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Abstract With the unfolding of the COVID-19 pan-
demic, mathematical modelling of epidemics has been
perceived and used as a central element in understand-
ing, predicting, and governing the pandemic event.
However, soon it became clear that long-term predic-
tions were extremely challenging to address. In addi-
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tion, it is still unclear which metric shall be used for
a global description of the evolution of the outbreaks.
Yet a robust modelling of pandemic dynamics and a
consistent choice of the transmission metric is cru-
cial for an in-depth understanding of the macroscopic
phenomenology and better-informed mitigation strate-
gies. In this study, we propose a Markovian stochas-
tic framework designed for describing the evolution of
entropy during the COVID-19 pandemic together with
the instantaneous reproductive ratio. Then, we intro-
duce and use entropy-based metrics of global trans-
mission to measure the impact and the temporal evo-
lution of a pandemic event. In the formulation of the
model, the temporal evolution of the outbreak is mod-
elled by an equation governing the probability distri-
bution that describes a nonlinear Markov process of
a statistically averaged individual, leading to a clear
physical interpretation. The time-dependent parame-
ters are formulated by adaptive basis functions, lead-
ing to a parsimonious representation. In addition, we
provide a full Bayesian inversion scheme for cali-
bration together with a coherent strategy to address
data unreliability. The time evolution of the entropy
rate, the absolute change in the system entropy, and
the instantaneous reproductive ratio are natural and
transparent outputs of this framework. The framework
has the appealing property of being applicable to any
compartmental epidemic model. As an illustration,
we apply the proposed approach to a simple modifi-
cation of the susceptible–exposed–infected–removed
model. Applying the model to the Hubei region, South
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Korean, Italian, Spanish, German, and French COVID-
19 datasets, we discover significant difference in the
absolute change of entropy but highly regular trends
for both the entropy evolution and the instantaneous
reproductive ratio.

Keywords COVID-19 · Nonlinear Markov process ·
Stochastic process · Uncertainty quantification ·
Bayesian analysis

1 Introduction

Coronaviruses are one of the most significant threats
to human society [1–6]. Limited to short outbreaks in
the recent past [7–9], their pandemic-level potential
was well known [10,11], yet most countries proved
unprepared to cope with the so-called coronavirus
infectious disease of 2019 (COVID-19). Revealed in
the Hubei province, China, the novel coronavirus has
spread all over the world. China responded with mas-
sive containment measures starting at the end of Jan-
uary 2020, which limited further contamination on the
mainland [8,12]. In Europe,most individual states have
responded with similar containment measures. How-
ever, there has been a lack of commonEuropean action.
Strict or soft containment measures have been applied
with different timeframes and specialized to individual
health and socio-cultural systems, showing very differ-
ent pandemic evolutions. At the time of writing, the
main episode of COVID-19 is (in general) under con-
trol inChina, SouthKorea, and continentalEurope [11],
despite the possibility of multiple waves. On the con-
trary, North America and South America are still in
the middle of the pandemic, and a clear picture of the
evolution of events is not possible yet.

The amount of data available allows various mod-
elling techniques to be testedmore robustly than in pre-
vious epidemics.However, nomodel (from the physics-
based to the purely data-driven) has been or is able to
predict the long-term evolution of the pandemic accu-
rately. (Conversely, short-term predictions are possi-
ble with some degree of accuracy [13,14].) There are
several reasons behind this long-term unpredictabil-
ity; an incomplete list includes the partial understand-
ing of the phenomenon, the (many, or even infinite)
missing variables, the high sensitivity of the model to
parameters, the incomplete/inaccurate data acquisition
scheme, and the lack of uniformmeasurementmethods.

However, a profound reason that makes any long-term
prediction difficult is the presence of endogenous vari-
ables (a well-known problem in social sciences [15]).
The endogenous variables may involve local policies,
socio-cultural aspects, human behaviours, and com-
munication strategies, and they are typically difficult
to model and measure. Since an epidemic evolves as
a result of the interplay between the “natural evolu-
tion” of the disease and society/human interventions,
a robust and generalizable microscopic model with
complete characterizations of endogenous variables is
challenging to build. Given this, in this study, we use
macroscopic phenomenology-based modelling to gain
insight into the epidemic dynamics.1 Therefore, here,
the goal is not to provide long-term numerical predic-
tions, although the proposed modelling technique can
be used for extrapolation.

Among various modelling options, susceptible–
infected–removed (SIR) types of compartmental mod-
els have gained wide popularity due to their simplic-
ity and straightforwardness in interpreting the macro-
scopic phenomenology. A significant amount of SIR-
type model based studies have already been carried
out to investigate the transmission properties of the
COVID-19, and an incomplete list includes [8,12,16–
20]. The spectrum of complexity of these models is
broad. They can range from a minimum number of
compartments (which offers a better generalization) to
a large number of compartments (which offers a bet-
ter local description). They can be deterministic (i.e.
counting the deterministic number of individuals for
each compartment) or stochastic (i.e. defining a joint
probability measure of the number of individuals for
each compartment). They can have different data acqui-
sition schemes (from a simple frequentist analysis of
the single parameters to a complete Bayesian inver-
sion scheme). Finally, they can simply macroscopi-
cally describe the pandemic evolution of a given loca-
tion (top-down approach) or include a spatial topolog-
ical description (including mobility) and/or a different
degree of spreading among individuals by including
adjacent matrices (bottom-up approach).

Given a dataset, these models can be calibrated and
offer new insights into the evolution of the pandemic.
For example, they can shed light on how the pandemic

1 This approach follows the famous sentence of Richard Ham-
ming “The purpose of (scientific) computing is insight, not num-
bers.”
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developed by measuring the reproductive ratio (con-
stant or time varying) and finally estimating the effec-
tiveness of containment measures. This metric also
allows for a comparison between different regions but
does not provide a quantitative measure of the impact
of the spread. On the other hand, the evolution of the
number of infected and deaths provides a means of
direct impact; however, they lack objectivity as they are
strongly influenced by the different populations of the
regions, themeasurement strategies, and the unreliabil-
ity of the data. Furthermore, they are not global metrics
as they do not provide an objective and robust way to
unify them into a single (scalar) measure. Therefore,
there is a research gap on how to provide amacroscopic
model-metric pair to compare different regions’ perfor-
mance and get new insights into various outbreaks.

This study aims to fill this gap by proposing a
macroscopic stochastic model equipped with a global
transmission metric based on entropy. In this context,
the entropy evolution of the process is a metric that
describes the degree of disorder (i.e. of impact) of an
epidemic. This metric allows for an objective compar-
ison between regions and provides a global measure
of both the evolution and the impact of COVID-19
outbreaks. In particular, we propose a compartmental
stochastic model that has the following characteristics.
(i) Stochastic: the model describes a statistically aver-
aged individual by a nonlinear Markov process with
compartmental epidemic states. (ii) Time-dependent:
the model parameters are decomposed onto generic
basis functions (of time). (iii) Parsimonious: instead of
conventional orthogonal basis functions (e.g. orthog-
onal polynomials, Fourier/wavelet series) the adaptive
basis functions are adopted to achieve a representa-
tion with minimum number of basis functions. (iv)
Bayesian: the time-dependent parameters are assumed
to be random and are calibrated by full Bayesian inver-
sion. Furthermore, we equip the model with a metric
based on entropy which has the following character-
istics. (i) Meaningful: the metric provides a physical
and transparent measure of the COVID-19 impact in
a given region; moreover, it is by definition the time
integral of the entropy rate, which represents the tem-
poral evolution of the epidemic. (ii) Global: the metric
provides a global and average description of the pan-
demic event. (iii) Consistent: the metric is not influ-
enced by the number of individuals and can be used
objectively to compare different regions. (iv) Robust
the metric is associated with an error that is a direct

output of the Bayesian inversion scheme used to cal-
ibrate the stochastic model. Finally, to have a reliable
description of the events, we provide robust strategies
to fill in missing information and to correct the numer-
ous inconsistencies on the current datasets.

