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Abstract The critical aeroelastic behavior of hori-
zontal, suspended, and shallow cables is analyzed via
a continuous model accounting for both external and
internal damping. Quasi-steady aerodynamic forces
are considered, including their stationary contribution
(mean wind force). This latter induces a rotation of
the cable (steady swing) around the line connecting
the suspension points, together with a deformation of
the initial equilibrium profile under self-weight. First,
by using perturbation methods, the nontrivial equilib-
rium configuration is analytically determined as a non-
linear function of the wind velocity. Then, the wind
critical values at which bifurcations take place and the
corresponding modal shapes are determined by solv-
ing a boundary value problem in the complex field.
Numerical investigations are carried out to validate the
perturbation solution. A preliminary nonlinear gallop-
ing analysis is also performed to verify the galloping
onset in terms of non-trivial equilibrium path and crit-
ical modes. The nonlinear terms related to the funda-
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mental path, fromwhich bifurcations take place, play a
key role revealing new insights. They are able to heavily
influence the system bifurcation, making unstable con-
figurations which instead would be aerodynamically
stable without considering the effect of the mean wind
force.

Keywords Shallow cable · Galloping onset · Swing ·
Bifurcation from a nontrivial path · Perturbation
solutions

1 Introduction

Cables are widely used structures in civil and indus-
trial applications. They assume a fundamental role in
the carrying capacity of suspended and stayed bridges,
as well as in the realization of cable-cars, electrical
transmission lines and many other structures. A gen-
eral characterization of statics and dynamics of cables
can be found in the classic Irvine’s book [1], where sev-
eral applications are analyzed as well. Recent advances
in the statics of cables under forces exclusively verti-
cal but not necessary uniform are proposed in [2], then
extended to the case of general 3D forces in [3], where a
perturbation asymptotic expression for the elastic prob-
lem solution is proposed.At the same time, the dynamic
characterization of suspension cable systems is very
important (e.g., [4]). Concerning nonlinear vibrations
of suspended cables, the quadratic terms play a fun-
damental role in presence of internal resonances (e.g.,
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[5,6]), differently from taut strings forwhich only cubic
terms are present (e.g., [7]). In the case of inclined
cables, additional properties that cannot be obtained
by using horizontal cable modeling can be observed
(e.g., [8]).

The wind-induced vibration of cables is a clas-
sic topic in structural applications [9]. Various aeroe-
lastic phenomena may arise including vortex-induced
vibrations (e.g., [10,11]), rain-wind-induced vibrations
(e.g., [12,13]), dry galloping (e.g., [14,15]), ice gallop-
ing (e.g., [16,17]), and wake galloping (e.g., [18,19]).
When operating in cold regions, an important role is
played by ice galloping. It occurs when there is an ice
accretion on the cable surface that breaks the symme-
try of the cross section. As a consequence, the lift force
may induce aerodynamic instabilities even for moder-
atewind. This phenomenon is first described in [20] and
is largely analyzed in the literature, in the framework of
the quasi-steady theory [21–23].Without wanting to be
exhaustive, a few examples of iced cable galloping are
given in [16,24–26]. Effects of possible internal reso-
nances, in discrete or continuous nonlinear models, are
investigated by the authors in [17,27], whereas a stiff
modeling, able to take into account in a consistent way
both bending and torsional stiffness, are introduced in
[28–30]. Concerning flexible cables, the cable rotation,
and resulting variation of their wind attitude are how-
ever very important for changes in aerodynamic prop-
erties of the cross section (e.g., [27,31]). Finite-element
solutions of the problem can be found, for example, in
[32]. The role of the internal and external damping con-
tributions is evaluated in [33], where in-plane gallop-
ing analysis of flexible cables is performed, pursuing a
direct approach on the nonlinear pde’s of motion.

Focusing the attention on galloping critical condi-
tions, the 1:1 internal resonance effects are pointed out
in [16,34,35] as concerns two degree-of-freedommod-
els.Avery recent paper [36] presents a perturbationgal-
loping stability criterion for a three-degree-of-freedom
coupled motion of an iced conductor. A study of mul-
timodal galloping on an iced transmission line is car-
ried out in [37] using a reduced model including the
first four in-plane modes and the first torsional mode,
which is obtained by using Galerkin spatial discretiza-
tion. Critical conditions and nonlinear responses are
determined in a purely numerical way; the actual role
of the rotation caused by the static aerodynamic forces
is not completely unveiled since it seems related only
to the torsional mode considered.

In this paper, considering a perfectly flexible (i.e.,
with evanescent flexural stiffness) and torsionally rigid
cable arranged horizontally, the influence ofmeanwind
actions on ice galloping stability is carefully addressed
in the context of a continuous approach. For this pur-
pose, the structural model of cable is taken from [33],
and here extended to possible occurrence of out-of-
planemotions. Due to the acting forces, a configuration
change of the static equilibrium of the cable occurs and
bifurcations take place starting from a nonlinear, non-
trivial fundamental path.Aftermodeling the aeroelastic
flexible cable (Sect. 2), the aim is, therefore, twofold:
(1) to find the nontrivial path as a function of the mean
wind velocity (Sect. 3), and, along this path, (2) to
search for the critical wind velocities (Sect. 4). Both of
these objectives will be pursued analytically with the
use of appropriate perturbation techniques. Compar-
isons with a numerical solution are however performed
(Sect. 5) in both linear and nonlinear field in order to
verify the accuracy of the results obtained. Some final
considerations are reported in the ending Sect. 6.

2 Aeroelastic flexible cable model

2.1 Equations of motion

A horizontal flexible cable, having small sag-to-span
ratio and under the effect of gravity and uniform
wind, is analyzed here. As long as the sole self-
weight is considered, i.e., no wind blows, the cable
hangs in the

(
āx , āy

)
-plane (vertical), in the con-

figuration referred to as C̄ (see Fig. 1, solid thin
line). A local triad is defined in such a configura-
tion, constituted by the tangent, normal and binor-
mal unit vectors, and denoted by (āt , ān, āb). When
a uniform wind of velocity U = U āz is consid-
ered as well, it induces a time-dependent displace-
ment of the generic point of the center line of the
cable from the configuration C̄, which is indicated as
u = uāt + vān + wāb (solid thick line in Fig. 1); the
specific effect of the wind is described in detail in Sect.
2.3.

The equations of motion for the cable, which are
well-known in the literature [1,5,27,38], are written
here in terms of normal and binormal displacement
only (v,w), i.e., with the tangent displacement (u) con-
densed, under the usual hypothesis that the celerity of
the longitudinal waves is much greater than that asso-
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Fig. 1 Horizontal cable
under self-weight and
binormal wind flow

ciated with the transversal ones. Moreover, bending
and torsional stiffness is ignored, consistently with the
model of flexible cables, and differently than what it is
done in case of stiff cables [28–30]. When adapted to
the problem at hand, the equations of motion read:

(T0 + E Ae) v′′ + E Ak̄e − mv̈ + f dn + f an = 0

(T0 + E Ae) w′′ − mẅ + f db + f ab = 0

e + k̄

l

l∫

0

vds − 1

2l

l∫

0

(
v′2 + w′2) ds = 0

vA = 0, vB = 0

wA = 0, wB = 0

(1)

Here, T0 is the prestress, assumed uniform along the
abscissa s ∈ [0, l]; l is the length of the cable, taken
nearly equal to the chord (i.e., the distance between
the supports); E A is the axial stiffness; m is the mass
per unit length (including possible ice coating); k̄ :=
mg
T0

is the prestress curvature, also assumed uniform;
e(t) is the dynamic unit extension, uniform on s, from
which the dynamic tension is evaluated as T̃ = E Ae;
f dn , f db are damping forces and f an , f ab aerodynamic
forces, all per unit length, acting in the normal and
binormal direction, respectively; the prime stands for
s-derivative and the dot for time derivative.

