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Abstract On the example of the famous Lorenz
system, the difficulties and opportunities of reliable
numerical analysis of chaotic dynamical systems are
discussed in this article. For the Lorenz system, the
boundaries of global stability are estimated and the
difficulties of numerically studying the birth of self-
excited and hidden attractors, caused by the loss of
global stability, are discussed. The problem of reliable
numerical computation of the finite-time Lyapunov
dimension along the trajectories over large time inter-
vals is discussed. Estimating the Lyapunov dimension
of attractors via the Pyragas time-delayed feedback
control technique and the Leonov method is demon-
strated. Taking into account the problems of reliable
numerical experiments in the context of the shadowing
and hyperbolicity theories, experiments are carried out
on small time intervals and for trajectories on a grid of
initial points in the attractor’s basin of attraction.
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1 Introduction

In 1963, meteorologist Edward Lorenz suggested an
approximate mathematical model (the Lorenz system)
for the Rayleigh–Bénard convection and discovered
numerically a chaotic attractor in this model [76]. This
discovery stimulated rapid development of the chaos
theory, numerical methods for attractor investigation,
and still attracts much attention of scientists from dif-
ferent fields1 (see, e.g., [26,89,96,102,104]). The aim
of this work is to discuss the estimates of the global
stability and the difficulties of numerically studying
the birth of self-excited and hidden attractors, caused
by the loss of global stability.

Consider the classical Lorenz system
⎧
⎪⎨

⎪⎩

ẋ = −σ(x − y),

ẏ = r x − y − xz,

ż = −bz + xy,

(1)

with physically sound parameters σ, r > 0, b ∈ (0, 4]
[76].

1 The original celebrated work by Lorenz [76] has gained more
than 21,500 citations according to Google Scholar.
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An important task in both qualitative and quanti-
tative investigation of dynamical systems is the study
of limiting behavior of a system after a transient pro-
cess, i.e., the problem of revealing and analysis of all
possible limiting oscillations. In a theoretical perspec-
tive, this problem relates to a generalization [44,63]
of the second part of the celebrated Hilbert’s 16th
problem [34] on the number and mutual disposition
of attractors and repellers in the chaotic multidimen-
sional dynamical systems, and, in particular, their
dependence on the degree of polynomials in the model
(see also corresponding discussion, e.g., in [99,113]).
Remark that 16th Hilbert problem is far from com-
plete solution even for two-dimensional polynomial
quadratic systems admitting only periodic attractors
(see, e.g., [42,62]).

A limiting oscillation (or a set of oscillations) is
called an attractor, if the initial data from its open
neighborhood in the phase space (with the exception
of a minor set of points) lead to a long-term behavior
that approaches it, and its attracting set is called the
basin of attraction (i.e., a set of initial data for which
the trajectories tend to the attractor).

The examination of all limiting oscillations could be
facilitated if for a system it is possible to prove the dis-
sipativeness in the sense of Levinson (or D-property)
([74], see also [67])—the existence of a bounded con-
vex globally absorbing set containing all such oscilla-
tions. The Lorenz system (1) is dissipative in the sense
of Levinson, and one can consider, e.g., the following
absorbing set [60,61]:

B = {
(x, y, z) ∈ R

3
∣
∣ (x2 + y2 + (z − r − σ)2)

≤ b(σ+r)2

2c

}
, c = min(σ, 1, b

2 ). (2)

This implies that all solutions of (1) exist for t ∈
[0,+∞) and, thus, system (1) generates a dynamical
system. For considered assumptions on parameters, if
r < 1, then system (1) has a unique equilibrium
S0 = (0, 0, 0), and if r > 1, then system (1) has three
equilibria: S0 = (0, 0, 0) and two symmetric equilib-
ria:

S± = (±√
(r − 1)b, ±√

(r − 1)b, r − 1).

For a system that is dissipative in the sense of Levin-
son, further study of existence of oscillations is usually
connected with the stability of a stationary set. If any
trajectory of a system tends to the stationary set, then

the system is called globally stable.2 In this definition,
the stationary set can contain both stable (trivial oscil-
lations) and unstable equilibrium states, i.e., the local
stability of all equilibria is not required3. Various ana-
lytical methods, based on the Lyapunov ideas, have
been developed (see survey, e.g., [47]) for the study of
global stability and estimates of its boundaries in the
space of parameters.

Farther, the birth of nontrivial oscillations in a sys-
tem can be observed when crossing the global stability
boundary in the space of parameters. In the simplest
case, this is due to the loss of stability of the station-
ary set. Within this framework, it is naturally to clas-
sify oscillations in systems as self-excited or hidden
[39,62,67,68]. Basin of attraction of a hidden oscil-
lation in the phase space does not intersect with small
neighborhoods of any equilibria, whereas a self-excited
oscillation is excited from an unstable equilibrium. A
self-excited oscillation is a nontrivial one if it does not
approach the stationary states (i.e., ω-limit set of cor-
responding trajectory does not consist of equilibria).

In the general case, when the boundaries of global
stability are violated, the birth of oscillations can occur
due to local bifurcations in the vicinity of the stationary
set (trivial boundary of the global stability)4 or nonlocal
bifurcations (hidden boundary of the global stability).
If an attractor is born via such a nonlocal bifurcation of
the loss of global stability, then the attractor is a hidden
one since the basin of its attraction is separated from
the locally attractive stationary set.

In practice, only problem of the birth of new non-
trivial attractors is of interest because there are round-
off and truncation errors in numerical experiments and
there is noise in physical experiments. That is, if the

2 We use the term “global stability” for simplicity of further
discussion, while in the literature there are used different terms
like “globally asymptotically stable” [108, p. 137], [31, p. 144],
“gradient-like” [72, p. 2], [111, p. 56], “quasi-gradient-like” [72,
p. 2], [111, p. 56] and others, reflecting the features of the sta-
tionary set and the convergence of trajectories to it.
3 This can be demonstrated on the example suggested by Vino-

grad [109] (see also [32, p. 191]): ẋ = x2(y−x)+y5

(x2+y2)(1+(x2+y2)2)
,

ẏ = y2(y−2x)
(x2+y2)(1+(x2+y2)2)

. Here, a planar system with a unique
globally attractive equilibrium of the saddle type has a family of
homoclinic orbits. Also, global stability in the presence of locally
unstable equilibria is a typical case for systems describing pen-
dulums, PLLs [11,21,46,69], and electric machines [64].
4 See, e.g., Andronov–Hopf bifurcation [2,5] and Bautin’s
“safe” and “dangerous” boundaries of stability [9], and corre-
sponding birth of hidden Chua attractors [43,101].
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model has a global bounded convex absorbing set, then
over time, the state of the system, observed experimen-
tally, will be attracted to the local attractor contained in
the absorbing set. This problem can be considered as a
practical interpretation of the problem of determining
the boundary of global stability.