The paper is organized as follows. First, we develop
general concepts of the proposed epidemic model,
including governing equation, time-dependent param-
eterization, and Bayesian model calibration (Sect. 2).
Second, we introduce the entropy-based metric in
Sect. 3. Third, we apply the proposed approach to for-
mulate a SEIR compartmental model for modelling the
temporal evolution of COVID-19 (Sect. 4). Next, we
apply the proposed approach to real datasets to the
following regions: Hubei (China), South Korea, Italy,
Spain, Germany, and France (Sect. 5). Finally, we con-
clude the study by identifying the limitations, conclu-
sions, and future research directions.

2 The stochastic epidemic model

In the literature, the term “stochastic compartmental
model” can refer to different formulations (see e.g.
[21] for a review) with distinct underlying assumptions
on the source of uncertainty. For instance, the noise-
driven stochastic model is formulated by: (i) introduc-
ing additive noise process into the deterministic com-
partmental model; (ii) translating the noise into dif-
fusion of probability distribution; and (iii) obtaining
an equation of probability distribution (e.g. Fokker–
Plank equation). Clearly, in the noise-driven model the
source of uncertainty is the additive noise. An alter-
native and more popular stochastic formulation is the
event-driven model, which can be summarized as a
direct stochastic simulation of the deterministic model.
Specifically, in the event-driven model the determinis-
tic rate matrix is used to define the transition probabil-

ity of event Xm(t)
t+Δt−−−→ Xm(t) ± ΔX , where Xm(t)

denotes the population in a compartment and ΔX the
intra-state increment. With the transition probability, a
direct stochastic simulation (via e.g. Gillespie’s Direct
Method [22,23]) would yield a random scenario of the
epidemic. The proposed model can also be classified as
an event-driven approach in the sense that the source
of uncertainty is also the aleatory variability of tran-
sitions between epidemic states. However, instead of
a stochastic simulation without a governing equation
of probability distribution, the proposed model strictly
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follows an equation of probability distribution which
describes a nonlinear Markov process. Consequently,
the proposedmodel possesses clear physical interpreta-
tions within the mathematical framework of nonlinear
Markov process theory.

Compartmental models with time-varying param-
eters have been widely studied in the literature [24–
28]. A fundamental question to be addressed in time-
dependent models is the trade-off between over-fitting
and under-fitting, or equivalently, model bias versus
model variance. In the extreme scenario, a point-
wise kernel-based parameterization may lead to an
almost exact calibration on epidemic observations,
yet the explanatory/extrapolation capability would be
minimized, and the model variance would be max-
imized. In an over-parameterized model, the non-
local trend/structure, which is crucial to character-
ize/understand the epidemic dynamics, can hardly be
identified. In this study, we attempt to discover non-
local structures from the epidemic dataset using a
parsimonious formulation with adaptive basis func-
tions. Moreover, since the model calibration is formu-
lated in a Bayesian framework, likelihood-basedmodel
selection, e.g. using the Bayesian information criterion
(BIC) [29], can be conveniently applied to specify the
number of adaptive basis functions.

2.1 The original deterministic model

Consider a generic compartmental epidemic model
with a fixed2 total population N and a classifica-
tion of the population into M compartments X =
[X1, . . . , XM ]�. The compartmental epidemic model
describes the temporal evolution of the state vector
X , where every component of X is by definition non-
negative and X is subjected to the conservation law
‖X‖1 = N .

For an infinitesimal incremental Δt , we study the
following master equation of state vector.

X(t + Δt) = (I + H(X(t), t)Δt)X(t), (1)

where I is the identity matrix and H(X(t), t) is a
problem-specific rate matrix (infinitesimal propaga-
tor). Equation (1) is equipped with the assumption that

2 A fixed total population indicates a closed system, i.e. (i) the
vital dynamics (natural birth/death) is neglected, assuming that
the course of the epidemic is relatively short; (ii) the immigration
and emigration are neglected, assuming that N is sufficiently
large and the course of immigration/emigration is relatively slow.

the evolution of X(t) is smooth,3 i.e. without jumps.
Setting Δt → 0, Eq. (1) leads to

dX(t)

dt
= H(X(t), t)X(t). (2)

Similar to mechanics, the rate matrix H(X(t), t) gov-
erns the dynamics of X(t). To preserve the conservation
law ‖X(t)‖1 = N , we must have H(X(t), t)�1 = 0,
where 1 is a vector of ones and 0 the null vector.

Particularly, if X(t) eventually attains a stationary
state X∗ defined as

X∗ := lim
t→+∞ X(t), (3)

and define H∗ as

H∗ := lim
t→+∞ H(X(t), t). (4)

We obtain the stationarity condition

H∗X∗ = 0, (5)

where 0 is a column vector of zeros.

2.2 Probabilistic reformulation

Given a deterministic H(X(t), t), Eq. (2) describes
a deterministic trajectory of X(t). Since variabili-
ties inevitably exist in the specification of H(X(t), t)
or/and the initial condition, the solution X(t) becomes
a multivariate stochastic process. However, the afore-
mentioned “randomization” is regarded as epistemic
with respect to the model Eq. (2).4 This section focuses
on a more fundamental (aleatory) probabilistic refor-
mulation of Eq. (2).

Adopting a frequentist point of view on probability,
consider a normalization of X(t) by

P(t) := lim
N→+∞

X(t, N )

‖X(t, N )‖1 = lim
N→+∞

X(t, N )

N
, (6)

where X (t, N ) is used to highlight that the com-
partmental population depends on N , and P(t) can
be interpreted as the marginal probability distribution

3 Here, we have to assume the population is a real number
rather than an integer; later, in the probabilistic reformulation
this assumption can be relaxed.
4 The classification of epistemic or aleatory uncertainties should
always be accompanied by the specification of a model universe.
Here if we assume Eq. (2) is the correct underlying (determinis-
tic) law, the uncertainties of H(X(t), t) is epistemic (with respect
to Eq. (2)) because if the form of H(X(t), t) is fixed the law of
Eq. (2) is deterministic.
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of a discrete-state continuous-time stochastic process.
Observe that despite P(t) being equivalent to propor-
tions in a deterministic model, the probabilistic indi-
vidualistic interpretation leads to a fully stochastic
dynamic interpretation of the problem. The underly-
ing state associated with P(t) is an epidemic state of
a statistically averaged individual. Analogous to Eqs.
(1) and (2), we obtain

P(t + Δt) = (I + Q(P(t), t)Δt)P(t), (7)

and
dP(t)

dt
= Q(P(t), t)P(t), (8)

where Q(P(t), t) is a ratematrix analogous toH(X(t),
t) in the deterministic model. Since Q(P(t), t) explic-
itly depends on P(t), Eq. (8) describes a nonlinear
Markov process [30]. The conservation of probability
is guaranteed by Q(t)�1 = 0.