Models for damping and aerodynamic forces are dis-
cussed below.

2.2 Internal and external damping forces

The damping scheme follows what it is proposed in
[33], in the spirit of the Kelvin-Voigt rheological model
(note that, in [33], only in-plane motions are involved

while here the procedure is extended to possible out-
of-plane motions as well). In particular, both external
and internal damping contributions are considered. The
latter is essential to avoid, in a continuum approach,
infinitely many coincident critical wind velocities, one
for each mode and, therefore, to split the coalescence
of bifurcation points.

Specifically, the external damping is assumed as pro-
portional to velocities: f den = −cev̇, f deb = −ceẇ,
with ce a damping coefficient. This leads to an exter-
nal damping operator proportional to the mass opera-
tor. Conversely, the internal damping, which accounts
for various dissipative phenomena occurring in the
material, here is assumed as proportional to the stiff-
ness operator, to make the analysis as simple as pos-
sible (see [33] for further comments on the internal
damping contribution). Therefore, since from Eq. (1),
the geometric and elastic linear force components
are:

(
f eln
f elb

)
:= T0

[
∂2

∂s2

(
v

w

)
+

( E A
T0

k̄e
0

)]
(2)

then the damping force components become:

(
f din
f dib

)

:= ζ

[
∂2

∂s2

(
v̇

ẇ

)
+

( E A
T0

k̄ė
0

)]
(3)

with ζ an internal damping coefficient.
By superimposing the internal and external

mechanisms, the Rayleigh model of damping is
obtained:

f dn = −cev̇ + ζ

(
v̇′′ + E A

T0
k̄ė

)

f db = −ceẇ + ζ ẇ′′
(4)
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The equations of motion (1) accordingly read:

T0

(
1 + ζ

T0

∂

∂t

)
v′′ + E Ak̄

(
1 + ζ

T0

∂

∂t

)
e

+ E Aev′′ − mv̈ − cev̇ + f an = 0

T0

(
1 + ζ

T0

∂

∂t

)
w′′ + E Aew′′ − mẅ

− ceẇ + f ab = 0

e+ k̄

l

l∫

0

vds − 1

2l

l∫

0

(
v′2 + w′2) ds = 0

vA = 0, vB = 0

wA = 0, wB = 0

(5)

2.3 Aerodynamic forces

Aerodynamic forces are formulated in the framework
of the quasi-steady theory (e.g., [21,22]). They are
influenced by the occurrence, at any point, of an ice
coating which breaks the axis-symmetry of the circu-
lar cross section of the cable. The forces are assumed
uniform along the centerline of the cable, due to its
small sag-to-span ratio (ān � āy) and to the uniform
shape of the ice coating.

As previously said, the gravity force b̄ = −mgāy
(g is the gravity acceleration), which includes the own
and the ice weights, lets the cable lie in the vertical
plane (configuration C̄, light gray plane in Fig. 2a). The
initial orientation of the iced cross section is described
by the direction ās , which is inclined by the angle ϕ0 to
the binormal axis āb. In other words, ϕ0 represents the
initial orientation of the cross section when the cable
hangs on the vertical plane, in the absence of wind
(Fig. 2b).

The wind, which blows normally to the cable plane,
produces aerodynamic forces which can be decom-
posed in steady plus unsteady parts. The steady part,
i.e., the one not depending on the velocity of the body,
can be combined to the gravity giving rise to a uni-
form and constant force field b̆, that results parallel to
an inclined plane and modifies the equilibrium config-
uration. More specifically, a static swing θ̆ (U ) of the
cable is induced, i.e., the cable swings to this newplane,
which still passes through the line connecting the sup-
ports but is inclined of the angle θ̆ (U ) with respect to
the vertical one. This new equilibrium configuration is

referred to as C̆ (dark gray plane in Fig. 2a). The rotated
plane will be called swung plane in the following. As
specified in Sect. 2.1, and contrary to what it is done in
[30], the vertical planar configuration C̄ is taken here
as reference, and displacements are measured from it.

Under the aforementioned hypotheses, the aerody-
namic force acting on the cross section, which is the
sum of a drag (fd ) and a lift (fl ) component, is (see
Fig. 2b):

fa = 1

2
ρU2

r bCd (γ + ϕ0)aur
︸ ︷︷ ︸

fd

+ 1

2
ρU2

r bCl (γ + ϕ0)āt × aur
︸ ︷︷ ︸

fl

(6)

where ρ is the air density, b a characteristic radius of
the cross section, × is the cross product, Ur = Uraur
the relative velocity between the flow and the cable,
defined as

Ur = U − u̇ = −v̇ān + (U − ẇ)āz (7)

In Eq. (7) the contribution of the spin θ̇ is ignored, as
typically done for compact shapes, it being small as
compared to u̇. As a consequence, it turns out that:

Ur =
√

v̇2 + (U − ẇ)2

aur = − v̇

Ur
ān + U − ẇ

Ur
āz

(8)

In Eq. (6), Cd(γ + ϕ0) and Cl(γ + ϕ0) are the drag
and lift coefficients, neglecting their intrinsic uncer-
tainty [39]; note that, if the angle of attack γ = 0, i.e.,
if the cross section is in its fixed initial orientation, the
face exposed to the wind would be described by the
angle ϕ0. With reference to Fig. 2b, the expression for
γ is evaluated from:

tan(θ̆ + γ ) = −Ur · ān
Ur · āz (9)

where the dot indicates the scalar product, so that, from
Eqs. (7) it turns out:

γ = −θ̆ + arctan
v̇

U − ẇ
(10)

From Eq. (10) (and from Fig. 2b), it is evident the con-
tribution of the swing angle θ̆ which, summed to the
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(a) (b)

Fig. 2 a Swing of the cable plane under gravity and steady part
of the binormal wind flow (light gray: vertical plane, configura-
tion C̄; dark gray: swung plane, configuration C̆); bCross section
of the cable with drag and lift components of the aerodynamic

forces ((ăn, ăb) are normal and binormal unit vectors in the con-
figuration C̆, and āt is orthogonal to the plane of the picture,
coming out of it)

initial orientation of the cross section ϕ0, changes the
face of the cross section to the wind.

