order to obtain a frictional response with static

friction higher than the dynamic one, the oscillator

was coated on the contact side with an epoxy resin.

Table 1 Numerical results in terms of critical velocity as a function of the static and dynamic friction coefficients

ls ld ls/ld Acceleration critical velocity (mm/s) Deceleration critical velocity (mm/s)

0.50 0.20 2.50 140.0 30.0

0.40 0.20 2.00 104.0 29.0

0.30 0.20 1.50 64.0 28.0

0.40 0.35 1.14 35.0 33.5

0.40 0.30 1.33 39.0 33.0

0.50 0.40 1.25 36.5 34.5

0.50 0.30 1.67 68.0 33.0

Fig. 6 Bi-stable velocity interval as a function of the static/dy-

namic friction ratio

Fig. 7 CAD design (a) and photo of the experimental setup (b): (1) vertical support, (2) horizontal support, (3) linear vertical

positioning system, (4) 3D force transducer, (5) angular positioning system, (6) massive block, (7) oscillator, (8) disc
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The frictional response of the used epoxy resin in

contact with steel material has been measured on a

dedicated tribometer [44, 47] to retrieve the friction-

velocity characteristic curve, shown in Fig. 8.

4.2 Non-linear stick–slip response

Before the experimental campaign, a running-in phase

is required to establish a transfer film of resin on the

disc surface, which has been previously polished to

obtain a roughness of Ra = 1 lm. After the running-in

of the surfaces, the tests have been performed.

Figure 9 shows the response of the frictional system

during a reference test, where the different phases of

the experimental protocol are listed in Table 2.

Referring to the imposed boundary conditions

(Fig. 2), for the presented test, a vertical displacement

is imposed to the system in order to reach an initial

load of 50 N, while the maximum speed is set to

44 mm/s.

As soon as the relative motion starts (disc rotation),

the acceleration of the oscillator shows high amplitude

oscillations, until a second stage can be detected, when

only low amplitude friction noise is observed. The low

amplitude noise increases slightly with the imposed

velocity, stays at constant amplitude when the

imposed velocity is kept constant, and it decreases

again with the decreasing of the velocity, until high

amplitude oscillations take place again; here, a sudden

increase in the acceleration amplitude occurs and

develop until the final stop of the disc.

The low amplitude acceleration is friction noise

[46], due to broadband excitation coming from the

contact, during the stable sliding state between the

oscillator and disc surfaces. The emphasis is here

placed on the values of ‘‘critical velocities’’, i.e. the

imposed relative velocities at which the jumps

between stable sliding (friction noise) and stick–slip

(impulsive oscillations) occur. The impulsive nature

of the stick–slip phenomenon is also highlighted in the

zoom of the spectrogram in Fig. 9 (when increasing of

the imposed velocity); a typical large band excitation

(vertical lines) of the system natural frequencies is

observed for each periodical stick–slip event. More-

over, increasing the imposed velocity (in the acceler-

ation phase), the period of stick–slip decreases. Then,

for higher velocities, the system oscillations are not

completely damped between the successive impulsive

excitations, leading to continuous oscillations at the

natural modes of the system (horizontal lines). The

almost continuous lines in the spectrum appears first

for the low frequency modes, because they are less

damped. Increasing the imposed velocity, the fric-

tional system switches from a stick–slip state to a

stable sliding (red star in Fig. 9, v = 13 mm/s) and the

spectrogram shows a low amplitude and large band

vibrations due to the friction noise. The analogue time

and frequency system response is recovered during the

deceleration phase (from 40 to 60 s), where the

switching from stable sliding to stick–slip state takes

place for a lower critical velocity (green star in Fig. 9,

v = 7.5 mm/s). In the test reported in Fig. 9, it is

possible to observe two different critical velocities for

the acceleration phase, at 13 mm/s, and the deceler-

ation phase, at 7.5 mm/s. This proves experimentally

that in the velocity interval (7.5–13 mm/s) the system

dynamical equilibria can result in stick–slip oscilla-

tions (acceleration phase) or in steady sliding

0 1 2 3 4 5

Imposed Velocity [mm/s]

0

0.1

0.2

0.3

0.4

0.5

Fr
ic

tio
n

experimental data
exponential fitting

Fig. 8 Friction-velocity

characteristic curve for

epoxy resin obtained on a

dedicated tribometer

[44, 47]
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(deceleration phase) determining a region of bi-

stability, as indeed found in literature for lumped

systems [35].