Equation (7) provides a straightforward strategy for
sampling random realizations of the process. In par-
ticular, for a fixed initial condition P(t0), the solution
P(t) is deterministic, and Q(P(t), t) can be regarded
as Q(t) with P(t) being a time-dependent parame-
ter of Q(t). The resulting tangent non-homogeneous
Markov process has the following transient stochastic
matrix

S(t, t + Δt) := I + Q(t)Δt. (9)

In line with the macroscopic description [Eq. (6)], the
initial condition P(t0) and the rate matrix Q(P(t), t)
are by definition exactly the same for all N indi-
viduals. This assumption corresponds ad verbum to
fix a constant average number of contacts and other
interaction parameters between persons per unit time.
Given this, there is an implicit assumption of statis-
tical independence among the N individuals. In an
adiabatic system, this is equivalent to letting N par-
ticles following N -independent Brownian motions.
Therefore, this macro-description is emerging from
the micro-behaviour of individuals interacting accord-
ing N -independent Brownian motions, and the virus
is spreading according to a simple diffusive process.5

Consequently, a macro-random scenario of an epi-
demic can be obtained via simulating N -independent
and identically distributed processes from Eq. (8).

5 At the micro-level, the spreading of the virus can be better
described through a stochastic branching process. The simple
diffusion process can be regarded as the result of a coarse grain-
ing.

In contrast to this macro-description, one could
adopt a topological structure of the interactions between
different individuals. This is generally done by includ-
ing an adjacency operator which accounts for the dif-
ferent structure of the interactions among individuals
(e.g. includingmobility information, or considering the
presence of superspreaders). As a consequence, each
individual (or group of individuals) has a different aver-
age number of contacts and different interaction param-
eters. This leads to a heterogeneous compartmental
model, which is inevitable dependent on a specific geo-
graphical area or social system. In this study, we focus
on the general transmission trend of large regions, so
that the trends can be more easily extrapolated and
interpreted. Therefore, the simple macro-description
is adopted. It is a specific choice which leads to a
novel entropy-based measure to macroscopically com-
pare the epidemic scenarios in different regions.

2.3 Time-dependent parameter model

We assume the “correct” model of Q(P(t), t) cannot
be discovered, and Q(P(t), t) is replaced by a para-
metric model with a set of parameters α(t), i.e.

Q(P(t), t) ≈ Q(P(t), t;α(t)). (10)

Let α(t) represent an arbitrary component of α(t). A
generic approach to parameterizing α(t) is to consider
an expansion of the following form

α(t) =
I∑

i=0

wiψi (t), (11)

where wi are coordinates of basis functions ψi (t). A
popular choice for the basis function is the orthogonal
polynomials, e.g. Legendre/Hermite/Laguerre/Cheb-
yshev polynomials. An issue with orthogonal polyno-
mial basis is that it may require high-order terms to
represent a complex function, and consequently, this
leads to over-fitting and implausible extrapolations. A
powerful alternative is to use adaptive basis functions
with the form

α(t) =
I∑

i=0

wiψi (t,w
′
i ), (12)

where w′
i are parameters of the adaptive basis. The

benefit of using Eq. (12) instead of Eq. (11) is that a
parsimonious representation can be formulated, at the
cost of introducing additional parameters in bases. An
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attractive choice for the adaptive basis ψi (t,wi ) is the
sigmoid function, i.e.

ψi (t,w
′
i ) = 1

1 + exp(w′
i1 − w′

i2t)
. (13)

The theoretical justification of using Eqs. (13) in (12)
is the universal approximation theorem [31], and the
resulting parametric function is in fact a feed-forward
neural network with a single hidden layer.

In addition, the initial condition of Eq. (8) is
unknown, and we parameterize P(t0) by β = [β1, . . . ,

βM−1] (recall that M is the number of compartments).
A natural parameterization of P(t0) is

P(t0) =
[
β1, . . . , βM−1, 1 −

M−1∑

m=1

βm

]�
, (14)

where βm are nonnegative and subjected to the linear
constraint

∑M−1
m=1 βm ∈ [0, 1]. Note that β is time inde-

pendent in the sense that the starting time point can be
fixed. Therefore, the full parameter set of the epidemic
model is written as θ := {

w,w′,β
}
.

2.4 Model calibration

The goal of model calibration is to find the optimal
θ using real observation. We let D denote the dataset
of observations collected for an epidemic up to some
reference time point. The dataset D is composed by
discrete measures on the number of persons in each
observable compartment (e.g. infected, recovered, and
dead), andD is a matrix of dimension Mo × T , where
Mo denotes the number of observable compartments
and T denotes the number of observed unit time (e.g.
days).

The likelihood function L(D|θ) measures the prob-
ability of observingD given the model specified by θ .
Using Bayes rule on θ , we have

π(θ |D) ∝ L(D|θ)π(θ), (15)

where π(θ |D) is the posterior distribution of θ condi-
tional on the observed datasetD and π(θ) is the prior
distribution of θ . The major challenge of using Eq. (15)
in practice is to sample from the posterior, and typically,
this can be handled by advanced Markov chain Monte
Carlo methods.

The likelihood L(D|θ) may depend on both the
observation error and the inherent variability of the
epidemic model. Even by setting the observation error

to zero, for any specified θ the prediction from the
model is still random. If the accumulated numbers are
of interest, e.g. the total number of recovered, for a
large population size the variability in the prediction
is expected to be small. Specifically, in a multinomial
model the marginal coefficient of variation is propor-
tional to 1/

√
N Pm(t). However, at the same time, the

model prediction can be extremely sensitive to θ , and an
almost negligible perturbation due to the (albeit small)
randomness of θ may lead to noticeably different pre-
dictions. Therefore, the Bayesian analysis is meaning-
ful with or without the observation error.

To formulate the likelihood function, we first denote
an individual (directed) random walk among various
states as a Boolean operator Y (n) = [ y(n)

1 , . . . , y(n)
j ,

. . . , y(n)
T ], where n ∈ [1, . . . , N ] and j ∈ [1, . . . , T ]

such that t j+1 − t j = 1 [unit time].6 The vectors y(n)
j

(of dimension Mo × 1) represent the state of the n
person at time t j . Therefore, the components are all
zero with exception of the current state, which takes
the value of one. The joint probability density function
ofY (n), denoted by f (Y (n)|θ), is readily available from
the governing equation Eq. (8). Next, we note that the
observation D represents a collective scenario of the
N -independent (under the assumptions of the macro-
model) Markov processes y(n)

j .
Therefore, by brute force, the (observation-error-

free) likelihood function has the following form

L(D|θ) =
∑

y(n)
m,t

[
1

(
∑

n

Y (n) = D
)

∏

n

f
(
Y (n)|θ

)]
, (16)

where 1(·) is an indicator function and
∑

y(n)
m,t

is a

MT×N
o -fold summation. This brute force summation

contains impossible paths that, however, are naturally
excluded by the indicator function. Observe that this
likelihood is fundamentally different from the deter-
ministic compartmental models based on proportions
rather than individual probabilities. Moreover, it is also
different from the classical binomial (and related) like-
lihood approaches (used in direct Gillespie’s methods).
Equation (16) is clearly computationally intractable.