When the previous results are expanded for small
velocity ratios v̇/U, ẇ/U up to the first order (i.e.,
considering a purely linear contribution from aeroelas-
tic actions), it is found:

Ur = U − ẇ (11)

aur = − v̇

U
ān + āz (12)

γ = −θ̆ + v̇

U
(13)

Consistently with the mechanical model of flexi-
ble cable, twist and torsional moment are not defined.
From Eqs. (6) and (11)–(13), after series expansion
with respect to the variables θ̆ , v̇/U, ẇ/U , the normal
and binormal components of the vector of aerodynamic
forces, referred to as f an and f ab , respectively, become:

(
f an
f ab

)
:=

(
f̆n(θ̆;U )

f̆b(θ̆;U )

)
+

(
f̃n(v̇, ẇ; θ̆ ,U )

f̃b(v̇, ẇ; θ̆ ,U )

)
(14)

where the terms uniquely depending on θ̆ are collected
in f̆α , while those which depend on the velocity com-
ponents v̇, ẇ as well, are collected in f̃α , α = n, b.
The former are the steady components, depending on
the swing angle (and, parametrically, on thewindveloc-
ity); the latter are the non-steady contributions, depend-
ing on structural velocities (and, parametrically, on the
swing angle andwindvelocity). In particular, the steady
forces are:

(
f̆n
f̆b

)
: =

(
f an0
f ab0

)
U 2 −

(
ka21
ka31

)
U 2θ̆

−
(
n211
n311

)
U 2θ̆2 −

(
n2111
n3111

)
U 2θ̆3

(15)

and the non-steady ones are:

(
f̃n
f̃ ab

)
:= −

(
U

[
ca22 ca23
ca32 ca33

]
+ θ̆U

[
n212 n213
n312 n313

]

+θ̆2U

[
n2112 n2113
n3112 n3113

])(
v̇

ẇ

) (16)
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The coefficients in Eqs. (15) and (16) are given in
Appendix A. The expression (16) of the aerodynamic
forces, as a function of the swing angle, is asymptot-
ically correct till θ̆ is small of the same order of the
(nondimensionalized) velocities v̇/U, ẇ/U .

Series expansions (15) and (16) are expected to be
sufficiently accurate as long as θ̆ is small. However,
when θ̆ is large, a different approach must be followed,
namely: (a) the exact (not expanded) expression of the
steady forces are evaluated, with Eqs. (7)-(10), from
Eq. (6), after neglecting all the structural velocity terms;
(b) the non-steady forces are determined by a series
expansion carried out on the structural velocities only,
and not on the swing angle. In this case, the steady
forces, which substitute Eqs. (15), become:

(
f̆n
f̆b

)
:=

(− 1
2ρU

2bCl(−θ̆ + ϕ0)
1
2ρU

2bCd(−θ̆ + ϕ0)

)
(17)

They have the important drawback of not being explicit
in θ̆ andU , thus calling for a purely numeric approach.
The unsteady forces, which substitute Eqs. (16), are:

(
f̃n
f̃ ab

)
:= 1

2
ρUb∗

[−(Cd (−θ̆ + ϕ0) + C ′
l (−θ̆ + ϕ0)) 2Cl (−θ̆ + ϕ0)

−(Cl (−θ̆ + ϕ0) − C ′
d (−θ̆ + ϕ0)) −2Cd (−θ̆ + ϕ0)

](
v̇

ẇ

)

(18)

2.4 The equilibrium equations

The nontrivial equilibrium configuration in the swung
plane is described by the steady response, indicated as
v̆(s), w̆(s), ĕ. This is the solution of the nonlinear equi-
librium equations, which are obtained from Eqs. (1)
when inertia, damping and non-steady components of
the aerodynamic forces are neglected, namely:

T0

(
v̆′′
w̆′′

)
+ E Aĕ

(
k̄ + v̆′′

w̆′′
)

+
(
f̆n
f̆b

)
=

(
0
0

)

ĕ = − k̄

l

l∫

0

v̆ds + 1

2l

l∫

0

(
v̆′2 + w̆′2) ds

v̆A = 0, v̆B = 0

w̆A = 0, w̆B = 0

(19)

Fig. 3 Equilibrium of the
steady forces in the
(āy, āz)-plane and
determination of the swing
angle θ̆

In order to evaluate the equilibrium path, that is the
steady solution v̆(s), w̆(s), ĕ as a function of the wind
velocityU , Eqs. (19) are solved. Due to the dependence
of the steady aerodynamic forces on θ̆ , a further equa-
tion which states that the cable lies on the swung plane
at equilibrium, i.e., relating v̆(s) and w̆(s) to θ̆ , should
be considered.

However, as more convenient alternative, the swing
angle can befirst evaluated through a physical consider-
ation on forces, and then, once the steady aerodynamic
forces are known, Eqs. (19) are taken on, in order to
obtain the displacement and strain. In particular, at the
equilibrium, the total steady force, uniformly acting on
the cable, is b̆ = ( f̆n −mg)āy + f̆bāz (see Fig. 3), and
this induces the cable to assume the planar parabolic
configuration C̆ in the swung plane, whose trigonomet-
ric tangent is the ratio between the two force compo-
nents, namely:

θ̆ = arctan

(
f̆b

f̆n − mg

)

(20)

Equation (20), which is transcendent in θ̆ , once solved
in terms of the parameterU , allows one to evaluate the
steady aerodynamic forces. Since it must be f̆n−mg <

0 as the cable remains in tension, it is θ̆ < 0 in the
velocity field of interest.

Note that, in the swung plane, the intensity of the
normal load per unit length changes from mg to√

( f̆n − mg)2 + f̆ 2b . The difference of load entails
elastic strain in the cable, which modifies its sag (the
profile still remaining parabolic) and its stress. Conse-
quently, the dynamic characteristics of the swung cable
modify, with respect to those originally owned in the
vertical plane.

As a further comment on Eq. (20), it turns out that
the value of the swing angle is independent of the initial
curvature of the cable.
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2.5 The linear incremental equations

The general dynamic response to Eqs. (1) can be
expressed in incremental form from equilibrium, by
splitting the solution as:

v(s, t) :=v̆(s) + ṽ(s, t)

w(s, t) :=w̆(s) + w̃(s, t)

e (t) :=ĕ + ẽ (t)

(21)

where ṽ(s, t), w̃(s, t), ẽ (t) are incremental variables.
By substituting Eqs. (21) in Eqs. (5), accounting for
Eqs. (19) and linearizing in the increments, the lin-
ear incremental equations of motion are obtained (tilde
omitted on the incremental variables):

(T0 + T̆ )

(
1 + ζ

T0

∂

∂t

)(
v′′
w′′

)

+ E A

(
k̄ + v̆′′

w̆′′
)(

1 + ζ

T0

∂

∂t

)
e

− ce

(
v̇

ẇ

)
− m

(
v̈

ẅ

)
+

(
f̃ an
f̃ ab

)
=

(
0
0

)

e = − 1

l

l∫

0

[(
v̆′′v + w̆′′w

) + k̄v
]
ds

vA = 0, vB = 0

wA = 0, wB = 0

(22)

where the steady tensile force of the cable is T̆ = E Aĕ.
Note that, in writing Eq. (22-b), an integration by parts
is performed, i.e.,

l∫

0

(
v̆′v′ + w̆′w′) ds

= −
l∫

0

(
v̆′′v + w̆′′w

)
ds + [

v̆′v + w̆′w
]l
0

(23)

where the boundary terms go to zero. Equations (22)
govern the small oscillations of the cable around the
nontrivial equilibrium configuration, with the incre-
mental displacement components referred to the orig-
inal basis located in the vertical plane and the aerody-
namic forces defined in Eq. (16).