2 Inner estimation: the global stability and trivial
attractors

For the Lorenz system (1), using several approaches
based on the construction of Lyapunov functions it is
possible to obtain the following result.

Theorem 1 (criterion for the absence of self-excited
and hidden oscillations) If for parameters of system (1)
one of the following cases holds:

2σ ≤ b, or

{
2σ > b,

r < rgs = (σ+b)(b+1)
σ

,
(3)

then there are no nontrivial self-excited and hidden
oscillations in the phase space of system (1), and any
of its solution (x(t), y(t), z(t)) tends to the stationary
set as t → +∞.

Proof Let us present the sketch of the proof (see [58,
63,65,73]) and consider the following three cases.

(1) For r ≤ 1, system (1) has the unique equilibrium
S0. Thus, the absence of self-excited oscillations
follows from the Routh–Hurwitz criterion on local
stability for the equilibrium S0. The absence of
hidden oscillations can be obtained by Barbashin–
Krasovskii theorem (see, e.g., [7,47]) and the Lya-
punov function V (x, y, z) = 1

2

( x2
σ

+ y2 + z2
)
. For

r ≤ 1, this function satisfies the following relation
on the derivative with respect to system (1):

V̇ (x(t), y(t), z(t)) = −(
x(t) − r+1

2 y(t)
)2

−(
1− (r+1)2

4

)
y(t)2−bz(t)2<0, ∀x, y, z �= 0.

Also, V (x, y, z) ≥ 0, V (0, 0, 0) = 0 and
V (x, y, z) → ∞ as |(x, y, z)| → ∞; thus, all con-
ditions of Barbashin–Krasovskii theorem are satis-
fied implying global stability of the unique equilib-
rium S0.
For r > 1, system (1) has three equilibria: the sad-
dle equilibrium S0 and the equilibria S±, whose sta-
bility depends on the parameters r , σ , b. Thus, here

the Barbashin–Krasovskii theorem is not applica-
ble. In this case, system (1) may possess nontriv-
ial self-excited oscillations with respect to unstable
equilibria and also hidden oscillations.

(2) For r > 1 and 2σ < b, the absence of nontrivial
oscillations (and, thus, the global stability of the
stationary set {S0, S±}) can be demonstrated (see,
e.g., [59]) by the LaSalle principal [54]. For that by
the time and coordinate transformations

t → τ, ψ : (x, y, z) → (χ, ϑ, υ),

τ = t
√

σ(r − 1), χ = x√
b(r−1)

,

ϑ =
√

σ(y−x)√
b(r−1)

, υ = bz−x2
b(r−1)

we transform system (1) to the system
⎧
⎪⎨

⎪⎩

χ̇ = dχ
dτ = ϑ,

ϑ̇ = dϑ
dτ = −λϑ − χυ + χ − χ3,

υ̇ = dυ
dτ = −αυ − βχϑ,

(4)

withλ = (σ+1)√
σ(r−1)

,α = b√
σ(r−1)

> 0,β = 2σ−b
σ

<

0, and consider the following Lyapunov function:

V (χ, ϑ, υ) = ϑ2 − υ2

β
− χ2 + χ4

2
. (5)


�
Note that the LaSalle principle requires the com-

pactness of the set, where the Lyapunov function V is
defined to show its boundedness from below. In our
case, one can show that the inequality V (χ, ϑ, υ) >

− 1
2 is valid for any (χ, ϑ, υ) ∈ R

3. Since β < 0, func-
tion (5) satisfies the following relation on the derivative
with respect to system (4):

V̇ (χ, ϑ, υ) = 2

(

−λϑ2 + α

β
υ2

)

≤ 0,

∀χ, ϑ, υ ∈ R
3.

From the relation V̇ (χ, ϑ, υ) = 0, it follows that the
largest invariant set M ⊂ {(χ, ϑ, υ) ∈ R

3
∣
∣ V̇ (χ, ϑ, υ)

= 0} consists of the equilibrium points of system (4).
Then, according to LaSalle principle any solution of
system (4) (and thus system (1)) tends to an equilibrium
state as τ → +∞. The level lines of Lyapunov func-
tion (5) surrounding the stationary set are presented in
Fig. 1.

For 2σ = b and β = 0, the third equation in (4)
yields υ(t) = υ0 exp(−αt) and thus any trajectory
approaches an equilibrium as τ → +∞.

(3) For r > 1, 2σ > b, the previous approach with
Lyapunov function (5) does not work, and we use a
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Fig. 1 Level lines of Lyapunov function (5) surrounding the stationary set (red, green) of system (4) with parameters r = 24, σ = 10,
b = 2σ + 0.1 in three different projections: υ = −1, υ = 0, υ = 1. (Color figure online)

special analytical method based on [40,41,56,95]. The
main idea behind this method is choosing a specific
nonsingular (3 × 3) matrix S and differentiable scalar
function V : U ⊆ R

3 → R
1, to satisfy the following

condition:

λ1(u0, S) + λ2(u0, S) + V̇ (u0) < 0, u0 ∈ B, (6)

where λ1(u0, S) > λ2(u0, S) > λ3(u0, S) are the
eigenvalues of the following symmetrized matrix:

Q = 1

2

(
SJ (u0)S

−1 + (SJ (u0)S
−1)∗

)

and

J (u0) = J (x0, y0, z0) =
⎛

⎝
−σ σ 0

r − z0 −1 −x0
y0 x0 −b

⎞

⎠

is the 3 × 3 Jacobian matrix of system (1).
Condition (6) yields the inequality 1 < r ≤

(σ+b)(b+1)
σ

in (3).
(3.1) For b ∈ [0, 2] or b ∈ [2, 4] and 1 < r <

r0 = 2(σ+b)(b+1)
σ (1+l2)

, we consider S =
⎛

⎜
⎝

√
r
σ

0 0

0 1 0
0 0 1

⎞

⎟
⎠

and V ≡ 0. Then, condition (6) is equivalent to the
following relation:

Q + μI > 0, (7)

where μ = −Tr J (u0) = σ + b + 1 > 0. Condition
(7) means that all leading principal minors �1,2,3 of
the corresponding matrix are positive. For the chosen
matrix S, we have�1 = −σ +μ > 0,�2 = �3

(−b+μ)
+

(
�

′′
3

)2 and relation (7) can be expressed in the following
way:

�3 =

∣
∣
∣
∣
∣
∣
∣

−σ + μ �
′
3 �

′′
3

�
′
3 −1 + μ 0

�
′′
3 0 −b + μ

∣
∣
∣
∣
∣
∣
∣

> 0, (8)

where �
′
3 = √

rσ − z
2

√
σ
r , �

′′
3 = y

2

√
σ
r . Condition (8)

can be rewritten as follows:

r

σ
((μ − σ) (μ − 1) − rσ) − z2

4

− y2

4

(μ − 1)

(μ − b)
+ r z > 0. (9)

For the solutions of system (1), the following relation
is known [60,61]:

lim sup
t→+∞

[y2(t) + (z(t) − r)2] ≤ l2r2,

l =
{
1, if b < 2,

b
2
√
b−1

, if b ≥ 2.
(10)

Using relations (9) and (10), we conclude that inequal-
ity (6) is true, when

σ + 2 − b ≥ 0, r <
2(μ − σ)(μ − 1)

σ (1 + l2)
,

which matches the initial conditions on parameter b
and r .