To formulate a computationally tractable likelihood
function, we use the Markovian property and rewrite
L(D|θ) as

6 Although Eq. (8) is continuous in time, the observations are
recorded in discrete time points; therefore, here t is discretized.
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L(D|θ) = L(D(t0)|θ)

T∏

j=1

L(D(t j )|D(t j−1); θ),

(17)

where D(t j ) denotes the observation at time point
t j . The first term L(D(t0)|θ) can be easily computed
from amultinomial distribution with probability vector
P(t0). The specific expression ofL(D(t j )|D(t j−1); θ)

varies with the adopted epidemic model, yet it is typ-
ically in the multinomial form. All the ingredients
to compute L(D(t j )|D(t j−1); θ) are included in the
marginal distribution P(t), and the stochastic matrix
S(t j , t j+1|θ) is expressed as

S(t j , t j+1|θ) = exp

(∫ t j+1

t j
Q(τ |θ) dτ

)
. (18)

Observe that due to the discretization of a continuous-
time Markov process into a discrete-time Markov pro-
cess, the matrix S(t j , t j+1|θ) is “less sparse” than
Q(t |θ). For example, in a finite time interval, the
impossible event 2 → 4 in matrix Q may have a
finite probability of occurring in matrix S (through e.g.
2 → 3 → 4). In fact, Eq. (18) can be interpreted as
the result of applying Eq. (9) infinite times within the
integration interval.

For a simple illustration of concept in constructing
the likelihood function, we consider a two-state system
where state 1 can either move to state 2 or stay still,
while state 2 can only stay still. We assume D(t j−1)

records [100, 50] in occupations of states 1 and 2
(for a total of 150 Markov chains), and D(t j ) records
[90, 60]. Given the aforementioned transition structure,
we know10out of 100 chains at t j moves from state 1 to
state 2. Therefore, the likelihoodL(D(t j )|D(t j−1); θ)

is simply the binomial
(100
10

)
P10
1→2P

90
1→1, where the tran-

sition probability Pi→ j can be directly read from Eq.
(18). One may not be able to observe the populations in
all compartments; in this case, the total probability the-
orem can be used to integrate the unobservable states
out (see Sect. 4 for an example).

2.5 Addressing data unreliability

The likelihood function introduced above only consid-
ers the inherent stochastic variability of the model. In
reality, on top of the inherent stochastic variability, the
underlying errors/uncertainties of a reported dataset
involve multiple alternative sources. A rigorous way

to treat such unreliability of reported data is to intro-
duce a distribution assumption on the error ε, and the
likelihood function can be written as

L(D|θ) =
∫

ε∈Ωε

L(D|θ , ε)π(ε) dε, (19)

whereL(D|θ , ε) is the likelihoodwith a specified error,
π(ε) is the probability distribution of the error, and Ωε

represents the feasible domain of the error. Note that
in general ε represents a set of discretized stochastic
processes. Apart from the technical challenge of inte-
grating the high-dimensional Eq. (19), the major chal-
lenge of incorporating the error is the specification of
π(ε). Clearly, an assumptiononπ(ε)would reshape the
likelihood function towards the shape of π(ε), and an
inappropriate assumption would generate artificial and
evenmisleading transmission properties. Therefore,we
adopt an indirect path to incorporate the unreliability of
reported data. Specifically, we apply a kernel function
κ(·) to the original error-free likelihood function, i.e.

L̂(D|θ) = κ (L(D|θ)) . (20)

The kernel function is selected to “flatten” the likeli-
hood function so that the unreliability in the reported
data can be, to some extent, captured. In this study, we
consider an exponential kernel, and Eq. (20) is rewrit-
ten as

L̂(D|θ) = exp
logL(D|θ)

nε

, (21)

where nε > 1 is a scaling factor. Clearly, if nε = 1,
L̂(D|θ) is identical to the original likelihood L(D|θ),
and if nε → ∞, L̂(D|θ) approaches uniform.

Instead of a specific error distribution, in practice it is
more likely to have a crude idea on the possible magni-
tude of the errors in the reported dataset. For a further
simplification, we focus on the errors in the infected
cases, since the causal structure of infected and recov-
ered/dead would let the errors in infected eventually
flow into recovered/dead. Therefore, the question left
is to relate “the magnitude of errors in infected cases”
to the nε in Eq. (21). It turns out, as a consequence of a
sequence of qualitative reasoning, a reasonable choice
of nε is to let

nε ∝ Δ2
ε

Δinfected
, (22)

where Δinfected represents the maximum increment of
infected and Δε represents the possible error in the
maximum increment of infected. Note that Eq. (22)
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is proposed as a crude guidance for setting the mag-
nitude of nε . The reasoning of Eq. (22) is described
as follows. (i) In Eq. (21), if L(D|θ) is Gaussian, the
effect of applying 1/nε is to introduce a scaling factor
of nε to the covariance of L(D|θ). (ii) The likelihood
L(D|θ) is a product of multinomial kernels (see Eq.
(17)), which can be approximated by Gaussian with
the maximum variance (of the infected compartment)
in the size ofΔinfected. (iii) Equation (22) is obtained as
one assumes the scaled variance (scaled by factor nε)
has a similar magnitude as Δ2

ε .
7 For example, if one

has a crude idea that the error of infected can be 30%
of the reported infected, using Eq. (22) one could set
nε ∝ 0.09Δinfected.

3 Entropy as a global transmission metric

In the literature, only a few studies have investigated the
application of entropy in epidemicsmodelling [32–34].
Moreover, in the previousworks themotivation and for-
mulation of entropy, as well as the adopted epidemics
modelling framework, are entirely different from the
current study. The key feature of the proposed stochas-
tic model is that entropy-based transmission measures
can be naturally developed. Specifically, for a dis-
cretized time grid {t j , j = 1, . . . , T } and stochastic
matrix S(t j , t j+1) (Eq. (18)), we consider the Shannon
entropy rate expressed as

H(t j |t j−1)

= −
M∑

m=1

M∑

n=1

Pn(t j−1)Sm,n(t j−1, t j ) log(Sm,n(t j−1, t j )). (23)

For j = 0, H(t0|t−1) ≡ H(t0) = −∑M
m=1 Pm(t0)

log Pm(t0). Recall that the marginal distribution P(t)
and the stochastic matrix S(t j , t j+1) vary with the ini-
tial condition P(t0). Therefore, Eq. (23) and H(t0)
should be averaged over the posterior distribution of the
initial condition (obtained from the Bayesian analysis).
In evaluation of Eq. (23), the convention 0 log 0 ≡ 0 is
adopted.

In a homogeneous Markov process, the entropy rate
is constant, and one has the important theoretical result

7 This assumption implies if Δε = √
Δinfected, nε is 1. In other

words, if the error is in the size of the standard deviation of
multinomial distribution, one cannot tell it is error or inherent
stochastic variability.

limT→∞ 1
T H(t0, t1, . . . , tT ) = H(t1|t0). In the pro-

posed epidemic model, the Markov process is nonlin-
ear and non-homogeneous. Therefore, the evolution of
the entropy rateH(t j |t j−1) within a specified duration
should be considered, and they characterize the evolu-
tion of the degree of disorder.