Two main approaches can be possibly followed to
get to the final goal, which is the evaluation of the bifur-
cation conditions of Eqs. (22). The first is valid for
large θ̆ and it is purely numerical using the following
steps: 1) pick of a wind velocityU ; 2) evaluation of the
swing angle solving Eq. (20), by means of the Newton-
Raphsonmethod, using the exact and implicit definition
of the forces (17); 3) evaluation of the equilibrium solu-
tion solving Eqs. (19) by means of the finite difference
method; 4) solution of the infinite dimensional eigen-
value problem (22), with definition (18) for the forces
and still using finite difference method. This approach
requires a parametric sweep in terms of the wind veloc-
ityU , i.e., the procedure is entirely repeated for differ-
ent values ofU until critical conditions are found. The
whole procedure is implemented in MATLAB c© [40],
and requires a very short computational time (a few
seconds) for each wind velocity.

The second approach is analytical and makes use of
perturbation methods; it is valid for moderately small
θ̆ and entails: 1) perturbation expansion and chain-
solving of Eq. (20) to obtain the swing angle as a
function of the wind velocity, using the approximated
expression of forces in Eqs. (15); 2) perturbation solv-
ing of Eqs. (19) to obtain the equilibrium solution; 3)
analytical seeking of the critical solution of the linear
problem (22), with definition (16) for the aerodynamic
forces.

In the following Sects. 3 and 4, the second, ana-
lytical procedure is described in detail, and finally, in
Sect. 5, outcomes are compared to those given by the
first, numeric, procedure.

3 The equilibrium path

3.1 Evaluation of the swing angle

The equilibrium equation (20), together with the defi-
nitions (15) of the steady forces, implicitly determines
θ̆ as function of U . It reads:

(mg − f̆n(θ̆;U )) tan θ̆ + f̆b(θ̆;U ) = 0 (24)

Since the forces are expressed in polynomial form
(Eqs. (15)), a perturbation method is conveniently
applied. By rescaling the forces at order ε (i.e., by let-
ting f̆α → ε f̆α , so that θ̆ → 0 when ε → 0), expand-

ing tan θ̆ = θ̆ + θ̆3

3 + . . . and using the series expansion
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3134 D. Zulli et al.

θ̆ = εθ̆1 + ε2θ̆2 + ε3θ̆3, the substitution in Eq. (24) and
vanishing of the coefficients of different powers of ε

produces the following perturbation equations:

ε1 : mgθ̆1 = − f ab0U
2

ε2 : mgθ̆2 = (
ka31 + f an0

)
U 2θ̆1

ε3 : mgθ̆3 = (ka31 + f an0)U
2θ̆2 + (n311 − ka21)U

2θ̆21

− 1

3
mgθ̆31

(25)

Chain solution leads to:

θ̆1 = − f ab0
mg

U2

θ̆2 = − f ab0(k
a
31 + f an0)

(mg)2
U4

θ̆3 = f ab0[( f ab0)2 − 3( f ab0 + ka31)
2 − 3 f ab0(k

a
21 − n311)]

3(mg)3
U6

(26)

from which θ̆ (U ) is reconstituted as:

θ̆ = − f ab0
mg

U2 − f ab0(k
a
31 + f an0)

(mg)2
U4

+ f ab0[( f ab0)2 − 3( f ab0 + ka31)
2 − 3 f ab0(k

a
21 − n311)]

3(mg)3
U6

(27)

With this result, the steady forces can be expressed in
termsof thewindvelocity only.By substitutingEq. (27)
in Eq. (15), one finally gets:

(
f̆n(U )

f̆b(U )

)
=

(
f an0
f ab0

)
U 2

−
(
ka21
ka31

)
(θ̆1(U ) + θ̆2(U ) + θ̆3(U ))U 2

−
(
n211
n311

)
U 2(θ̆21 (U ) + 2θ̆1(U )θ̆2(U ))2

−
(
n2111
n3111

)
U 3θ̆31 (U ) + h.o.t.

(28)

where the positions (26) hold and h.o.t. stands for
higher order terms.

3.2 Evaluation of the static displacements

To find the steady response of the cable, accounting
for elasticity, the equilibrium equations (19) must be
solved. The following trial solution is used:

(
v̆

w̆

)
= −y(s)

(
αn

αb

)
(29)

where y(s) = k̄
2 (s − l)s is the parabolic initial profile,

with k̄ = mg
T0
, and αn, αb are (small) nondimensional

amplitudes, to be determined. Since yA = yB = 0, the
boundary conditions in Eqs. (19) are satisfied.

By substituting Eq. (29) into Eqs. (19-a,b), the
following nonlinear algebraic system in αn, αb, ĕ is
obtained:

(
αn

αb

)
+ E A

T0
ĕ

(
αn − 1

αb

)
=

⎛

⎝
f̆n(U )
mg
f̆b(U )
mg

⎞

⎠

ĕ = 1

12

(
k̄l
)2

[
−αn + 1

2

(
α2
n + α2

b

)]
(30)

After eliminating ĕ, the system reduces to:

αn + Λ2

12

[
−αn + 1

2

(
α2
n + α2

b

)]
(αn − 1) = f̆n(U )

mg

αb + Λ2

12

[
−αn + 1

2

(
α2
n + α2

b

)]
αb = f̆b(U )

mg
(31)

where Λ2 := E A
T0

(
k̄l
)2

is the Irvine parameter [1].
It is worth noticing that, as a check for the validity

of the trial solution (29), since both v̆(s), w̆(s) are pro-
portional to y(s), this solution keeps the cable planar.
Indeed, denoting by x(s) := (x(s)+ ŭ(s))āx +(y(s)+
v̆(s))āy + w̆(s)āz the position of a generic point in
the swung configuration, the vector n := āx × x(s) =
y(s)[(1−αn)āz+αbāy] keeps its direction constant for
any s, coincident with the normal to the swung plane.
The rotation of the plane is the angle formed by n and
āz , i.e.:
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θ̆ = − arctan

(
αb

1 − αn

)
(32)

Moreover, by combining Eqs. (31), it follows that
αb

1−αn
= f̆b

mg− f̆n
, so that Eqs. (32) and (20) are con-

sistent. Therefore, finding αb, αn and using Eq. (32)
gives an alternative method (to Eq. (24)) to evaluate θ̆ .

The solution of Eqs. (31) is now sought with a per-
turbation method. By rescaling the forces at order-ε
and expanding the unknowns as αh = εαh1 + ε2αh2 +
ε3αh3, substitution in Eqs. (31) and vanishing the coef-
ficients of equal powers of ε gives the following per-
turbation equations:

ε1 :

(
1 + Λ2

12

)
αn1 = f̆n(U )

mg

αb1 = f̆b(U )

mg

ε2 :

(
1 + Λ2

12

)
αn2 = Λ2

24

(
3α2

n1 + α2
b1

)

αb2 = Λ2

12
αn1αb1

ε3 :

(
1 + Λ2

12

)
αn3 = Λ2

12

(
αb1αb2

+ 1

2
(αn1α

2
b1 + α3

n1 − 6αn1αn2)

)

αb3 = Λ2

12

(
αn1αb2 + αn2αb1

− 1

2

(
α2
n1 + α2

b1

)
αb1

)

(33)

After chain-solving the linear systems (33), and recon-
stituting, the following expressions are obtained:

αn = 1

2
(
Λ2 + 12

)5
(mg)3

(
2 f̆b(U )2 f̆n(U )Λ2

(
Λ4

+24Λ2 − 72
) (

Λ2 + 12
)2 + f̆b(U )2mgΛ2

(
Λ2 + 12

)4

+6912 f̆n(U )3Λ2
(
2Λ2 − 3

)

+432 f̆n(U )2mgΛ2
(
Λ2 + 12

)2

+24 f̆n(U )
(
Λ2 + 12

)4
(mg)2

)

αb = f̆b(U )

(
1

mg
+ f̆n(U )Λ2

(Λ2 + 12)(mg)2
− Λ2

2
(
Λ2 + 12

)3
(mg)3

∗
(
f̆b(U )2

(
Λ2 + 12

)2 − 2 f̆n(U )2
(
Λ4 + 24Λ2 − 72

)))

(34)

Substitution of this results in Eq. (29) provides the
static deflection of the cable, including rigid and elastic
effects.