(3.2) For b ∈ [2, 4] and r0 ≤ r ≤ (σ+b)(b+1)
σ

,

we consider S =
⎛

⎝
−A−1 0 0
− (b−1)

σ
1 0

0 0 1

⎞

⎠ and V (x, y, z) =
V1(x,y,z)

[(σ−1)2+4σr ]1/2 , where A = σ√
σr+(σ−b)(b−1)

and

V1(x, y, z) = γ1(y
2 + z2) + γ2x

2

+γ3(
x4

4σ 2 − x2z
σ

− y2 − 2xy) − σ
b z.
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If 2σ ≥ b, then it is known [60,61] the following
relation for the solutions of system (1):

lim inf
t→+∞

[

z(t) − x2(t)

2σ

]

≥ 0. (11)

Using this relation, one can obtain the following esti-
mation for all z ≥ x2

2σ :

V̇1 ≤ [2r xy − 2dy2 − 2bz2]γ1 + [2σ xy − 2σ x2]γ2 +
+[(4σ + 2b)z2 + 2(σ − r + d)xy − 2(σ − d)y2 − 2r x2]γ3
+σ z − σ

b xy. (12)

The matrix Q has the following eigenvalues:

λ2(u, S) = −b,

λ1,3(u, S) = − (σ+1)
2 ± 1

2

√

(σ+1−2b)2+ (
Az− 2σ

A

)2 +A2
(
y+ b−1

σ
x
)2

,

(13)

for which relation λ1(u, S) > λ2(u, S) > λ3(u, S)

holds.
Then, condition (6) takes the following form:

2(λ1(u, S) + λ2(u, S) + V̇ )

≤ −(σ + 1 + 2b) + [(σ − 1)2 + 4σr ]1/2 +
+ 2

[(σ−1)2+4σr ]1/2
(
−σ z + A2z2

4

+ A2

4

(
y + b−1

σ
x
)2 + V̇1

)
.

If γ1 ≥ A2

8b + γ3(
2σ
b + 1), then using (12), one gets the

following estimation:

−σ z + A2z2
4 + A2

4 (y + b−1
σ

x2)

+V̇1 ≤ B1x
2 + B2xy + B3y

2, ∀x, y, z ≥ x2
2σ ,

where

B1 = −2γ2σ + A2(b−1)2

4σ 2 − 2γ3r,

B3 = −2γ1 + A2

4 − 2(σ − 1)γ3,

B2 = 2
(
rγ1 + A2(b−1)

4σ − σ

2b
+ σγ2 + (σ + 1 − r)γ3

)
.

The later inequality B1x2 + B2xy + B3y2 ≤ 0 holds
for any x , y, if

B1 ≤ 0, B3 ≤ 0, 4B1B3 − B2
2 ≥ 0. (14)

If one considers the following coefficients (see, e.g.,
[58]):

γ1 = A2 3σ+b−1
8σ(b+2) ,

γ3 = A2 b−1
8σ+2 ,

γ2 = r−2
σ

(γ3 − γ1) − A2 (b+σ−1)
4σ 2 + 1

2b ,

5
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Fig. 2 The absence of self-excited and hidden attractors and
the global stability of the stationary set {S0, S±} in the Lorenz
system (1) with parameters σ = 16, b = 4, and r = 6.24 <
(σ+b)(b+1)

σ
. Trajectories (blue, purple) in small neighborhoods

of the unstable equilibrium S0 attractors to stable equilibria S±
(trivial attractors). (Color figure online)

then conditions (14) are equivalent to the following
conditions:

b ≥ 1, rσ + (σ − b)(b − 1) > 0,
(2r−1)σ (8σ+bσ+b2−b)

b(b+1) > −3σ 2 + 6σ(b − 1) + (b − 1)2,

which are satisfied for b ∈ [2, 4] and r ≥ r0.
Thus, for these values condition (6) takes the fol-

lowing form:

2(λ1(u, S) + λ2(u, S) + V̇ )

≤ −(σ + 1 + 2b)

+[(σ − 1)2 + 4σr ]1/2 < 0,

which yields estimation r <
(σ+b)(b+1)

σ
in (3).

This completes the proof. 
�
The case corresponding to conditions (3) of The-

orem 1, when all trajectories tend to the stationary
set, however, not all equilibria of the stationary set are
locally stable, is illustrated in Fig. 2.

Beyond the estimate (3) in Theorem 1, the analysis
of global stability and the birth of nontrivial attractors
can be performed numerically. It is further known that
the separatrix of saddle S0 can form a homoclinic loop
from which unstable cycles can arise and violate the
global stability (however, a set of measure zero does
not affect the global attraction on a stationary set from
a practical point of view). Using the Fishing principle
[57,67,71] for the Lorenz system (1), it is possible to
prove the following:

123



718 N. V. Kuznetsov et al.

−10 −5 0 5 10
−20

0

20

0

5

10

15

20

25

x
y

z

S0

S+S−

Fig. 3 Two symmetric homoclinic orbits (homoclinic butterfly)
in the Lorenz system (1) with parameters σ = 10, b = 8/3, and
r = rh ≈ 13.926

Theorem 2 For σ and b fixed, there exists r = rh ∈
(1,+∞) corresponding to the homoclinic orbit of the
saddle equilibrium S0 if and only if 3σ > 2b + 1.

For instance, for the classical values of parameters
σ = 10, b = 8/3 of system (1), it is possible to
find numerically the approximate value of such homo-
clinic bifurcation rh ≈ 13.926, when two symmetric
homoclinic orbits appear forming a homoclinic butter-
fly (Fig. 3). A further increase in the parameter r leads
to the birth of two saddle periodic orbits from each
homoclinic orbit [93].

3 Outer estimation: the absence of trivial
attractors

For systemswith a global absorbing set and an unstable
stationary set, the existence of self-excited attractors
is obvious. From a computational point of view, this
allows one to use a standard computational procedure,
in which after a transient process, a trajectory, starting
from a point of unstable manifold in a neighborhood
of equilibrium, reaches a state of oscillation; therefore,
one can easily identify it.

System (1) possesses the absorbing set B (defined
by Eq. (2)) and for σ > b + 1, r > rcr = σ(σ+b+3

σ−b−1 ) all
equilibria are unstable. Thus, in this case, system (1)
has a nontrivial self-excited attractor. If we consider
classical values of parameters σ = 10, b = 8/3, then
for r > rcr, e.g., for r = 28, it is possible to observe
the self-excited chaotic attractorwith respect to all three

equilibria S0, S± (Fig. 4). This gives an outer estimation
of the practical global stability.