Using the Markovian property of the epidemic
model in conjunction with the additive property of
entropy,8 the entropyH(t0, t1, . . . , tT ) has the concise
form

H(t0, t1, . . . , tT ) =
T∑

j=0

H(t j |t j−1). (24)

The entropy H(t0, t1, . . . , tT ) is a scalar, and it pro-
vides a global measure on the total degree of disor-
der for an epidemic scenario. An important feature
(shared by the reproductive ratio) of the entropy rate
and the total entropy is that they are quantitatively com-
parable across different regions. This is because the
entropy-based measures are associated with the statis-
tically averaged individual, which is similar to mea-
suring the mean-field approximation of the complex
epidemic dynamics system.

Qualitative speaking, a large H(t0, t1, . . . , tT ) may
be contributed by: (i) a large pulse-like H(t j |t j−1),
i.e. the entropy rate reaches high values but stays (in
high values) for a short period; (ii) a moderate flat
H(t j |t j−1), i.e. the entropy rate evolves with moderate
values for a longperiod. In an epidemic scenario, a large
pulse-like evolution of the entropy rate implies that
the virus reaches a significant proportion of population
but damped out (through the accumulation of recov-
ered/dead) fast, and a flat evolution implies that the epi-
demic spreads in amoderate severe state for a long time.
To quantitatively analyse whether the entropy rate evo-
lution is pulse-like or flat, we introduce a concentration
measure toH(t j |t j−1). Specifically, we again adopt the
concept of Shannon entropy such that the concentration
measure of H(t j |t j−1) is defined as the inverse of the
Shannon entropy of the normalized H(t j |t j−1), i.e.
C(H) = 1

H(H̄(t j |t j−1))

= − H(t0, t1, . . . , tT )
∑T

j=0 H(t j |t j−1)(logH(t j |t j−1) − logH(t0, t1, . . . , tT ))
, (25)

where H̄(t j |t j−1)) = H(t j |t j−1))/H(t0, t1, . . . , tT ) is
the normalized H(t j |t j−1). Note that the total entropy

8 Note that the entropy is additive when the underlying distribu-
tions are statistically independent, and in Markov processes, the
consecutive conditional distributions are independent.
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Fig. 1 Diagram of the
modified SEIR model. The
transition from susceptible
to exposed involves the term
α1(t)P2(t), indicating the
exposed is contagious

H(t0, t1, . . . , tT ) appears in Eq. (25) as the normaliz-
ing constant of H(t j |t j−1) (when H(t j |t j−1) is nor-
malized into a probability mass function). Also note
that the Shannon entropy instead of the variance-based
measures is adopted since a large variance does not
necessarily reflect a large dispersion (e.g. a mixture
model with highly concentrated component densities
could produce a large variance).

In this paper,wepropose the entropy rateH(t j |t j−1),
the entropy H(t0, t1, . . . , tT ), and the concentration
factor C(H) as complements to the conventional repro-
ductive ratio. Appendix A illustrates various attrac-
tive features of the entropy-based measures. In prac-
tice, instead of computing entropy-based measures for
the original distribution vector P and the stochastic
matrix S, one may need to reshape P and S to obtain
measures of different scales. For example, a typical
epidemic model may involve the states of recovered
and dead. Naturally, one would prefer the scenario of
“a large recovery probability and a small death prob-
ability” over “a large death probability and a small
recovery probability.” However, Eq. (23) or Eq. (24)
does not differentiate between recovery and death, and
the aforementioned two scenarios can have exactly
the same entropy (rate). The conventional reproductive
ratio measure has the same issue. To let the entropy-
basedmeasures incorporate the concept of “high recov-
ery probability is preferable over high death probabil-
ity”, one could reshape the distribution vector P and
the stochastic matrix S by merging the recovery state
with the infected state. Consequently, the entropy (rate)
of the reshaped systemwould diminish the contribution

from the recovered state and highlight the contribution
from the dead state (see Appendix A for an example).

4 Application to COVID-19

In the light of the general framework introduces in
Sects. 2 and 3, this section introduces a simple modifi-
cation of the SEIR model with the exposed being also
contagious.

4.1 Modified SEIR

The modified SEIR has a five-dimensional probability
state vector P(t) described as follows:

– P1(t): the (instantaneous probability of being) sus-
ceptible.

– P2(t): the exposed.
– P3(t): the infected.
– P4(t): the recovered.
– P5(t): the dead.

The rate matrix Q(P(t), t) is written as
Q(P(t), t)

=

⎡

⎢⎢⎢⎢⎣

−(α1(t)P2(t) + α2(t)P3(t)) 0 0 0 0
α1(t)P2(t) + α2(t)P3(t) −α3(t) 0 0 0

0 α3(t) −(α4(t) + α5(t)) 0 0
0 0 α4(t) 0 0
0 0 α5(t) 0 0

⎤

⎥⎥⎥⎥⎦
,

(26)

where α(t) = [α1(t), . . . , α5(t)] are non-negative
parameters to be calibrated. Note that here for general-
ity we write every parameter as time dependent; how-
ever, in practice it is typically sufficient to set only a few
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of them as time dependent. Figure 1 illustrates the flow
between compartments of the modified SEIR model.

4.2 Likelihood function

The likelihood function can be derived as a simple
application of the concepts introduced in Sect. 2.4.
First, we introduce a compound state, denoted by 1∨2,
to represent the state of being in either susceptible or
exposed. Themost important property of the compound
state 1 ∨ 2 is that it is an observable, i.e. if an indi-
vidual is not at the state of infected nor at the state
of recovered/dead, it is in the compound state. We
let P1∨2→m(t j , t j+1) represent the transition probabil-
ity from the compound state at t j to other states m,
m = 3 (infected), 4 (recovered), 5 (dead) at t j+1. Using
the total probability theorem, p1∨2→m(t j , t j+1) can be
expressed as

P1∨2→m(t j , t j+1)

= P1(t j )

P1(t j ) + P2(t j )
P1→m(t j , t j+1)

+ P2(t j )

P1(t j ) + P2(t j )
P2→m(t j , t j+1), (27)

where P1(t j ) and P2(t j ) are solution of Eq. (8), and
P1→m and P2→m can be obtained from Eq. (18).
Next, we arrange the dataset vector D(t j ) in the
form D(t j ) = [D1∨2(t j ),D3(t j ),D4(t j ),D5(t j )

]
to,

respectively, represent the instantaneous number of
compound state, instantaneous number of infected,
accumulative number of recovered, and accumulative
number of dead. Let ΔD(t j , t j+1) := |D(t j+1) −
D(t j )| represent the absolute difference between two
consecutive dataset vectors.