Concerning the increment of strain ĕ, this can be
evaluated by Eq. (30-c); the associated increment of
tension T̆ = E Aĕ is:

T̆ = T0
Λ2

12

[
−αn + 1

2

(
α2
n + α2

b

)]
(35)

It is worth noticing from Eqs. (33)-(35) that, when
Λ2 → ∞ (inextensible cable) the linear part of the
normal displacement ampliture αn1 disappears, as it
happens in an inextensible pendulum performing small
swing; furthermore the (nonlinear) elastic strain tends
to zero, in a perturbation sense, when Λ2 → ∞ (i.e., it
contains terms of order ε4 if the perturbation procedure
is stopped at order ε3), entailing no profile changes,

while T̆
T0

→ f̆n
mg , i.e., the tension ratio equates the load

ratio; therefore a static effect only occurs. On the other
hand, when k̄ → 0 (taut string), Λ2 → 0 too, so that
a deflection takes place (αn 	= 0), while T̆ → 0, i.e.,
kinematic effect only occurs.

4 The critical wind velocity

To compute the critical wind velocity and the corre-
sponding critical mode, the incremental equations of
motion (22) must be considered. By using Eq. (16) for
the expression of the aerodynamic forces and Eqs. (29)
for the equilibrium solution, they become:

(
T0 + T̆

) (
1 + ζ

T0

∂

∂t

)(
v′′
w′′

)

+ E Ak̄

(
1 − αn

−αb

)(
1 + ζ

T0

∂

∂t

)
e

−
(
U

[
ca22 ca23
ca32 ca33

]
+U θ̆

[
n212 n213
n312 n313

]

+ U θ̆2
[
n2112 n2113
n3112 n3113

])(
v̇

ẇ

)

− m

(
v̈

ẅ

)
− ce

(
v̇

ẇ

)
=

(
0
0

)
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e = k̄

l

l∫

0

[(1 − αn)v − αbw] ds

vA = 0, vB = 0

wA = 0, wB = 0 (36)

It is worth noticing that, in addition to the effects dis-
cussed in the previous section, the change in the equi-
librium configuration (swing) induces a change also in
the aerodynamic damping matrix, thus accounting for
themodified exposure to wind of the cross section. Fur-
thermore, it is important to point out that the analytical
solving of the problem (36) is possible only as conse-
quence of the evaluation of the non-trivial equilibrium
path using the proposed perturbationmethod, as carried
out in the previous Section.

To solve the problem (36), variable separation is
used, namely the substitution (v(s, t), w(s, t), e(t)) =
(v̂(s), ŵ(s), ê) exp(λt), which produces:

A (λ,U ) û′′ + B (λ,U ) û + b (λ) ê = 0 (37)

ê = k̄

l

l∫

0

[
(1 − αn)v̂ − αbŵ

]
ds (38)

ûA = 0, ûB = 0 (39)

where:

A (λ,U ) :=
(
T0 + T̆

)(
1 + λ

ζ

T0

)
I

B (λ,U ) := −mλ2 I

− λ

⎡

⎢⎢
⎣

ce +U (ca22 + θ̆n212 U (ca23 + θ̆n213
+θ̆2n2112) +θ̆2n2113)

U (ca32 + θ̆n312 ce +U (ca33 + θ̆n313
+θ̆2n3112) +θ̆2n3113)

⎤

⎥⎥
⎦

b (λ) := E Ak̄

(
1 + λ

ζ

T0

)(
1 − αn

−αb

)
, û :=

(
v̂

ŵ

)

(40)

The eigenvalue problem (37)-(39) must be solved in
the complex set; indeed, the galloping (critical) modes,
which are the eigenfunctions associated to the eigen-
values with zero real part, are generally complex, due
to the non-proportional nature of the damping operator
(through its aerodynamic counterpart). Solution to the

field equation assumes the form:

û = (C1 exp (β1(s − l)) + C2 exp (−β1s)) φ1

+ (C3 exp (β2(s − l)) + C4 exp(−β2s))φ2 + êû


(41)

where β1, β2, φ1,φ2 are the eigenvalues and eigenvec-
tors of the following 2 × 2 algebraic problem:

[
B (λ,U ) + β2A (λ)

]
φ = 0 (42)

Moreover û
 := −B−1 (λ,U ) b (λ) is a particular
solution to the non-homogeneous problem (consider-
ing ê as a known term), and C1, . . . ,C4 are arbitrary
constants. By substituting the components of û in the
equation for ê (38), this latter is drawn in terms of the
arbitrary constants. Finally, from the boundary condi-
tions (39), a 4 × 4 homogeneous algebraic problem
follows. Explicit expressions of the solution are cum-
bersome, but help of an algebraic manipulator makes
the problem easy to be solved. In the critical condition,
it is λ = iωc, U = Uc; by splitting the characteristic
equations in the real and imaginary parts, two transcen-
dent real equations for ωc,Uc, which are the critical
frequency and wind velocity, respectively, are derived
and solved by the Newton-Raphson method.

5 Numerical results

5.1 Description of the case studies

Geometrical and mechanical parameters of the cable
assumed as case study are given here. The unstretched
length is l = 267m, themass per unit length ism = 4.4
kg/m, and the axial stiffness is E A = 4.0×108 N. Two
different values of initial sags d are considered, the first
onegiving rise to a very taut configuration and indicated
as case S (smaller sag), the second one to a moderately
taut configuration, referred to as case L (larger sag).
The values for case S are: d = 3 m, which corresponds
to an initial curvature κ̄ = 3.37 × 10−4 m−1, initial
tensile force T0 = 128.213 kNand the Irvine parameter
�/(2π) = 0.79, i.e., at the left of the first crossover
point; the values for case L are: d = 26 m, i.e., initial
curvature κ̄ = 2.92 × 10−3 m−1, initial tensile force
T0 = 14.734 kN and the Irvine parameter �/(2π) =
20.39, i.e., far to the right of the first cross-over point. In
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the two cases, different values of external and internal
damping coefficients are assumed, respectively, so as
to have equal modal structural damping ratio for the
first two natural modes (without wind), in the amount
of 0.5%: they are ce = 0.056 kg×s/m and ζ = 239.4
kg×m×s for case S, ce = 0.020 kg×s/m and ζ = 73.0
kg×m×s for case L. The aerodynamic parameters are:
air mass per unit volume ρ = 1.25 kg/m3, radius b =
0.102 m; the drag Cd(ϕ) and lift Cl(ϕ) coefficients
refer to the NDT cross section in [16,41], and they are
shown in Fig. 4a. Moreover, for both the cases S and
L, the analyses are carried out for two different values
of initial angle of the ice coating, which correspond to
configurations not prone to galloping in theDenHartog
meaning [20], i.e., where Cd(ϕ)+C ′

l (ϕ) > 0: they are
(1) ϕ0 = π/8 rad = 22.5◦ and (2) ϕ0 = 11π/48 rad
= 41.25◦ (red dashed lines in Fig. 4b). Summarizing,
a total number of four cases are analyzed, namely S.1,
S.2, L.1, and L.2, where 1 or 2 indicates the initial
angle of the ice coating. In all the cases, the outcomes
of the perturbation procedures are compared to those
of the numeric approach, as performed through a finite
difference code implemented in MATLAB c© [40].