4.3 Parametrical analysis

A parametrical analysis, with respect to the applied

normal load1 and the inclination angle of the

oscillator, has been performed in order to study the

effects of the variation of these parameters. In

particular, the normal load is varied between 50 N,

upper limit of the positioning system, and 20 N, under

which the system does not show appreciable stick–slip

instability. On the other hand, the angle has been

varied from 5� up to 20�. Tests with higher values do

not present stick–slip, while lower inclinations can

cause wedging of the oscillator during the test. For

each configuration of the angle, all the load values

have been tested. Table 3 gives the values of the

obtained critical velocities, both in acceleration and

Fig. 9 Recorded acceleration (up) and acceleration spectrogram (down) from an experimental test with angle = 5� and initial

load = 50 N

Table 2 Experimental protocol

Step I II III IV V

Phase type Loading Acceleration Constant Speed Deceleration Unloading

Time interval From t = 0 s to t = 20 s From t = 20 s to t = 40 s From t = 40 s to t = 60 s

1 The normal load is here referred to the force that is measured

at the end of the loading phase when the oscillator is at its rest

position.
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deceleration, for each combination of normal load and

inclination angle. As expected, when combing lower

loads with larger angles the system do not show stick–

slip instability (critical velocity equal to 0). When

decreasing the angle, or increasing the load, the

critical velocities increase (Fig. 10).

As well, the overall breadth of the bi-stable velocity

interval increases with the increase in load and

decrease in the inclination angle (Fig. 10). Being

friction and contact instabilities are quite sensitive to

several parameters, when comparing the trends of the

critical velocities and the by-stability velocity interval,

it should be kept in mind that the reported values are

not to be taken as absolute. The main results are here

the qualitative trends with respect to variations of the

selected parameters (Fig. 11).

5 Switching within the bi-stable behaviour

In this section the bifurcation diagram, showing the

acceleration amplitude RMS as a function of the

imposed relative velocity, is reconstructed from the

experimental results, and it is shown that it is possible

to switch between the two states, i.e. stable sliding and

stick–slip, within the bi-stable region by introducing

an external perturbation. Figure 12 presents the bifur-

cation diagram, obtained from the acceleration mea-

sured during the experimental test shown in Fig. 9.

The curve is obtained performing a moving root mean

square (RMS) of the acceleration signal with time

window of 0.2 s.

During the acceleration branch (blue curve, circles)

the stick–slip amplitude increases and then decreases

with the increasing of the velocity, to disappear at

about 13 mm/s, when stable sliding is observed. In the

deceleration branch (red curve, diamonds), instead,

the critical speed to switch from stable sliding to stick–

slip is at about 7.5 mm/s, highlighting the bi-

stable range with the two possible states between 7.5

and 13 mm/s.

The difference in the critical velocities is quite

large, allowing performing a new test, at constant

velocity, in the region of the bi-stability, as pointed out

in Fig. 12. The test begins in steady sliding condition

at a constant velocity of 9 mm/s (red dot in Fig. 12),

Table 3 Experimental results in terms of critical velocity as a

function of initial load and imposed angle

Critical velocity in acceleration—deceleration (mm/s)

Load (N)/angle (�) 5 10 15 20

20 3.0–0 0–0 0–0 0–0

30 7.5–4.5 2–0.5 0–0 0–0

40 10–6.5 5–2 3–1.5 0–0

50 13–7.5 10.5–6.5 7.5–6 0–0
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Fig. 10 a Difference in critical velocities (bi-stable velocity interval) for fixed angle (5�); b Difference in critical velocities for fixed

load (50 N)
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which has been reached starting for high velocity and

decelerating the disc. Thus, the system is in stable slid-

ing, showing low amplitude friction noise in the

acceleration (Fig. 13, until 32.37 s). After a while, an

impulsive excitation has been provided by an external

impact on the oscillator (at 9 mm/s in Fig. 12) and the

system response shows stick–slip oscillation in the

temporal response and remains in this state. The

system, excited by an external perturbation, has

moved from the stable sliding branch to the unsta-

ble stick–slip branch (from red to blue dots in Fig. 12),

which shows how the dynamical equilibria in fric-

tional systems may be very sensitive to external

perturbations.