Before introducing the likelihood function,we intro-
duce an additional assumption that theΔD1∨2(t j , t j+1)

number of Markov chains all transit to the state 3 (the
infected). This assumption can be always (made) cor-
rect since: (i) if t j is sufficiently close to t j+1, naturally
one cannot jump to the recovered/dead state from sus-
ceptible/exposed; (ii) if t j+1 − t j is large, one could
re-mesh the timescale and perform interpolation on the
dataset, so that t j can always be close to t j+1 by con-
struction. Finally, the conditional likelihood function
L(D(t j+1)|D(t j ); θ) can be written as

L(D(t j+1)|D(t j ); θ) = L1L2, (28)

where

L1 = D1∨2!
(D1∨2 − ΔD1∨2)!ΔD1∨2!0!0!

(P1∨2→1∨2)D1∨2−ΔD1∨2

(P1∨2→3)
ΔD1∨2(P1∨2→4)

0(P1∨2→5)
0 (29)

and

L2 = D3!
(D3 − ΔD4 − ΔD5)!ΔD4!ΔD5!
(P3→3)

D3−ΔD4−ΔD5

(P3→4)
ΔD4(P3→5)

ΔD5 . (30)

In Eqs. (29) and (30), the notations are simplified
to drop t j , t j+1 and θ . To avoid possible ambiguity,
the simplification rules are: Dm ≡ Dm(t j ), ΔDm ≡
ΔDm(t j , t j+1), Pm ≡ Pm(t j |θ), and Pm→m′ ≡
Pm→m′(t j , t j+1|θ). Substituting Eqs. (28), (29) and
(30) into (17), one obtains the complete likelihood
function.

4.3 Transmission measures

To obtain the entropy-based measures, we reshape the
five-dimensional vector P into [P1∨2, P3∨4, P5]�, and
the corresponding stochastic matrix S is also reshaped
(via the total probability theorem) accordingly. The rea-
son to consider the compound state 1 ∨ 2 is because
as a whole the state 1 ∨ 2 is an observable, therefore
the possible errors in identifying the exposed can be
marginalized out. The reason to consider the compound
state 3 ∨ 4 is discussed in Sect. 3, and as a result, the
concept “high recovery probability is preferable over
high death probability” is correctly incorporated.

In addition to the entropy-based measures, using
the next-generation matrix approach [35], the instan-
taneous reproductive ratio of the modified SEIR model
can be defined as

R0(t) := α1(t)

α3(t)
+ α2(t)

α4(t) + α5(t)
. (31)

Note that the instantaneous reproductive ratio R0(t)
can be understood as the basic reproductive ratio of a
tangent model defined as a constant model with param-
etersα equal to the instantaneous parametersα(t) at the
reference time point t .

4.4 Modelling and computational details

As aforementioned, the whole parameter set θ not only
involves parameters of the rate matrix Q(P(t), t), i.e.
α(t) (represented by w,w′ of basis functions), but
also parameters to represent the initial state, i.e. β.
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In the modelling practice, except α3, which is related
to the mean incubation period, we calibrate all the
other parameters (including the initial conditions) with
Bayesian analysis. The mean incubation period, which
is 1/α3 in the model, is reported in various previ-
ous studies [11,36], and typically, it is around 5 and
in the range of [3, 7] days. Therefore, we set 1/α3

as an epistemic random variable within [3, 7]. The
time-dependent parameters are modelled with sigmoid
basis functions. The number of function basis for each
parameter is determined in an additive manner. Specif-
ically, we start with constant α and iteratively increase
the number of basis functions until the variation in like-
lihood function value (Eq. (17)) or BIC index becomes
small.

The Gibbs sampling with a uniform proposal dis-
tribution for each component of θ is adopted to sam-
ple from the posterior distribution. The step size of the
Gibbs sampling is adaptively tuned using the accep-
tance rate of the Markov chain [37,38]. The seed sam-
ples for the Gibbs sampler are selected in the neigh-
bourhood of the posterior mode. This is obtained by
sequentialMonte Carlomethod [39,40] combinedwith
deterministic trust region optimization [41,42].

5 Modelling results on real datasets of COVID-19

5.1 Datasets

For the studied regions, the time series of the popula-
tions of infected, recovered, and dead during January
to May 2020 are used in model calibration. The data
are collected from WHO, European CDC and Chinese
CDC [11,43,44]. The regions considered in this study
include: Hubei province, South Korea, Italy, Germany,
Spain, and France.9 For each region, the population
size N is fixed to the most recent value reported by
Worldometer [45]. We choose these countries/regions
because they have the same order of population size
(this is irrelevant to the entropy-based measure which
is N independent), they applied different containment
strategies, and they represent different cultures. More-
over, at the time of writing of this article the peak of
the epidemicwaves is passed.A complete and thorough
analysis of a large number of regions is out of the scope

9 We planned to include alsoUK; however, the data on the recov-
ered patients are not available yet (unfortunately).

of the current study. In fact, here we focus primarily on
the model and metric definition and their use.

5.2 Data correction

Due to abrupt counting policy changes and various cor-
rections, the COVID-19 datasets for Hubei, Spain, and
France not only violate the smoothness assumption10

of the proposed modelling framework, but also contra-
dict the fundamental fact that the accumulative num-
ber can only be non-decreasing. Therefore, the datasets
must be corrected. It is obvious that the cluster/jump
of data has a missing information, which is the (cor-
rect) time of occurrence. To obtain a consistent dataset
we fill this missing information by using the expected
time of occurrence with respect to the distribution of
the previous events. Since the dataset is recorded daily,
marginally they form a multinomial distribution along
the discrete time axis. It follows that the missing time
information can be filled by using the daily expected
number of events. Specifically, let tJ represent the time
pointwhen the jump/drop happens (for a specified com-
partment), and let ΔDJ represent the magnitude of
the data jump/drop. We perform a postprocess of the
dataset expressed as follows:

D(ti ) ←
(
1 + ΔDJ

D(tJ )

)
D(ti ), (32)

where ti = t0, t1, . . . , tJ , and D(ti ) represents the
cumulative11 number at ti .Note thatΔDJ could beneg-
ative. For an illustration of the correction, Fig. 2 shows
the raw and the corrected datasets for Hubei province.

5.3 The overall epidemic dynamics of various regions

After performingmodel calibrations on datasets of var-
ious regions, we present a comparison analysis based
on various transmission measures. Figure 3 shows the
evolution of the entropy rate of COVID-19 outbreaks
for each of the regions considered. This graph repre-
sents the time evolution of the degree of disorder (in

10 Due to the inherent stochastic variability, the random sam-
ples drawn from the model are naturally non-smooth. However,
here the “violence of smoothness assumption” indicates that an
artificial manipulation of data will corrupt the smoothness of
propagator Q.
11 In Eq. (32), D(ti ) has to be the cumulative number instead of
instantaneous one.
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Fig. 2 Raw and corrected
datasets of Hubei province.
There are two policy
changes regarding the
dataset: (i) in February 12,
2020, the diagnosis criterion
was temporarily relaxed,
and as a result, there is an
artificial jump in the number
of infected; (ii) in April 17,
2020, the cumulative
number of infected and dead
is altered by a constant
jump, and the cumulative
number of recovered is
altered by a constant drop.
The jumps/drops are
marked by a rectangular in
the figure. The populations
of infected, recovered, and
dead are corrected using Eq.
(32). Note that for infected
the correction is made on
cumulative numbers, and
then, the instantaneous
infected is obtained by
subtracting the accumulative
recovered and dead