In this manner, Lorenz had discovered numerically
in the phase space of system (1) the existence of the
celebrated chaotic Lorenz attractor from a vicinity of
unstable zero equilibrium.

4 The boundary of practical stability and absence
of nontrivial attractors

The presence of an absorbing set (Fig. 5) implies the
existence of a globally attractor Aglob, which contains
all local self-excited and hidden attractors, and a sta-
tionary set.

Thus, inside the set B it is possible to study numeri-
cally the presence of nontrivial self-excited and hidden
attractors for parameters r , σ , b not satisfying con-
ditions (3) of global stability, i.e., by fixing σ and b
and by decreasing r from rcr. For σ = 10, b = 8/3,
this gives us the following region r ∈ (rgs, rcr), where
rgs ≈ 4.64, rcr ≈ 24.74.

A nontrivial self-exited attractor can be observed
numerically for 24.06 � r < rcr ≈ 24.74 (see, e.g.,
[96]). In this case of nontrivialmultistability, system (1)
possesses a local chaotic attractor A which is self-
excitedwith respect to equilibrium S0 and coexistswith
the trivial attractors S± (Fig. 6).

4.1 Hidden attractor or hidden transient chaotic sets?

For the Lorenz system (1), it is still an open question
[39, p. 14], whether for some parameters there exists a
hidden chaotic attractor, i.e., whether it is possible by
changing parameters to disconnect the basin of attrac-
tion from equilibria S0, S± (e.g., for the parameters
σ = 10, b = 8

3 : if r = 28, then attractor is connected
with S0, S±; if r = 24.5, then attractor is connected
with only S0). The current results on the existence of the
hidden attractors in the Lorenz system are the follow-
ing. Recently reported hidden attractors in the Lorenz
system with r < rcr and locally stable equilibria S±
turn out to be a transient chaotic set (a set in the phase
space, which can persist for a long time, but after all
collapses), but not a sustained hidden chaotic attractor
[79,112].

Since in a numerical computation of a trajectory
over a finite-time interval it is difficult to distinguish
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Fig. 4 Numerical visualization of the classical self-excited local chaotic attractor in the Lorenz system (1) with r = 28, σ = 10, b = 8
3

by integrating the trajectories with initial data from small neighborhoods of the unstable equilibria S0, S±

-50
-20
50

0

20

0

40

0

60

80

50

100

-50
x y

z

B
Ω

Fig. 5 Global absorbing setB (see Eq. (2)) and positive invariant
set � = {

(x, y, z) ∈ R
3

∣
∣ [y2(t) + (z(t) − r)2] ≤ r2

}
(see

Eq. (10)) containing self-excited chaotic attractor in the Lorenz
system (1) with r = 28, σ = 10, b = 8

3 , when the stationary set{S0, S±} is unstable

a sustained chaos from a transient chaos [30,52], it is
reasonable to give a similar classification for transient
chaotic sets [14,18]. A transient chaotic set is called a
hidden transient chaotic set if it does not involve and
attract trajectories from a small neighborhood of equi-
libria; otherwise, it is called self-excited.

For an arbitrary system possessing a transient
chaotic set, the time of transient process depends
strongly on the choice of initial data in the phase space
and also on the parameters of numerical solvers to inte-
grate a trajectory (e.g., order of themethod, step of inte-
gration, relative and absolute tolerances). This compli-
cates the task of distinguishing a transient chaotic set
from a sustained chaotic set (attractor) in numerical
experiments.

For the Lorenz system (1), suppose that σ = 10,
b = 8

3 are fixed and r varies. Near the point r ≈ 24.06,
it is possible to observe a long living transient chaotic
set, which is hidden since its basin of attraction does
not intersect with the small vicinities of equilibrium S0.
For example, for r = 24 a hidden transient chaotic set
can be visualized [112] from the initial point (2, 2, 2)
(Fig. 7). In [79], hidden transient chaotic set was
obtained in system (1) with r = 29, σ = 4, b = 2.

In our experiments, consider system (1)with r = 24.
For a trajectory with a certain initial point, which is
computed by a certain solver with specific parameters,
we estimate themoment of the end of transient behavior
as the moment of time when the trajectory falls into a
small vicinity of one of the stable equilibria S±. Using
MATLAB’s standard procedure ode45 with default
parameters (relative tolerance 10−3, absolute tolerance
10−6) for system (1) with parameters r = 24, σ = 10,
b = 8/3 and for initial point u0 = (20, 20, 20), a tran-
sient chaotic behavior is observed on the time interval
[0, 1.8 × 104], for initial point u0 = (−7, 8, 22)—
on the time interval [0, 7.2 × 104], for initial point
u0 = (2, 2, 2)—on the time interval [0, 2.26 × 105],
and for initial point u0 = (0,−0.5, 0.5) a transient
chaotic behavior continues over a time interval of more
than [0, 107]. Remark that, if we consider the same ini-
tial points, but use MATLAB’s procedure ode45with
relative tolerance 10−6, for all these initial points the
chaotic transient behavior will last over a time inter-
val of more than [0, 106], and corresponding transient
chaotic sets will not collapse. As a conclusion from
this numerical study of transient chaotic behavior, we
may suggest to specify precisely numerical solver, its
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Fig. 6 Numerical visualization of the self-excited local chaotic attractor in the Lorenz system (1) r = 24.5, σ = 10, b = 8
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Fig. 7 Visualization of the hidden transient chaotic set in the Lorenz system (1) with r = 24, σ = 10, b = 8
3

parameters, initial data and time interval, along which
the transient behavior continues.

4.2 The study of existence of the hidden transient
chaotic sets and hidden attractors via the
continuation method

In [79,112], the study of existence of the hidden tran-
sient chaotic sets and hidden attractors in the Lorenz
system was done by the numerical study of basins of
attraction on some 2d cross sections. Next, we demon-
strate an approach based on the extension of the param-
eter space and the numerical continuation method (see
“Appendix A”).

Consider the following generalization of the classi-
cal Lorenz system [76]:
⎧
⎪⎨

⎪⎩

ẋ = −σ(x − y) − ayz,

ẏ = r x − y − xz,

ż = −bz + xy,

(15)

with parameters σ, r, b > 0 and parameter a = 0.
Consider

b = 1, a > 0, σ > ar. (16)

For the following linear transformation (see, e.g., [60]):

(x, y, z) →
(

x,
ζ

σ − ar
, r − ζ

σ − ar
y

)

, (17)

system (1) is transformed to theGlukhovsky–Dolzhansky
system [27]:
⎧
⎪⎨

⎪⎩

ẋ = −σ x + ζ z + αyz,

ẏ = ρ − y − xz,

ż = −z + xy,

(18)

where

ζ > 0, ρ=r(σ − ar)

ζ
>0, α = ζ 2a

(σ − ar)2
> 0.