6 Conclusions

In this work, the nonlinear dynamical response of a

continuous system subjected to frictional excitation

has been studied both experimentally and numerically.

Although relevant works in literature have dealt with

the topic of friction-induced vibrations, few experi-

mental contributions have been published investigat-

ing the multi-stability in frictional systems, i.e. the

possibility to show experimentally multiple coexisting

dynamical equilibria for the same set of governing

parameters. The original contribution of this work, is

the extension of such observations and analyses on

continuous frictional systems, both numerically and

experimentally.
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Fig. 11 Experimental

parametric results in terms

of the bi-stable velocity

interval as a function of the

initial load and imposed

angle

Fig. 12 Bifurcation

diagram obtained for normal

load of 50 N and 5� of
inclination angle. The

acceleration data are those

shown in Fig. 9
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Firstly, a dedicated finite element model of the

investigated frictional system has been developed.

Then, the frictional oscillator has been realized by

additive manufacturing and coated with a layer of

epoxy resin that shows a quite reproducible negative

friction-velocity slope. Both experiments and numer-

ical results show that, within a certain interval of

imposed velocity, the frictional system presents two

stable co-existing solutions (stable sliding and stick–

slip instability), which are selected by the system

initial conditions. Then, the bifurcation diagrams have

been traced both numerically and experimentally.

A parametrical analysis has been then performed as

a function of the normal load, inclination angle and

friction coefficients, showing that the width of the bi-

stable regime reduces by reducing the ratio static to

dynamic friction coefficient and increases by decreas-

ing the contacting angle or increasing the normal load.

Friction-induced vibrations are often defined as

‘‘capricious’’, ‘‘intermittent’’, ‘‘sensitive’’ as for

apparently the same conditions they may or may not

take place. The results have highlighted that, for

velocity within the bi-stable region, external pertur-

bations may lead the system solution to jump from

steady sliding to stick–slip oscillations, or vice versa.

The reported results are in agreement with previous

analytical/numerical modelling of lumped frictional

systems. In light of recent numerical findings [34],

further developing of the experimental test bench is

ongoing in order to account for more complex and

larger system which may show other nonlinear

phenomena such as vibration localization and/or

propagation of stick–slip fronts.
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Università degli Studi di Roma La Sapienza within the CRUI-

CARE Agreement. This study was partially founded by the

project no. RM11916B4695CF24, from the Sapienza University

of Rome. A. Papangelo acknowledges the support by the Italian

Ministry of Education, University and Research under the

Programme ‘‘Department of Excellence’’ Legge 232/2016

(Grant No. CUP -D94I18000260001). A. Papangelo is

thankful to the DFG (German Research Foundation) for

funding the project PA 3303/11. A. Papangelo acknowledges

the support from’’PON Ricerca e Innovazione 2014-2020 -

Azione I.2 - D.D. n. 407, 27/02/2018, bando AIM (Grant No.

AIM1895471).

Compliance with ethical standards

Conflict of interest The authors declare that they have no

conflict of interest.

Open Access This article is licensed under a Creative

Commons Attribution 4.0 International License, which

permits use, sharing, adaptation, distribution and reproduction

in any medium or format, as long as you give appropriate credit

to the original author(s) and the source, provide a link to the

Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are

included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is

not included in the article’s Creative Commons licence and your

intended use is not permitted by statutory regulation or exceeds

the permitted use, you will need to obtain permission directly

from the copyright holder. To view a copy of this licence, visit

http://creativecommons.org/licenses/by/4.0/.

References

1. Akay, A.: Acoustics of friction. J. Acoust. Soc. Am. 111(4),
1525–1548 (2002). https://doi.org/10.1121/1.1456514

Fig. 13 Acceleration signal

when the system is within

the bi-stable zone; an

impulsive excitation (up)

switches the system

response between the two

solution branches; load of

50 N, 5� of inclination angle
and constant imposed

velocity of 9 mm/s

123

1372 D. Tonazzi et al.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1121/1.1456514


2. Kinkaid, N.M., O’Reilly, O.M., Papadopoulos, P.: Auto-

motive disc brake squeal, Journal of sound and vibration.