Fig. 3 The entropy rates
for various regions. The
figure shows the temporal
evolution of entropy rate for
various regions. The solid
lines correspond to the
posterior mean estimations,
and the shaded areas
correspond to
{10%, 20%, . . . , 99%}
credible intervals (around
the posterior mean)

terms of infections and deaths) introduced by the virus
in an average statistical individual of the region. This
graph reflects features of the daily evolution of infec-
tion and recovered/deaths, but it is fundamentally dif-
ferent from the evolution of each compartment. In fact,
it has the key property of being objective and compa-
rable between regions. Interestingly, the evolution of
the entropy rate has a similar form for each region, but
a significant difference in the magnitude of the disor-
der. In particular, the cumulative integral of the entropy
rate represents the change of entropy in the system and,
therefore, the total impact in a region. In Fig. 4—top

panel, we report this impact measure for each of the
regions considered. Based on this metric, Spain was
the most affected region despite the epidemic wave hit
the country later than Italy. On the opposite side, South
Korea is the country with the least change in entropy,
highlighting an effective combination of policies and
cultural habits that limited the impact of the epidemic.
This is probably due to the experience gained during the
recent 2015Middle East Respiratory Syndrome coron-
avirus (MERS-CoV) outbreak [46].Also,Hubei’s reac-
tion, with extreme containment measures, has overall
limited the impact of the epidemic. Germany has the
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Fig. 4 The entropies and
concentration factors for
various regions. The figure
shows a comparison of total
entropies and concentration
factors for various regions,
with the violins illustrating
the posterior distribution

smallest total entropy among studied European coun-
tries.

Interestingly, the peak of entropy rate for Spain,
Italy, and Germany occurred in about the same period
but with a different left tail behaviour (i.e. in the grow-
ing phase). On the other hand, the behaviour of the
right tail (i.e. the descent phase) is similar, showing a
fatter and longer tail. A similar asymmetry can also
be observed in Hubei and South Korea. A deviation
from this “classic” behaviour is represented by Hubei,
which does not show this long tail behaviour but has a
rather compact and almost symmetric shape. A surpris-
ing result is shown in Fig. 4—bottom panel. Although
the impact in each country is significantly different,
the concentration factor is similar to support the fact
that the evolution of COVID-19 is similar for all out-
breaks. The Hubei region is slightly deviating from this
trend, showing a higher concentration factor corrobo-
rating the lack of a right fat tail and, therefore, showing
a higher prevalence as an impulse.

Figure 5 shows a comparison of the instantaneous
reproductive ratio and death rate, together with the date
of lockdown in each region. One can infer that the lock-
down reduced R0(t) effectively. However, surprisingly,
the most effective decrease has been observed in South
Korea where no national lockdown has been imple-

mented, but only local containmentmeasures, andmas-
sive early-stage testing.

It is important to note that the modelling results
are associated with the optimized parsimonious model
for each region. Specifically, in an optimized parsimo-
niousmodel the number of time-dependent variables as
well as the number of adaptive basis functions for each
time-dependent variable is optimized, in the sense that
increasing the number would not noticeably improve
the calibration accuracy and decreasing the number
would significantly degrade the accuracy. Finally, for
an illustration on the degree of accuracy the model has
achieved, the model calibration results of Hubei are
shown in Fig. 6. The calibration for the other countries
and their limitations are reported in B.

5.4 Robustness on the transmission trend

A natural concern regarding the discovered transmis-
sion trend is that if the trend is a genuine underly-
ing structure of the epidemic, or it is merely some
artificial/superficial structures from the specific time-
dependent model. It is challenging to (perfectly)
resolve this concern because a compartmental model
(or any mathematical model) is inevitably an approxi-
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Fig. 5 The instantaneous
reproductive ratio, recovery,
and death rates for various
regions. The lockdown date
for each region is shown as
vertical dashed line. Note
that South Korea does not
have a lockdown policy

Fig. 6 Modelling the
overall epidemic dynamics
of Hubei province with the
modified SEIR model. The
red line corresponds to the
posterior mean estimation.
The shaded area
corresponds to
{10%, 20%, . . . , 99%}
credible intervals around the
posterior mean. The
parameters α1(t), α4(t) and
α5(t) are modelled with a
single sigmoid basis, and α2
is modelled with a constant
variable. The nε in Eq. (21)
is fixed to 100, assuming the
error in the increment of
infected is of the order of a
few hundreds. The figure
suggests a highly accurate
calibration on data using at
most one adaptive basis
function for each parameter
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mation on the real epidemic. Moreover, even an exact
model exists, it is still challenging (if not impossible)
to accurately identify the model due to the presence of
endogenous variables. However, at least we could show
that the proposed framework is self-consistent. In C,
we simulate artificial epidemics from analytical SEIR
laws and investigate whether the proposed modelling
approach could identify correct transmission trends.

6 Limitations and future research directions

6.1 Incorporating the undetected cases

In Sect. 5, the reported/observed population in each
compartment is used to calibrate the model, and the
kernel function in Eq. (21) only flattens the likelihood
function instead of altering its intrinsic shape. Con-
sequently, the model describes an epidemic scenario
consistent with but also confined by the reported cases.
An important missing issue to address is to incorporate
the undetected cases to fully uncover the magnitude
of the epidemic. A practical modelling strategy is to
introduce a probability distribution assumption on the
(possibly time-dependent) ratio between reported and
undetected cases and rewrite the likelihood function
similar to Eq. (19). Clearly, the critical ingredient is
the model assumption on the undetected. The ongoing
studies on blood test for antibodies of SARS-CoV-2
[47] can be useful for this future research direction.

6.2 Application to more complex compartmental
models

Depending on themodelling purposes, one could intro-
duce additional compartments, e.g. the tested/suspected,
the ICU case, the female and male, the old and
young, etc., to study the interactions between differ-
ent groups. It is also straightforward to include spa-
tial distributed information by including adjacency and
incidence matrices. However, one should be aware that
the model variance and the possibility of converging to
local insignificant likelihood modes in general would
increase with model complexity. Therefore, it would
be crucial to collect robust prior knowledge regarding
the modelling parameters.

7 Conclusions

In this study, we have proposed a stochastic compart-
mental modelling framework of epidemics equipped
with entropy-based metrics to measure both the impact
and the evolution of a pandemic event. The model
belongs to the nonlinearMarkov processes class, which
allows a robust formulation and a natural setting for
developing entropy-basedmetrics. In addition, we have
provided a complete Bayesian inversion scheme to cal-
ibrate the model parameters with related uncertainties.
Subsequently, we specialized the proposed structure to
a modified SEIR model and the COVID-19 pandemic.
In particular, we used the framework to investigate six
regions: Hubei, South Korea, Italy, Spain, Germany,
and France. We showed that the change in entropy in
the selected areas (which is associated with the impact
of an epidemic) is significantly different. However, it
is surprising to note that the dynamic evolution of pan-
demicwaves shows very regular trends and very similar
concentration measures.
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A Illustration on the entropy-based measures