(19)

The Glukhovsky–Dolzhansky system describes the
convective fluid motion inside a rotating ellipsoidal
cavity.
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If we set

a < 0, σ = −ar, (20)

then after the linear transformation (see, e.g., [60]):

(x, y, z) →
(

ν−1
1 y, ν−1

1 ν−1
2 h x, ν−1

1 ν−1
2 h z)

)

, t → ν1 t

with positive ν1, ν2, h, we obtain the Rabinovich sys-
tem [83,87], describing the interaction of three reso-
nantly coupled waves, two of which being parametri-
cally excited:
⎧
⎪⎨

⎪⎩

ẋ = hy − ν1x − yz,

ẏ = hx − ν2y + xz,

ż = −z + xy,

(21)

where

σ = ν−1
1 ν2, b = ν−1

1 , a = −ν22h
−2, r = ν−1

1 ν−1
2 h2.

(22)

Following [14], let us briefly describe the exper-
iment, which allows to organize the transition from
the hidden attractors in Glukhovsky–Dolzhansky and
Rabinovich systems to the hidden transient chaotic set
in the Lorenz system.

In this experiment for system (15), we consider three
sets of parameters: PGD

(
r = 346, a = 0.01, σ =

4, b = 1
)
(for the Glukhovsky–Dolzhansky system

— GD), PL
(
r = 24, a = 0, σ = 10, b = 8/3

)

(for the Lorenz system — L), and PR
(
r = 24, a =

−1/r − 0.01, σ = −ar, b = bcr + 0.14
)
(for the

Rabinovich system — R). Here, in contrast to the case
of classical Lorenz system considered in previous sec-
tion, we change the parameters in such a way that hid-
den Glukhovsky–Dolzhansky and Rabinovich attrac-
tors are located not too close to the unstable zero equi-
librium so as to avoid a situation that numerically inte-
grated trajectory persists for a long time and then falls
on an unstable manifold of the unstable zero equilib-
rium, then leaves the transient chaotic set, and finally
tends to one of the stable equilibria.

Hidden chaotic attractors in the Glukhovsky–
Dolzhansky systemwith PGD

(
r = 346, a = 0.01, σ =

4, b = 1
)
[66,67] and in the Rabinovich system with

PR
(
r = 24, a = −1/r − 0.01, σ = −ar, b =

bcr+0.14
)
[44] could be obtained from the correspond-

ing self-excited attractors by the numerical continua-
tion method (see “Appendix A”).

These sets of parameters define three points, PGD,
PL, and PR, in the 4D parameter space (r, a, σ, b).

Table 1 Initial point (x0, y0, z0) and time interval [0, T ] of
numerical integration for each part of the path

Path (x0, y0, z0) T

GD → L (10.64, 60.78, 390) 104

L → R (0.2, 0.2, 0.35) 1.1 × 104

Consider two line segments, PGD → PL and PL →
PR, defining two parts of the path in the continuation
procedure. Choose the partition of the line segments
into Nst = 10 parts and define intermediate values of
parameters as follows: Pi

GD→L = PGD+ i
Nst

(PL−PGD)

and Pi
L→R = PL+ i

Nst
(PR−PL),where i = 1, . . . , Nst.

Initial points for trajectories of system (15) that define
hidden chaotic sets are presented in Table 1. At each
iteration of the procedure, a chaotic set defined by the
trajectory in the phase space of system (15) is computed
using MATLAB’s procedure ode45 with relative and
absolute tolerances equal to 10−8. The last computed
point of the trajectory at the previous step is used as the
initial point for computation at the next step.

Thus, using numerical continuation procedure and
starting from the hidden attractor in the Glukhovsky–
Dolzhansky system (18), it is possible to organize a
transition and localize numerically the hidden transient
chaotic sets in bothLorenz (1) andRabinovich (21) sys-
tems. One can ensure that in all three cases the trajec-
tories (including separatrices), starting in small neigh-
borhoods of the unstable equilibrium S0 = (0, 0, 0),
are not attracted by the computed chaotic set, but tend
to the symmetric stable equilibria S±.

5 Exact and finite-time Lyapunov dimension &
Lyapunov exponents: global attractor, local
attractors, and transient chaotic sets

In this section, we will demonstrate the difficulties in
the reliable numerical computation of the finite-time
Lyapunov exponents (FTLE) and finite-time Lyapunov
dimension (FTLD)5, as well as distinguishing with
their help an attractor from a transition set.

Before proceeding to the description and discus-
sion of these numerical experiments, let us remark that
investigations of the numerical reliability of computer-
generated chaotic trajectories have been extensively

5 See corresponding definitions in “Appendix B.”
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Step 2 : r = 24, a = 0, σ = 10, b = 8/3,

Lorenz system,separatrices of S0 → S±;

Step 1 : r = 346, a = 0.01, σ = 4, b = 1,

Glukhovsky-Dolzhansky system,

separatrices of S0 → S±;

Step 3 : r = 24, a = 1/r − 0.01, σ = −ar,

b = bcr + 0.14,Rabinovich system,

separatrices of S0 → S±;

Fig. 8 Localization of hidden chaotic sets in Glukhovsky–
Dolzhansky, Lorenz and Rabinovich systems defined by equa-
tion (1) using numerical continuation method. Here, trajectories
xi (t) = (xi (t), yi (t), zi (t) (blue) are defined on the time interval
[0, T ], (GD → L : T = 104; L → R : T = 1.1×104) and initial

point on the (i + 1)th iteration (yellow) is defined as xi+1
0 := xiT

(light green arrows), where xiT = xi (T ) is the final point (yel-
low). Outgoing separatrices of unstable zero equilibrium tend to
two symmetric stable equilibria. (Color figure online)

performed in the context of the shadowing theory and
hyperbolicity breakdown (see, e.g., [29,33,81,84,92]).
A computer-generated chaotic trajectory shadows a
“true” chaotic trajectory if the former stays uniformly
close to the latter and vice versa. Under this assump-
tion, the shadowing of numerical trajectories for a rea-
sonable time span would be a minimum requirement
for a meaningful computer simulation of a dynamical
system. The obstructions to shadowability vary from
mild to severe. For example, hyperbolic chaotic sys-
tems have been proved by Anosov to be shadowable
for an infinite period of time [3]. However, if non-
hyperbolic behavior is caused by manifold tangencies,
it has been proved that computer-generated chaotic tra-
jectories shadow “true” trajectories for a finite period
of time [91]. Finally, strongly non-hyperbolic systems,
like those with unstable dimension variability [38], can
be shown to be practically nonshadowable since the
shadowing time may be very small. In particular, the

existence of fluctuations of the FTLE is a numerical
fingerprint of shadowability breakdown via unstable
dimension variability (see, e.g., [90,105–107]).