J. Sound Vib. 267(1), 105–166 (2003)

3. Sinou, J.-J., et al.: A global strategy based on experiments

and simulations for squeal prediction on industrial railway

brakes. J. Sound Vib. 332(20), 5068–5085 (2013)
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32. Koç, İ.M., Eray, T.: Modeling frictional dynamics of a

visco-elastic pillar rubbed on a smooth surface. Tribol. Int.

127, 187–199 (2018)

33. Papangelo, A., Grolet, A., Salles, L., Hoffmann, N., Cia-

varella, M.: Snaking bifurcations in a self-excited oscillator

chain with cyclic symmetry. Commun. Nonlinear Sci.

Numer. Simul. 44, 108–119 (2017). https://doi.org/10.1016/
j.cnsns.2016.08.004

34. Papangelo, A., Hoffmann, N., Grolet, A., Stender, M.,

Ciavarella, M.: Multiple spatially localized dynamical

states in friction-excited oscillator chains. J. Sound Vib.

417, 56–64 (2018). https://doi.org/10.1016/j.jsv.2017.11.

056

123

Numerical and experimental analysis of the bi-stable state 1373

https://doi.org/10.1016/j.medengphy.2010.02.006
https://doi.org/10.1016/j.wear.2017.12.015
https://doi.org/10.1115/1.3111079
https://doi.org/10.1115/1.3111079
https://doi.org/10.1016/j.ymssp.2013.05.022
https://doi.org/10.1016/j.ymssp.2013.05.022
https://doi.org/10.1016/j.ijsolstr.2014.01.005
https://doi.org/10.1016/j.ijsolstr.2014.01.005
https://doi.org/10.1016/j.cnsns.2006.01.007
https://doi.org/10.1016/j.cnsns.2006.01.007
https://doi.org/10.5923/c.jmea.201502.20
https://doi.org/10.5923/c.jmea.201502.20
https://doi.org/10.1243/pime_auto_1961_000_009_02
https://doi.org/10.1243/pime_auto_1961_000_009_02
https://doi.org/10.1007/s11071-016-2887-x
https://doi.org/10.1038/s41598-017-07234-4
https://doi.org/10.1038/s41598-017-07234-4
https://doi.org/10.1016/j.cnsns.2016.08.004
https://doi.org/10.1016/j.cnsns.2016.08.004
https://doi.org/10.1016/j.jsv.2017.11.056
https://doi.org/10.1016/j.jsv.2017.11.056


35. Papangelo, A., Ciavarella, M., Hoffmann, N.: Subcritical

bifurcation in a self-excited single-degree-of-freedom sys-

tem with velocity weakening-strengthening friction law:

analytical results and comparison with experiments. Non-

linear Dyn. 90, 2037–2046 (2017)

36. Hoffmann, N.: Transient growth and stick-slip in sliding

friction. J. Appl. Mech. 73(4), 642–647 (2005). https://doi.

org/10.1115/1.2165233

37. Shiroky, I.B., Papangelo, A., Hoffmann, N., Gendelman,

O.V.: Nucleation and propagation of excitation fronts in

self-excited systems. Physica D Nonlinear Phenom. 401,
132176 (2020). https://doi.org/10.1016/j.physd.2019.

132176

38. Antoniou, S.S., Cameron, A., Gentle, C.R.: The friction-

speed relation from stick-slip data. Wear 36(2), 235–254
(1976). https://doi.org/10.1016/0043-1648(76)90008-9

39. Liu, Y.F., Li, J., Zhang, Z.M., Hu, X.H., Zhang, W.J.:

Experimental comparison of five friction models on the

same test-bed of the micro stick-slip motion system. Mech.

Sci. 6(1), 15–28 (2015). https://doi.org/10.5194/ms-6-15-

2015

40. Saha, A., Wahi, P., Bhattacharya, B.: Characterization of

friction force and nature of bifurcation from experiments on

a single-degree-of-freedom system with friction-induced

vibrations. Tribol. Int. 98, 220–228 (2016). https://doi.org/

10.1016/j.triboint.2016.02.006
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