5.2 Equilibrium configuration

As a first result, the swing angle θ̆ evaluated from the
analytical solution, Eq. (27), is shown in Fig. 5, as a
function of the wind velocity U . Note that θ̆ is inde-
pendent of the sag-to-span ratio, therefore Fig. 5a holds
for both cases S.1 and L.1, while Fig. 5b for both cases
S.2 and L.2. It turns out that the perturbation solu-
tion (in blue solid line) is in good agreement with the
numeric one (in red dashed line) up to wind veloci-
ties which do not overtake about U = 8m/s in Fig. 5a
and U = 10m/s in Fig. 5b, corresponding to angles
of magnitude 0.1 rad and 0.2 rad, respectively. These
angles represent the upper limit where the cubic series
expansion is valid; moreover, different limit values are
obtained for the two initial angles as a consequence
of the different magnitudes of the derivatives of the
aerodynamic coefficients, which lead to a better cor-
respondence to the assumed ordering for the case (2).
As a further comment, the swing angle is negative as
expected for the convention assumed.

The amplitudes of the parabolic shape at equilib-
rium, αn and αb, as given by Eq. (34), are shown in
Figs. 6 and 7, as function of the wind velocity, for the

four analyzed cases. As reasonable, the binormal com-
ponent is always larger than the normal one. More-
over, among the four cases, the one in Fig. 6b, i.e., S.2
appears to have larger amplitudes in both the compo-
nents. The perturbation outcomes are in good agree-
ment with those relevant to the numeric procedure,
even if some discrepancies are obtained for the αn

component in case S.2 for wind velocities larger than
U = 8m/s, due to the loss of accuracy in the evaluation
of the swing angle.

It is worth noticing how, in cases S.1 and S.2 (Fig. 6),
the binormal displacements are much smaller than in
cases L.1 and L.2 (Fig. 7), as a consequence of the
different sag-to-span ratios. Anyway, no significant
differences occur keeping fixed the sag-to-span ratio
and changing the initial angle of the ice coating, i.e.,
between case S.1 and S.2, or L.1 and L.2.

It is interesting to evaluate the total tensile force
of the cable at equilibrium in the swung plane, namely
T0+T̆ , as a function of thewind velocity. This is shown
in Fig. 8a for cases S.1 and L.1, and in Fig. 8b for cases
S.2 and L.2. It can be observed that, in most of the
range of the considered velocities (U ≤ 8m/s), the
agreement between analytical and numeric results is
very good, as well as modifications in the tensile force
are of a few percent. On the other hand, bad agreement
is found for larger velocities, particularly for cases S.2
and L.2 (Fig. 8b). Actually, the perturbation solution
gives a totally wrong outcome in case L.2, and this is
due to the evaluation of T̆ as a term proportional to
the difference of αn and 1

2 (α
2
n + α2

b) (see Eq. (35)),
which both assume similar values, very close to 0.025
at U = 10m/s (αb about 0.25), in violation of the
perturbation order. In these cases, further perturbation
orders should be considered, so as to give consistency to
the analytical solution even for larger wind velocities.

5.3 Critical conditions

The critical modes and relevant critical conditions in
terms of wind velocity and modal frequency are now
analyzed, as solutions of the eigenvalue problem (22).
In particular, in Table 1, the critical conditions are
reported for both analytical and numeric solutions,
showing good agreement, specifically in the modal fre-
quency where the percentage error is practically zero.

For case S.1, the corresponding modal shape is
shown in Fig. 9. It is anti-symmetric and real, involv-
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(a) (b)

Fig. 4 Aerodynamic coefficients for the NDT section, as taken from [41]: a Drag and lift coefficients (black dots are experimental
data); b values of Cd + C ′

l and initial angles of the ice-coating ϕ0 (red dashed lines)

(a) (b)

Fig. 5 Evolution of the swing angle with the wind velocity: a cases S.1 and L.1; b cases S.2 and L.2

(a) (b)

Fig. 6 Evolution of the amplitudes of the equilibrium configuration with the wind velocity: a case S.1; b case S.2
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(a) (b)

Fig. 7 Evolution of the amplitudes of the equilibrium configuration with the wind velocity: a case L.1; b case L.2

(a) (b)

Fig. 8 Evolution of the tensile force at the equilibrium configuration with the wind velocity: a cases S.1 and L.1; b cases S.2 and L.2

Table 1 Critical modal conditions: velocity in m/s, frequency in rad/s

case Uc pert. Uc num. err.% ωc pert. ωc num. err.%

S.1 4.42 4.53 2.4 3.98 3.98 0.0

S.2 6.08 6.27 3.0 3.43 3.43 0.0

L.1 3.40 3.25 4.6 1.35 1.35 0.0

L.2 6.09 6.33 3.8 1.91 1.91 0.0

ing both normal (v̂) and binormal (ŵ) components with
the same order of amplitude, in good agreement with
numeric outcomes. Moreover, in Fig. 10 the evolution
of all the eigenvalueswhich becomeunstable are shown
in the complex plane, as the parameter U is increased
and assumes the values in Table 2; concurrently, the
corresponding modal shapes are shown at the right side
of the same Figure. From this Figure, which is real-
ized with data coming from the numeric procedure, it

turns out that the eigenvalues which become unstable
are four; furthermore, a regain of stability is achieved
as the wind velocity is increased, due to the progres-
sive change of orientation of the cross section with the
increasing of the swing angle and, as a consequence,
to the modification of the intensity of the aerodynamic
forces. It is worth noticing that the order in which the
eigenvalues regain stability is different than that of their
loss of stability. Moreover, the regain of stability is not
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(a) (b)

Fig. 9 Critical mode for case S.1: a real and imaginary parts of v̂; b real and imaginary parts of ŵ

Fig. 10 Evolution of the
eigenvalues of Eqs. (36) and
corresponding
eigenfunctions for
increasing wind velocity,
case S.1

necessarily associated to a comebackof the evolution of
the system on the trivial dynamic solution. The system
might evolve on other possible, stable and coexisting
attractors, deriving from secondary bifurcations here
not investigated.

For case S.2, the critical mode is shown in Fig. 11: it
turns out to be symmetric and complex, with only one
semi-wave along the span, coherently with a configura-
tion slightly at the left of the first crossover point. In this
case, the agreement with numeric outcomes is good, in

particular for the normal component (Fig. 11a). The
eigenvalues which lose stability are shown in the com-
plex plane in Fig. 12, at the wind velocities reported in
Table 3; relevant eigenfunctions are shown as well at
the right part of the figure. In this case, the eigenvalues
which lose stability are six, and the order in which they
regain stability is the opposite of that in which they lose
it.