Since the classical Lorenz system (1) has a property
of singular hyperbolicity (or quasi-hyperbolicity), only
finite shadowability is possible for it (see, e.g., [4,16]).
Taking into account these problems, the experiments
are carried out on small time intervals and for trajecto-
ries on a grid of initial points in the attractor’s basin of
attraction.

5.1 The problem of choosing a time interval: attractor
vs transient set

Consider system (1) with parameters r = 24, σ =
10, b = 8/3 and integrate numerically the trajec-
tory with initial data u0 = (20, 20, 20) using MAT-
LAB’s standard procedure ode45with default param-
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(b) Trajectory u(t, uinit) for t ∈ [0, 106].

Fig. 9 The trajectory forms a chaotic set, which looks like an “attractor” (navy blue) and then tends to S+ (cyan). (Color figure online)

eters (relative tolerance 10−3, absolute tolerance 10−6).
We numerically approximate the finite-time Lyapunov
exponents and finite-time Lyapunov dimension, using
the algorithm from [44]. Integration with t > T1 ≈
18082 leads to the collapse of the “attractor,” i.e., the
“attractor” turns out to be a transient chaotic set. How-
ever, on the time interval t ∈ [0, T3 ≈ 6.9 × 105]
we have LE1(t, u0) > 0 and, thus, may conclude
that the behavior is chaotic, and for the time interval
t ∈ [0, T2 ≈ 3.443 × 105] we have dimL(t, u0) > 2.
Thus, the estimation of duration of the transient behav-
ior by analyzing the sign of the largest Lyapunov expo-
nent could lead to the wrong conclusion.

This numerical phenomenon can be explained due
to the fact that the finite-time Lyapunov exponents and
Lyapunov dimension are averaged during computation
over the considered time interval. Since the “lifetime”
of a transient chaotic process can be extremely long
and in view of the limitations of reliable integration
of chaotic ODEs (which we will discuss in the next
subsection), even longtime computation of the finite-
time Lyapunov exponents and the finite-time Lyapunov
dimension does not guarantee a relevant approximation
of the Lyapunov exponents and the Lyapunov dimen-
sion.

Remark that, if we choose the same initial point
u0 = (20, 20, 20), as in the previous experiment, but
use MATLAB’s procedure ode45 with relative toler-
ance 10−6, the chaotic transient process will last over

a time interval of more than [0, 106], and the transient
chaotic set will not collapse. If now we choose a new
initial point u0 = (10, 10, 10), it would be possible to
observe a chaotic transient process over the time inter-
val [0, T1 ≈ 6.85 × 105], while LE1(t, u0) > 0 and
dimL(t, u0) > 2 would be satisfied on the time inter-
vals t ∈ [0, T2,3], where T2,3 � 106.

5.2 The problem of choosing the time interval and
initial data: attractor and embedded unstable
periodic orbits

Consider the challenges of the finite-time Lyapunov
dimension computation along the trajectories over large
time intervals (see, e.g., [48–51]), which is connected
with the existence of unstable periodic orbits (UPOs)
embedded in chaotic attractor. The “skeleton” of a
chaotic attractor comprises embedded unstable peri-
odic orbits (UPOs) (see, e.g., [1,6,17]), and one of
the effective methods among others for the computa-
tion of UPOs is the delayed feedback control (DFC)
approach, suggested by K. Pyragas [85] (see also dis-
cussions in [15,45,55]). This approach allows Pyragas
and his progeny to stabilize and study UPOs in various
chaotic dynamical systems. Nevertheless, some gen-
eral analytical results have been obtained [35], showing
that DFC has a certain limitation, called the odd num-
ber limitation (ONL), which is connected with an odd
number of real Floquet multipliers larger than unity.
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Fig. 10 Numerical computation of the largest FTLE LE1(t, u0) and FTLD dimL(t, u0) for the time interval [0, T1 ≈ 18082]
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Fig. 11 Numerical computation of the largest FTLE LE1(t, u0) and FTLD dimL(t, u0) for the time interval [0, 106]

In order to overcome ONL, later Pyragas suggested a
modification of the classicalDFC technique,whichwas
called the unstable delayed feedback control (UDFC)
[86].

Rewrite system (1) in a general form

u̇ = f (u). (23)

Let uupo(t, uupo10 ) be its UPO with period τ > 0,
uupo(t − τ, uupo10 ) = uupo(t, uupo10 ), and initial condi-
tion uupo10 = uupo(0, uupo10 ). To compute the UPO and
overcome ONL, we add the UDFC in the following
form:

u̇(t) = f (u(t)) + K B
[
FN (t) + w(t)

]
,

ẇ(t) = λ0cw(t) + (λ0c − λ∞
c )FN (t),

FN (t) = C∗u(t) − (1−R)
∑N

k=1 R
k−1C∗u(t − kT ), (24)

where 0 ≤ R < 1 is an extended DFC parameter,
N = 1, 2, . . . ,∞ defines the number of previous states
involved in delayed feedback function FN (t), λ0c > 0,
and λ∞

c < 0 are additional unstable degree of freedom
parameters, B,C are vectors and K > 0 is a feedback
gain. For initial condition uupo10 and T = τ , we have

FN (t) ≡ 0, w(t) ≡ 0,
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Fig. 12 Period-1 UPO uupo1 (t) (red, period τ1 = 1.5586) stabilized using UDFC method, and pseudo-trajectory ũ(t, uupo10 ) (blue,
t ∈ [0, 100]) in system (1) with parameters r = 28, σ = 10, b = 8/3. (Color figure online)

and, thus, the solution of system (24) coincides with
the periodic solution of initial system (23).

For the Lorenz system (1) with parameters r = 28,
σ = 10, b = 8/3 using (24) with B∗ = (0, 1, 0),
C∗ = (0, 1, 0), R = 0.7, N = 100, K = 3.5,
λ0c = 0.1, λ∞

c = −2, one can stabilize a period-1 UPO
uupo1(t, u0) with period τ1 = 1.5586... from the ini-
tial point u0 = (1, 1, 1), w0 = 0 (Fig. 12). Results of
this experiment could be repeated using various other
numerical approaches (see, e.g., [13,82,110]) and are
in agreement with similar results on the existence of
UPOs embedded in the Lorenz attractor [8,25]. How-
ever, the Pyragas procedure, in general, is more con-
venient for UPOs numerical visualization and finds
widespread application in a rich variety of chaos con-
trol problems (see, e.g., [12,23,94]).

For the initial point uupo10 ≈ (−6.2262,−11.0027,
13.0515) on the UPO uupo1(t) = u(t, uupo10 ), we
numerically compute the trajectory of system (24)
without the stabilization (i.e., with K = 0) on the
time interval [0, T = 100] (Fig. 12b). We denote it by
ũ(t, uupo10 ) to distinguish this pseudo-trajectory from
the periodic orbit u(t, uupo10 ). One can see that on the
initial small time interval [0, T1 ≈ 11], even without
the control, the obtained trajectory ũ(t, uupo10 ) traces
approximately the “true” periodic orbit u(t, uupo10 ). But
for t > T1, without a control, the trajectory ũ(t, uupo10 )

diverges from uupo1(t, uupo10 ) and visualizes a local
chaotic attractor A.