To avoid unnecessary complications, we consider a
simple stochastic SIR model with the constant param-
eters α = [α1, α2, α3] associated with the infec-
tion, recovery and death rates, respectively. First,
we consider two systems with: (i) [α1, α2, α3] =
[0.06, 0.015, 0.005] for System1, and (ii) [α1, α2, α3] =
[0.3, 0.075, 0.025] for System 2. The two systems have
an identical basic reproductive ratio of 3.0. The initial
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Fig. 7 Illustration of
entropy-based measures for
systems with the same basic
reproductive ratio. The final
stage of P(t) for the two
systems is identical since
they have an identical
reproductive ratio. However,
System 2 evolves more
rapidly than System 1, and
this is reflected by the
entropy rate and
concentration factor. System
1 has a longer active period
than System 2, and
consequently, the total
entropy of System 1 is larger

Fig. 8 Illustration of entropy-based measures with varying α1
values in a stochastic SIR model. The left figure illustrates the
time evolution of entropy rate with different α1 values, and the
lighter to darker curves are associated with lower to higher α1
values. The middle and right figures illustrate the total entropy
and concentration factor with respect to α1. It is seen from the

figure that as the force of infection grows (while the recovery and
death rate are fixed), the evolution of the entropy rate becomes
more and more pulse like. A more important observation is that
the entropy may have a peak value due to the trade-off between
strong-phase magnitude and duration of the entropy rate evolu-
tion

condition is set to P(t0) = [0.99, 0.01, 0, 0]. Figure 7
illustrates entropy-basedmeasures for the two systems.

Next, we fix α2 = 0.15 and α3 = 0.05, and let
α1 vary within [0.2, 2], so that the basic reproductive
ratio varies within [1, 10]. The initial condition is set
to P(t0) = [0.99, 0.01, 0, 0]. Figure 8 illustrates the
entropy rate, total entropy, and concentration factor.

Both Figs. 7 and 8 imply that the basic reproduc-
tive ratio and the entropy-based measures describe dif-
ferent aspects of the epidemic dynamics, and they do
not have a one-on-one mapping. Crudely speaking, the
entropy rate characterizes the instantaneous intensity
and flatness of the epidemics, while the total entropy
measures the overall impact. Note that in Figs. 7 and
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Fig. 9 Illustration of the entropy-based measures using the
reshaped P and S. The figure suggests that when the infected
and recovered states are merged into a compound state, the con-
tribution (to the entropy rate and entropy) from the death cases is

increased. The concentration factor is not sensitive to this tech-
nique. Note that without using a reshaped P and S, the entropy-
based measures for the two systems will be exactly the same

8, the entropy-based measures are computed using the
original distribution vector P and stochastic matrix S.
In Sects. 3 and 4.3, it is mentioned that P and S can be
reshaped to highlight the contribution from the death
cases. Figure 9 illustrates the effect of this technique.
Specifically, two SIR models with the same initial con-
ditions P(t0) = [0.99, 0.01, 0, 0] are considered. The
first model has α = [0.6, 0.19, 0.01], and the second
model is obtained by swapping the recovery and death
rates of the first model. The basic reproductive ratios
for the two models are both 3.0.

B Results of model calibration

The model calibration results for Italy, South Korea,
Spain, France, and Germany are shown in Figs. 10, 11,
12, 13, and 14. In the figures, the solid lines correspond
to posterior mean estimations, and the shaded areas
correspond to {10%, 20%, . . . , 99%} credible intervals
around the posterior mean.

Fig. 10 Modelling the
overall epidemic dynamics
of Italy with the modified
SEIR model. The α1(t),
α4(t) and α5(t) are
modelled with a single
sigmoid basis, and α2(t) is
modelled as a constant
variable. The nε in Eq. (21)
is fixed to 1000, assuming
the error in the increment of
infected is in the order of a
few thousands
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Fig. 11 Modelling the
overall epidemic dynamics
of South Korea with the
modified SEIR model. The
α1(t) is modelled with a
single sigmoid basis, and
α2(t), α4(t), and α5(t) are
modelled as constant
variables. The nε in Eq. (21)
is fixed to 100, assuming the
error in the increment of
infected is in the order of a
few hundreds

Fig. 12 Modelling the
overall epidemic dynamics
of Spain with the modified
SEIR model. The α1(t) and
α5(t) are modelled with a
single sigmoid basis, and α2
and α4 are modelled as
constant variables. The nε

in Eq. (21) is fixed to 1000,
assuming the error in the
increment of infected is in
the order of a few thousands
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Fig. 13 Modelling the
overall epidemic dynamics
of France with the modified
SEIR model. The α1(t) and
α5(t) are modelled with a
single sigmoid basis, and α2
and α4 are modelled as
constant variables. The nε

in Eq. (21) is fixed to 1000,
assuming the error in the
increment of infected is in
the order of a few thousands

Fig. 14 Modelling the
overall epidemic dynamics
of Germany with the
modified SEIR model. The
α1(t) is modelled with a
single sigmoid basis, and
α2(t), α4(t), and α5(t) are
modelled as constant
variables. The nε in Eq. (21)
is fixed to 1000, assuming
the error in the increment of
infected is in the order of a
few thousands

C Results on robustness/self-consistent test on the
transmission trend

We simulate a random epidemic scenario from a mod-
ified stochastic SEIR model with parameters α =

[α1(t), 0.10, 0.20, α4(t), α5(t)]. The duration of the
simulation is set to 40 days. The time-dependent
parameters are specified as α1(t) = 0.6 − 0.5t/40,
α4(t) = 0.05 + 0.30t/40, and α5(t) = 0.15 −
0.10t/40, and consequently, the instantaneous repro-
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Fig. 15 The
calibrated time-dependent
modified SEIR model.
The α1(t), α2(t), α4(t),
and α5(t) are modelled with
a single sigmoid basis, and
α3 is modelled as a constant
variable. The nε in Eq. (21)
is fixed to 1, assuming no
error in the dataset. The
figure suggests an accurate
calibration. Even the unob-
served exposed population
and its initial condition are
accurately identified. How-
ever, this is because the
dataset is generated from
an analytical model.
For real dataset where
a mathematical model is
only an approximation, it is
preferable to use real clinical
data to specify the mean
incubation period and its
epistemic uncertainty (as it is
performed in the main text)

Fig. 16 The transmission
properties of the
time-dependent SEIR model
compared with the exact
values. The figure suggests
that the transmission trends
(in terms of the posterior
mean estimation) are in
general identified
accurately. The moderate
bias is mainly caused by the
inherent variability of the
stochastic simulation (see
the following verification)
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Fig. 17 The transmission
properties of the
time-dependent SEIR model
calibrated on the
expectation of the analytical
model. Compared with Fig.
16, it is seen that the bias is
noticeably decreased

ductive ratio decreases from 3.50 to 0.75 as t grows
from 0 to 40 (days). The population size is fixed to
N = 103, and the initial condition is set to P(t0) =
[1 − 101/N , 100/N , 1/N , 0, 0]. The specification of
a relatively large initial condition for the unobservable
exposed state is to “challenge” the proposed approach
and investigate whether the exposed population can be
accurately identified even without observing it.We cal-
ibrate a time-dependent modified SEIR model, and the
results are illustrated in Figs. 15 and 16.

Finally, to verify that the bias in Fig. 16 is mainly
causedby the inherent stochastic variationof themodel,
we calibrate the model on the expectation of the analyt-
ical model, and the results of transmission properties
are illustrated in Fig. 17.
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