For case L.1, in Fig. 13, the critical mode is again
anti-symmetric, while it turns out to be symmetric for
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(a) (b)

Fig. 11 Critical mode for case S.2: a real and imaginary parts of v̂; b real and imaginary parts of ŵ

Fig. 12 Evolution of the
eigenvalues of Eqs. (36) and
corresponding
eigenfunctions for
increasing wind velocity,
case S.2
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Table 2 Numerical values of the velocities for the positions in Fig. 10, case S.1

position 1 2 3 4 5 6 7 8 9 10 11

U (m/s) 3.20 4.53 5.89 6.02 6.61 7.90 9.25 9.58 9.62 10.20 10.4

case L.2, in Fig. 14, having a three semi-waves shape,
which is coherent with the configuration at the right
of the cross-over. In the latter case, as for case S.2,
still the normal component has better agreement with
the numeric outcomes than the binormal component,
which presents some quantitative differences, even if
the qualitative agreement is always very satisfactory.

As a summary, for both cases S.1 and L.1, i.e., for
the first value of ice-coating initial angle, and inde-
pendently of the sag-to-span ratio, it turns out that the
critical mode is anti-symmetric and real; on the other
hand, for the second value of ice-coating initial angle,
the critical mode is symmetric and complex. Therefore,
it appears that the modal shape of the cable at bifurca-
tion is strictly related to its initial attitude to wind and,
then, to the value of the aerodynamic forces, which
have the ability to significantly change the structure of
the Hamiltonian dynamical system and, consequently,
the nature of the eigenfunctions, triggering symmetric
or anti-symmetric modal shapes. Consistently, critical
modes might be strongly different from natural ones,
in absence of wind.

In this respect, it is interesting to look at the value of
the steady angle under which the ice-coating faces the
wind at bifurcation, i.e., −θ̆ + ϕ0, checking the corre-
sponding value of theDenHartog’s coefficientCd+C ′

l ,
valid for 1-d.o.f. vertical galloping (see Fig. 15): it is
evident how the effect of θ̆ (and, then, of themeanwind
force) is to reduce the Den Hartog coefficient, so as to
take the cross section closer to the 1-d.o.f. instability
region, even if it can still be non-negative (e.g., for cases
S.2 and L.2). Specifically, it is evident that, due to the
generally concurrent presence of both the modal com-
ponents v̂, ŵ, the mechanism of instabilization is more
complicated than thatwhich only relies on theDenHar-
tog’s coefficient (see, e.g., [35] for 2-d.o.f. systems).

5.4 Nonlinear galloping

In order to have a first insight into the cable nonlin-
ear behavior close to the first bifurcation point, a spa-
tial finite-difference approximation of the nonlinear

equations of motion (5) is carried out and a numeri-
cal integration of the resulting equations in time is per-
formed (details on the numerical procedure are given
in Appendix 2). In this way, it is also possible to fully
validate, in a completely independent way, the results
obtained with respect to the equilibrium configura-
tions (Sect. 5.2) and to the first critical modes (Sect.
5.3). Results are limited to the case S for the sake
of brevity; anyway, outcomes show that aerodynamic
forces greatly influence the critical response despite the
feature of the Hamiltonian system.

Concerning the case study S.1, Fig. 16 shows the
time histories for steady oscillations at a mean wind
velocity equal to 5 m/s, slightly higher than the first
critical speed. Cable oscillations occur around the equi-
librium configuration (marked by a red dashed line in
the figure), with values fully consistent with those of
Fig. 6a and Eq. (29), and are characterized by a single
frequency corresponding to the first critical one (see
Table 1). From the direct integration of the nonlinear
motion equations, the cable dynamics during a period
of oscillation, subtracted to the equilibrium configu-
ration determined by the mean wind, is presented in
Fig. 17: the shapes are entirely in accordance with the
first (normalized) critical modes of the system (Fig. 9),
pointing out a not negligible coupling between the
two planes, already highlighted by the critical modes.
It should be noted that the vibration shapes remain
almost constant during the oscillation confirming the
real nature of the corresponding eigenfunctions (the
imaginary part of which is almost zero, see Fig. 9).

Moving on to the case study S.2, Fig. 18 shows the
steady oscillations at a mean wind velocity equal to 6.4
m/s, immediately after the first bifurcation point, and
just prior to the secondone.Also in this case the average
value of the oscillations is completely consistent with
the values obtained for the equilibrium configuration
(Fig. 6b and Eq. (29)), with a clear prevalence of the
horizontal component. The motion is monomodal peri-
odic, with the presence of a single vibration frequency
(i.e., the first critical frequency in Table 2). The corre-
sponding cable deformations during a vibration period

123



On the nonlinear effects of the mean wind force... 3143

Table 3 Numerical values of the velocities for the positions in Fig. 12, case S.2

position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

U (m/s) 6.00 6.27 6.51 6.60 6.85 7.11 7.46 8.00 8.55 8.77 8.90 9.02 9.04 9.24 9.40

(a) (b)

Fig. 13 Critical mode for case L.1: a real and imaginary parts of v̂; b real and imaginary parts of ŵ

(a) (b)

Fig. 14 Critical mode for case L.2: a real and imaginary parts of v̂; b real and imaginary parts of ŵ

are shown in Fig. 19, still subtracted to the equilibrium
configuration associated to the mean wind, allowing
one to highlight the dynamics of the motion. It occurs
almost completely in the vertical plane with a modest
coupling in the horizontal direction. Moreover, the ver-
tical oscillations maintain almost the same shape over
time, while the horizontal oscillations present remark-
able variations in shape during a vibration period. This
result is in excellent agreement with what was obtained
in the critical condition analysis (Fig. 11 - normal-
ized critical mode), in which the complex nature of

the horizontal critical mode was highlighted, and just
an order of magnitude lower than the vertical mode
(which instead was almost real, as confirmed by this
nonlinear galloping analysis).

6 Conclusions and final remarks

This paper deals with the research of critical conditions
of ice galloping in suspended cables. The key point of
the work is the nonlinear contribution of the non-trivial
equilibrium path that influences the terms governing
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Fig. 15 Values of Cd + C ′
l , initial angles of the ice-coating ϕ0

(red dashed lines) and values of the steady angle −θ̆ + ϕ0 at
bifurcation (marked by points; the black one is underneath the
green one)

galloping onset conditions. It reveals new insights on
the bifurcation phenomenon, being able to make unsta-
ble cable configurations that instead would be aerody-
namically stable without the effects of the mean wind
force.

Concerning the modeling aspects, the main novelty
of the paper is the use of a continuous model, unlike
what happens in current literature. In this way it is
not necessary to select in advance a certain number of
modal shapes (as usually happens in discrete Galerkin
models, e.g., [37]). The proposedmethod is able to nat-
urally follow the evolution of critical conditions as the
wind speed increases. The problem is for now restricted
to the case of horizontal cables to have an exact plane
description of the non-trivial fundamental path, even if

the proposed approach can be easily used in the pres-
ence of non-planarity of the static configuration of the
cable.

A second strength of the work is that the search for
critical conditions is proposed analytically through the
use of perturbation techniques. In particular, the non-
linear, non-trivial fundamental path from which the
bifurcation takes place is first determined in two steps:
(a) determination of the swing angle that identifies the
plane on which the cable lies due to the effect of the
mean wind force (swung plane), and (b) evaluation of
the corresponding static displacements of the cable,
together with the associated increment of tension. An
eigenvalue problem is then deduced starting from the
continuous formulation of the problem, which leads
to transcendental characteristic equations in analytical
form.