We use the adaptive algorithm for the computation
of the finite-time Lyapunov dimension and exponents
for trajectories on the local attractor A [44]. In order
to distinguish the corresponding values for the stabi-
lized UPO u(t, uupo10 ) and for the pseudo-trajectory
ũ(t, uupo10 ) computed without Pyragas stabilization in
our experiment, we use the following notations for
finite-time Lyapunov dimensions: dimL(u(t, ·), uupo10 )

and dimL(ũ(t, ·), uupo10 ), respectively.
The comparison of the obtained values of finite-

time Lyapunov dimensions computed along the sta-
bilized UPO and the trajectory without stabilization
gives us the following results. On the initial small part
of the time interval, one can observe the coincidence
of these values with a sufficiently high accuracy. For
the UPO and for the unstabilized trajectory, the finite-
time local Lyapunov dimensions dimL(u(t, ·), uupo10 )

and dimL(ũ(t, ·), uupo10 ) coincide up to the 4th deci-
mal place inclusive on the interval [0, t1m ≈ 7τ1]. After
t > t1m , the difference in values becomes significant
and the corresponding graphics diverge in such a way
that the part of the graph corresponding to the unsta-
bilized trajectory is lower than the part of the graph
corresponding to the UPO (see Figs. 13b, 14).

The Jacobi matrix at the saddle-foci equilibria S±
has simple eigenvalues, which give the following:
dimL S± = 2.0136. The UPO uupo1 with period
τ1 = 1.5586 has the following Floquet multipliers:
ρ1 = 4.7127, ρ2 = 1, ρ3 = −1.19 × 10−10 and
corresponding Lyapunov exponents: { 1

τ1
log ρi }3i=1.
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Fig. 13 Evolution of FTLDs dimL(u(t, ·), uupo10 ) (red) and
dimL(ũ(t, ·), uupo10 ) (blue) computed on the time interval t ∈
[0, 100] along the UPO uupo1 (t) = u(t, uupo10 ) (red) and the

trajectory ũ(t, uupo10 ) (blue) integrated without stabilization,
respectively. Both trajectories start from the point uupo10 =
(−6.2262,−11.0027, 13.0515). (Color figure online)

Fig. 14 Evolution of
FTLDs dimL(u(t, ·), uupo10 )

(red) and
dimL(ũ(t, ·), uupo10 ) (blue)
computed on the long time
interval t ∈ [0, 10000]
along the UPO
uupo1 (t) = u(t, uupo10 ) (red)
and the trajectory
ũ(t, uupo10 ) (blue) integrated
without stabilization,
respectively. Both
trajectories start from the
point uupo10 =
(−6.2262,−11.0027, 13.0515).
(Color figure online)
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Thus, for the local Lyapunov dimension of this UPO,
we obtain: dimL uupo1 = 2.0678 � 2.0679 =
dimL(u(100, ·), uupo10 ).

Also remark that system (1) has the analytical solu-
tion u(t) = (0, 0, z0 exp(−bt)) which tends to the
equilibrium S0 = (0, 0, 0) from any initial point
(0, 0, z0) ∈ R

3. In general, the existence of such solu-
tions in the phase space complicates the procedure of
visualizationof a chaotic attractor (pseudo-attractor) by
one pseudo-trajectory with arbitrary initial data com-
puted for a sufficiently large time interval (see, e.g.,
[79,97]). In particular, the numerical computation of
finite-time local Lyapunov exponents along this trajec-
tory during for any time interval does not lead to aver-

aging of these values across the attractor, but to tending
of these values to the finite-time local Lyapunov expo-
nents of S0.

5.3 Rigorous analytical computation for the global
attractor

Using an effective analytical technique, proposed by
Leonov [40,56], it is possible to obtain [65,70] the
exact formula of the Lyapunov dimension for the global
attractor Aglob of the Lorenz system (1):

dimL Aglob = 3 − 2(σ+b+1)

σ+1+
√

(σ−1)2+4σr
(25)

123



The Lorenz system: hidden boundary of practical stability and the Lyapunov dimension 727

for the case, when conditions (3) of the Theorem 1 are
not satisfied.

For the Lorenz system (1) with classical values of
parameters r = 28, σ = 10, b = 8/3, we have the
following relations:

dimL Aglob = dimL S0 = 3 − 2(σ+b+1)
σ+1+

√
(σ−1)2+4σr

=2.4013 >

> dimL A ≥ dimL uupo1 = 2.0678 > dimL(ũ(100, ·), uupo10 )

= 2.0621 > dimL S± = 2.0136.

Here, since the global Lorenz attractor contains a
period-1 UPO: Aglob ⊃ uupo1 , we have the follow-
ing lower-bound estimate for the Lyapunov dimension:
dimL Aglob ≥ 2.0678 = dimL uupo1 . Similar experi-
ment and results for the Rössler system [88] are pre-
sented in [48,50].

Concerning the time of integration, remark that
while the time series obtained from a physical exper-
iment are assumed to be reliable on the whole con-
sidered time interval, the time series produced by the
integration of mathematical dynamical model can be
reliable on a limited time interval only due to computa-
tional errors (caused by finite precision arithmetic and
numerical integration of ODE). Thus, in general, the
closeness of the real trajectory u(t, u0) and the corre-
sponding pseudo-trajectory ũ(t, u0) calculated numer-
ically can be guaranteed on a limited short time interval
only.

In our experiment, if we continue computation over
a long time interval [0, 10000] of FTLD along the sta-
bilized UPO and the pseudo-trajectory obtained with-
out Pyragas stabilization, as a result, completely dif-
ferent values will be obtained (Fig. 14). Evolution
of dimL(u(t, ·), uupo10 ) along the stabilized UPO will
tend to the analytical value dimL uupo1 = 2.0678,
computed via Floquet multipliers, while evolution of
dimL(ũ(t, ·), uupo10 ) along the pseudo-trajectory will
converge to the value 2.06226. These results are in

6 The following results on the dimension of the Lorenz attrac-
tor with parameters r = 28, σ = 10, b = 8/3 can be found
in the literature. In [28, p. 193] and [10, p. 3529], the fractal
(box counting, capacity) dimension is estimated as 2.06 ± 0.01.
For the correlation dimension, the following results are known:
2.05 ± 0.01 in [28, p. 193] and [103, p. 456]; 2.06 ± 0.03 in [78,
p. 47]; 2.049 ± 0.096 in [100, p. 1874]; 2.05 in [24, p. 80]. For
the Lyapunov dimension, the following values have been com-
puted: 2.063 in [77, p. 92] and [80, p. 1957]; 2.05 in [19, p. 267];
2.062 in [100, p. 1874], [97, p. 115] and [53, p. 53]; 2.06215 [98,
p. 033124-3] and [24, p. 83]. Also, let us mention estimates for
the global attractor: 2.401 ≤ dimL Aglob ≤ 2.409 [22, p. 170]
and dimL Aglob ≈ 2.401... in [19, p. 267].

good agreement with the rigorous analysis of the time
interval choices for reliable numerical computation of
trajectories for the Lorenz system. The time interval
for reliable computation with 16 significant digits and
error 10−4 is estimated as [0, 36], with error 10−8 is
estimated as [0, 26] (see [36,37]), and reliable compu-
tation for a longer time interval, e.g., [0, 10000] in [75],
is a challenging task that requires a significant increase
in the precision of the floating-point representation and
the use of supercomputers.

