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Abstract This paper aims at investigating empiri-
cally whether and to what extent the containment mea-
sures adopted in Italy had an impact in reducing the
diffusion of the COVID-19 disease across provinces.
For this purpose, we extend the multivariate time-
series model for infection counts proposed in Paul
and Held (Stat Med 30(10):118–1136, 2011) by aug-
menting the model specification with B-spline regres-
sors in order to account for complex nonlinear spatio-
temporal dynamics in the propagation of the disease.
The results of the model estimated on the time series of
the number of infections for the Italian provinces show
that the containment measures, despite being glob-
ally effective in reducing both the spread of contagion
and its self-sustaining dynamics, have had nonlinear
impacts across provinces. The impact has been rela-
tively stronger in the northern local areas, where the
disease occurred earlier and with a greater incidence.
This evidence may be explained by the shared popular
belief that the contagion was not a close-to-home prob-
lem but rather restricted to a few distant northern areas,
which, in turn, might have led individuals to adhere less
strictly to containment measures and lockdown rules.
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1 Introduction

At the time of writing, the COVID-19 pandemic rep-
resents a worldwide emergency. After the first pneu-
monia cases due to the SARS-CoV-2 virus were diag-
nosed at the end of December 2019 in the Chinese
city of Wuhan [25], the disease spread in many coun-
tries at various speeds and with different effects. As of
20 April 2020, the USA was the most affected country
in the world in terms of absolute number of contagions,
followed by some European countries, such as Spain,
Italy and France, which occupied the top three posi-
tions. Considering the different populations of these
areas, Italy maintains the World ominous world record
for the highest in case fatality rate (13.3%), defined as
the proportion of deaths from the disease compared to
the total number of people diagnosed with that disease
over a certain period of time. Although these numbers
are still uncertain due to under-reported infections and
will be liable to adjustment [16], since the first infec-
tion was detected on 20 February 2020 in the province
of Lodi (Lombardy region, northern Italy), the epi-
demic appeared to be very aggressive in this country.
Within a few days, the disease spread throughout all
Italian provinces, exhibiting nonlinear dynamics in all
the areas.
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Although all of the mechanisms behind the diffu-
sion of COVID-19 in Italy are not currently completely
clear and need to be further investigated by the scien-
tific community, it was immediately evident that some
measures to prevent the diffusion needed to be adopted.
Though at the beginning of the outbreak, only ten towns
in Lombardy and one in the Veneto region had been
quarantined (the so-called red area), on 8 March 2020,
a reinforced containment area (RCA), which had the
aim of avoiding movements of people entering and
leaving the territories, was established for the entire
territory of the Lombardy region and 14 other northern
provinces (five in Emilia-Romagna, five in Piedmont,
three in Veneto and one in the Marche region). The
removal of limits in the previous internal smaller red
area meant that the infection began to flow through-
out the RCAs, probably creating a proximity contagion
and an amplification effect, such as the one that occurs
in contaminated hospitals when a virus bounces back
and forth within a restricted area. In addition, since the
establishment of theRCAwas leaked in themassmedia
before its entry into force, people were moved to flee
en masse in an attempt to leave the region and return to
their home towns. This created a predictable and pre-
ventable second wave of contagions that went from the
north to the south of the peninsula because the northern
area represents the industrial, economic and financial
core of the country, and many people commute there to
work. Some regional governors immediately ordered
the quarantine of people who came from the RCA, but
few attempts were made in that phase to check that
this was actually done. As a result of these adverse
effects of containment measures applied sparsely over
the territory, on 11March 2020, the Italian government
issued a DPCM decree which made Italy a protected
area, extending the quarantine to the whole country.

In addition to all this, during the outbreak of disease
diffusion, ambivalentmessageswere shared in themass
media by Italian politicians and institutions to describe
the new influenza, ranging from a situation under total
control (a disease similar to seasonal flu) to war images
depicting the military being used to enforce the quar-
antine in the original outbreak epicentre. Discrepan-
cies were observed, especially at local level, due to
different actual applications of containment measures
by regions, provinces and municipalities, in addition to
heterogeneous protocols in hospitalisation and in swab-
bing suspected cases. These contrasting and divergent
communications were the origin of great confusion,

especially because a virus is an “unobservable” risk
[23], and the mechanisms of defence are based on the
observation of others’ behaviour [18]. These features
certainly contributed to the waste of precious time in
the containment of the epidemic, and it is not surprising
that people reacted chaotically to the various steps that
led to the country-wide lockdown of Italy, nor is it sur-
prising that the epidemic led to nonlinear contagious
rates in different geographical areas.

In light of the above, there is no doubt that in order
to study the outbreak of COVID-19, it is essential to
consider both the temporal and spatial components of
its diffusion [9]. Due to the strong local differences in
the effects of the disease and to the different moments
chosen to impose lockdowns throughout Italy, there is
now great interest in studying the effect of lockdown on
the diffusion of the disease. To this end, we extend the
multivariate time-seriesmodel for infection counts pro-
posed in Paul andHeld [19]. In particular, following the
approach suggested in Altan and Karasu [2] and Altan
et al. [3] of combining traditional time-series models
with modern statistical learning methods, we augment
its specification with B-spline regressors to account
for the complex nonlinear spatio-temporal dynamics
that may have characterised the spread of COVID-19
infections in Italy. This methodology allows to assess
whether there have been local differences in the effects
of restrictions.

The paper is structured as follows. In Sect. 2, the
adopted endemic–epidemic time-series mixed-effects
generalised linear model for areal disease counts is pre-
sented and accordingly extended and adapted to study
COVID-19. Section 3 presents the results of the model
estimated using the Italian data at the province level
for the period 24 February–20 April 2020. In Sect. 4,
the results are discussed. Finally, the last section offers
concluding remarks and indicates directions for future
developments in this field.