Concerningnumerical results, somepoints areworth
noting: the vibrationmodes obtained are naturally com-
plex due to the non-classical nature of aerodynamic
damping; the agreement of the analytical solution of
the problem with the numerical one is excellent on
critical instability conditions (i.e., when the eigenval-
ues become unstable), while a greater error could be
present for higher mean wind speeds due to the ana-
lytical calculation of the swing angle (truncated to the
third order); thanks to the continuous formulation, the
influence of steady swing is naturally present on all
modes of the system (unlike what happens in the lit-
erature for discrete multimodal galloping, e.g., [37]);
therefore, all critical eigenvalues return to the stabil-
ity domain for sufficiently high mean wind velocities;

(a) (b)

Fig. 16 Time evolution at the quarter-span node at U = 5.0m/s for case S.1, where the red line indicates the equilibrium position: a
v( l

4 , t); b w( l
4 , t). The time range is suitably chosen to consider steady-state oscillations
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(a) (b)

Fig. 17 Evolution of the solution during one time period at U = 5.0m/s for case S.1: a v cleaned of the equilibrium value v̆; b w

cleaned of the equilibrium value w̆

(a) (b)

Fig. 18 Time evolution at the mid-span node at U = 6.4m/s for case S.2, where the red line indicates the equilibrium position: a
v( l

2 , t); b w( l
2 , t). The time range is suitably chosen to consider steady-state oscillations

(a) (b)

Fig. 19 Evolution of the solution during one time period at U = 6.4m/s for case S.2: a v cleaned of the equilibrium value v̆; b w

cleaned of the equilibrium value w̆
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the numerical integration of the nonlinear equations of
motion (in both mechanical and aerodynamic terms)
has allowed a further validation of the goodness of the
results obtained from the critical conditions, at least
limited to the first bifurcation point. Indeed, through a
completely independent numerical procedure, full cor-
respondences on both equilibrium path values and crit-
ical modes of the system are determined, even in cases
where the oscillation modes assume significant com-
plex representations. In fact, the steady swing strongly
influences the aerodynamic forces, since it changes the
exposition towind of the body. Therefore, its consistent
inclusion in the model is fundamental, and the nonlin-
ear terms arising from it turn out to strongly affect the
onset of galloping.

A special comment deserves the fact that, in the pre-
sented examples, the unstable mode can be symmet-
ric or anti-symmetric despite the lower vibration fre-
quency of the cable always corresponds to a symmet-
ric out-of-plane mode for any configuration (smaller
or larger sag) considered. This can be attributable to
the presence of the aerodynamic damping operator,
which in turn depends on the non-trivial equilibrium
path through the aerodynamic coefficients, capable of
significantly modifying the critical behavior of the sys-
tem. This result, which may significantly affect design
choices for suspended cables in cold regions, is worthy
of future investigations, also using particular perturba-
tion techniques (e.g., [42]). In this context it is also
worth noting that, as a consequence of the proposed
approach, the motion must be described in terms of
incremental variables, which are superimposed to the
static configuration in order to find the critical condi-
tions and carry out possible nonlinear bifurcation anal-
yses. The incremental variables are here expressed in
terms of the original extrinsic basis, in the vertical plane
where the cable lies in absence of wind. Therefore,
the locutions ’in-plane’ and ’out-of-plane’, relating to
cable dynamic displacements, lose their meaning since
they should be referred to the vertical, not to the cur-
rently rotatedplanewhen thewind is blowing.Then, the
cable natural modes will appear coupled in the two dis-
placement components. But this approach, apparently
more complicated than the intrinsic one (e.g., [29]),
has the great advantage not to require any change of
basis, nor projection of forces, while keeping the orig-
inal meaning of the variables.

The first results of nonlinear galloping oscillations,
limited to the first bifurcation, has to be extended to the

analysis of the limit-cycle arising at successive Hopf
bifurcations. However, this is a problem which appears
far from being trivial, since a cluster of several modes
(from four to six in the examined examples) could in
principle interact in the postcritical field.Moreover, the
regain of stability of the fundamental nontrivial path
does not exclude the existence of supercritical compet-
itive attractors, produced by the previous bifurcations.
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Appendix 1: Aerodynamic coefficients

The explicit expression of the coefficients defining the
components of the aerodynamic forces in Eq. (15) are:

f an0 := −1

2
ρbCl(ϕ0), f ab0 := 1

2
ρbCd(ϕ0)

ka21 := −1

2
ρbC ′

l (ϕ0), ka31 := 1

2
ρbC ′

d(ϕ0)

ca22 := 1

2
ρb

(
Cd(ϕ0) + C ′

l (ϕ0)
)
,

ca32 := 1

2
ρb

(
Cl(ϕ0) − C ′

d(ϕ0)
)

ca23 := −ρbCl(ϕ0), ca33 := ρbCd(ϕ0)

(43)

where the prime stands for derivativewith respect to the
argument. Furthermore, the expressions of the coeffi-
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cients of the quadratic polynomial na2 are:

n211 := 1

4
ρbC ′′

l (ϕ0),

n311 := −1

4
ρbC ′′

d (ϕ0)

n212 := −1

2
ρb(C ′

d(ϕ0) + C ′′
l (ϕ0)),

n312 := 1

2
ρb(C ′′

d (ϕ0) − C ′
l (ϕ0))

n213 := ρbC ′
l (ϕ0),

n313 := −ρbC ′
d(ϕ0)

(44)

and those of the cubic polynomial na3 are

n2111 := − 1

12
ρbC ′′′

l (ϕ0),

n3111 := 1

12
ρbC ′′′

d (ϕ0)

n2112 := 1

4
ρb(C ′′

d (ϕ0) + C ′′′
l (ϕ0)),

n3112 := −1

4
ρb(C ′′′

d (ϕ0) − C ′′
l (ϕ0))

n2113 := −1

2
ρbC ′′

l (ϕ0),

n3113 := 1

2
ρbC ′′

d (ϕ0)

(45)

Appendix 2: Numerical integration of the nonlinear
equations of motion

First, once fixed the mean wind velocity U , the cor-
responding swing angle θ̆ is evaluated using Eq. (20).
Then, a spatial finite-difference method is established
for Eqs. (5), which are both mechanically and aerody-
namically nonlinear, by dividing the material domain
[0, l] of the cable in n intervals of the same length,
with the corresponding definition of (n + 1) nodes;
central finite differences are defined for both first and
second s−derivatives of the central nodes whereas for-
ward and backward finite differences are used for bor-
der nodes. In this way a differential-algebraic systems
of equations is deduced, whose algebraic part can be
solved separately in a symbolic way by obtaining a dis-
crete expression for the dynamic unit extension e(t).
Then, a numerical integration of the resulting system
of ordinary differential equations in time is performed

by using standard techniques. The numerical results
presented in Sect. 5.4 are obtained with a spatial dis-
cretization of 41 nodes, which we found to be a suitable
compromise between computational effort and preci-
sion of the solution. It is noteworthy that the nonlinear
expression of aerodynamic forces is not expanded, as
usual, in MacLaurin series of structural velocities but
it is rigorously calculated using Eqs. (6)-(8), where the
aerodynamic coefficients Cd and Cl are calculated in
their instantaneous angle values, which are equal to
(γ + ϕ0), being the instantaneous angle of attack γ

expressed by Eq. (10).
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