6 Conclusion

In thiswork, for the classical Lorenz system, the bound-
aries of practical global stability are estimated and the
difficulties of numerically studying the birth of self-
excited and hidden attractors, caused by the loss of
global stability, are discussed. Difficulties in localiza-
tion and numerical analysis of hidden transient chaotic
sets in the Lorenz system are emphasized in the exper-
iments on computation of the largest finite-time Lya-
punov exponent and finite-time Lyapunov dimension
along trajectories with different initial data and large
time intervals. The classical self-excited Lorenz attrac-
tor is considered, and the applications of the Pyragas
time-delayed feedback control technique and Leonov
analytical method are demonstrated for the Lyapunov
dimension estimation, as well as for the verification of
the famous Eden’s conjecture on themaximumvalue of
this characteristic that could be achieved on the attrac-
tor. The problem of reliable numerical computation of
the finite-time Lyapunov dimension along the trajecto-
ries over large time intervals is discussed.
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Appendix A: Hidden attractors localization via
numerical continuation method

One of the effective methods for numerical localiza-
tion of hidden attractors in multidimensional dynam-
ical systems is based on the homotopy and numerical
continuation method (NCM). The idea is to construct a
sequence of similar systems such that for the first (start-
ing) system the initial point for numerical computa-
tion of oscillating solution (starting oscillation) can be
obtained analytically. Thus, it is often possible to con-
sider the starting systemwith self-excited starting oscil-
lation; then, the transformation of this starting oscilla-
tion in the phase space is tracked numerically while
passing from one system to another; the last system
corresponds to the system in which a hidden attractor
is searched.

For studying the scenario of transition to chaos, we
consider system (23) with f (u) = f (u, λ), where
λ ∈ � ⊂ R

d is a vector of parameters, whose variation
in the parameter space � determines the scenario. Let
λend ∈ � define a point corresponding to the system,
where a hidden attractor is searched. Choose a point
λbegin ∈ � such that we can analytically or numeri-
cally localize a certain nontrivial (oscillating) attractor
A1 in system (23) with λ = λbegin (e.g., one can con-
sider an initial self-excited attractor defined by a tra-
jectory u1(t) numerically integrated on a sufficiently
large time interval t ∈ [0, T ] with initial point u1(0)
in the vicinity of an unstable equilibrium). Consider
a path7 in the parameter space � , i.e., a continuous
function γ : [0, 1] → �, for which γ (0) = λbegin
and γ (1) = λend, and a sequence of points {λ j }kj=1

on the path, where λ1 = λbegin, λk = λend, such
that the distance between λ j and λ j+1 is sufficiently
small. On each next step of the procedure, the initial
point for a trajectory to be integrated is chosen as the
last point of the trajectory integrated on the previous
step: u j+1(0) = u j (T ). Following this procedure and
sequentially increasing j , two alternatives are possible:
the point ofA j are in the basin of attraction of attractor
A j+1, or while passing from system (23) with λ = λ j

7 In the simplest case, when d = 1, the path is a line segment.

to system (23) with λ = λ j+1, a loss of stability bifur-
cation is observed and attractor A j vanishes. If, while
changing λ from λbegin to λend, there is no loss of sta-
bility bifurcation of the considered attractors, then a
hidden attractor for λk = λend (at the end of the proce-
dure) is localized.

Appendix B: Finite-time and limit values of Lya-
punov exponents and Lyapunov dimension

Following [40,44], let us outline the concept of the
finite-time Lyapunov dimension, which is convenient
for carrying out numerical experimentswith finite time.

For a fixed t ≥ 0, let us consider the map u(t, ·) :
R
3 → R

3 defined by the shift operator along the solu-
tions of system (1): u(t, u0), u0 ∈ R

3. Since system (1)
possesses an absorbing set, the existence and unique-
ness of solutions of system (1) for t ∈ [0,+∞) take
place and, therefore, the system generates a dynamical
system

({u(t, ·)}t≥0, (R
3, | · |)).

Consider linearization of system (1) along the solu-
tion u(t, u0) and its 3 × 3 fundamental matrix of
solutions �(t, u0): �̇(t, u0) = Df (u(t, u0))�(t, u0),
where �(0, u0) = I is a unit 3×3 matrix. Denote
by σi (t, u0) = σi (�(t, u0)), i = 1, 2, 3, the singular
values of �(t, u0) (i.e., the square roots of the eigen-
values of the symmetric matrix�(t, u0)∗�(t, u0)with
respect to their algebraic multiplicity)8, ordered so that
σ1(t, u0) ≥ σ2(t, u0) ≥ σ3(t, u0) > 0 for any u0 ∈ R

3

and t > 0.
Consider a set of finite-time Lyapunov exponents at

the point u0:

LEi (t, u0) = 1

t
ln σi (t, u0), t > 0, i = 1, 2, 3. (26)

Here, the set {LEi (t, u0)}3i=1 is ordered by decreasing
(i.e., LE1(t, u0) ≥ LE2(t, u0) ≥ LE3(t, u0) for all
t > 0). The finite-time local Lyapunov dimension [40,
44] can be defined via an analog of the Kaplan–Yorke
formula with respect to the set of ordered finite-time
Lyapunov exponents {LEi (t, u0)}3i=1:

dimL(t, u0) = j (t, u0) + LE1(t,u0)+···+LE j (,u0)(t,u0)
|LE j (t,u0)+1(t,u0)| ,

(27)

where j (t, u0) = max{m : ∑m
i=1 LEi (t, u0) ≥ 0}.

Then, the finite-time Lyapunov dimension of dynamical

8 Symbol ∗ denotes the transposition of matrix.
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system with respect to a set A is defined as:

dimL(t,A) = sup
u0∈A

dimL(t, u0). (28)

The Douady–Oesterlé theorem [20] implies that for
any fixed t > 0 the finite-time Lyapunov dimension
on a compact invariant set A, defined by (28), is an
upper estimate of the Hausdorff dimension: dimH A ≤
dimL(t,A). The best estimation is called the Lyapunov
dimension [40]

dimL A= inf
t>0

sup
u0∈A

dimL(t, u0)= lim inf
t→+∞ sup

u0∈A
dimL(t, u0).
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