2 Methodological framework

2.1 Model specification

The number of SARS-CoV-2 infections detected in the
Italian provinces is a phenomenonwith various features
which, from a statistical point of view, should be taken
into account.
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The first is time dependence. Since the daily number
of recorded infections is the result of a contagionmech-
anism which, from a modelling point of view, is well
described through a branching process (see, for exam-
ple, [8,12]), time dependence necessarily arises. More-
over, the incubation period of COVID-19, which [15]
estimated to last between 2.2 days (2.5th percentile)
and 11.5 days (97.5th percentile), further contributes
to the temporal dependence in the time series of the
observed number of daily infections.

The second feature to be considered is the spa-
tial dependence which arises amongst neighbouring
provinces. This form of dependence originates from
the transmission of SARS-CoV-2 throughout the Ital-
ian provinces because of movements of people, mainly
for business reasons. The small geographical size of
most Italian provinces and the high population density
of several provinces in northern Italy leads to the high
mobility of Italians between the provinces where they
live and other neighbouring provinces, thus facilitating
the spread of the virus throughout the territory.

The third important feature, which is relevant from
a modelling point of view, is the marked heterogene-
ity amongst Italian provinces from geographical, eco-
nomic and administrative points of view. Differences in
terms of population density and in the structure of the
economy between the northern and southern regions,
as well as between urban and rural provinces, directly
affect the mobility of the population across provinces
and thus determine the intensity of the spatial depen-
dence already mentioned. On the other hand, the par-
tial autonomy of regional governments in managing
the health emergency, as well as the regionally based
organisation of the public health system, contributed
to an inhomogeneous capability and differing politi-
cal resolutions in dealing promptly with the epidemic.
From a statistical point of view, these issues, if rele-
vant, would entail that both the degree of time depen-
dence in the number of daily infections and the expo-
sure to the risk of an epidemic (which would result in
an increase/decrease in the number of daily infections)
vary from province to province.

These features motivated the adoption of the model
proposed in Held et al. [13] and Paul and Held [19],
namely a spatio-temporal generalised linear mixed
effect model for count data, which has been success-
fully applied to predict the spread of infectious diseases
in several studies (see, for example, [1,4]). In the fol-
lowing, the structure of the model and the way it has

been implemented to describe the number of COVID-
19 infections in the Italian provinces are illustrated and
discussed.

Let t = 0, 1, . . . , 56 be the time index of days
between 24 February and 20 April 2020 (the time
frame considered in this paper—see Sect. 3.1) and
r = 1, 2, . . . , 107 be the index of Italian provinces. The
number of infections observed on day t in province r
is denoted by Yr,t and modelled as a negative binomial
distribution conditionally to past observed values, that
is:

Yr,t |Yr,t−1,Yr,t−2, . . . ∼ NegBin(μr,t , ψ),

μr,t = E(Yr,t |Yr,t−1,Yr,t−2, . . .) being the conditional
mean of Yr,t , and ψ ≥ 0 being the overdispersion
parameter which makes the conditional variance of Yr,t
equal to μr,t (1+ ψ μr,t ). Note that if ψ = 0, the con-
ditional distribution of Yr,t degenerates to the Poisson
distribution.

Themain equation of the conditional expected num-
ber of contagions μr,t is the following:

μr,t = νr,t + λr,t Yr,t−2 + φr,t

∑

h �=r

wr,h Yh,t−1. (1)

The three terms on the right-hand side of Eq. (1)
correspond to the three components of the model:
the endemic, epidemic-within and epidemic-between.
From a terminological point of view, terms epidemic
and endemic, when referring to the components of the
model, have been inherited from Paul and Held [19],
although terms within and between introduced in Giu-
liani et al. [9] are adopted in this paper in order to dis-
tinguish between the temporal and spatial terms which
Paul and Held [19] jointly refer to as the epidemic com-
ponent. In this regard, it is worth pointing out that the
term endemic originates from the role that the com-
ponent plays in the model, and it does not imply any
epidemiological qualification of COVID-19 in the pop-
ulation of the Italian provinces.

The endemic component (νr,t ) ismodelled bymeans
of a log-linear equation consisting of three elements.
Firstly, there is a province-specific random effect on the
intercept which accounts for heterogeneous exposure
of provinces to the initial risk of contagion. Secondly,
resident population is included as a regressor, so that
differences in size amongst provinces are accounted
for. Thirdly, a basis of five B-splines of the fourth
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Fig. 1 The basis of five B-splines of the fourth degree over the
interval [0, 56], which corresponds to the time frame considered
in the paper (24 February–20 April 2020)

degree is included by means of four regressors in
order to model the temporal trend shared by all Ital-
ian provinces in the number of contagions.

The basis of B-splines (depicted in Fig. 1) is a
basis of functions which enables the evolution of the
endemic component (as well as the other parame-
ters of the model, as illustrated below) to be mod-
elled semi-parametrically. This permits the possible
effects of quarantine measures to be caught without
defining any dummy variables which would inevitably
affect the estimates and could bias the interpretation of
the results. For an illustration and a discussion of the
basis of B-splines functions in functional data analysis,
see [22].

The final equation of the endemic component νr,t is
thus:

ln(νr,t ) = α(ν)
r + γ (ν) ln(rpopr ) +

4∑

j=1

β
(ν)
j B(ν)

j,t , (2)

where α
(ν)
r ∼ N (α(ν), σ 2

ν ) is the random intercept;
rpopr is the relative resident population of province r ,
computed as the ratio between the resident population
of province r and the average resident population of
the Italian provinces, and finally, B(ν)

j,t is the value of
the j th B-spline of the basis computed at time t .

Three clarifications are needed. Firstly, Eq. (2)
includes the relative resident population of province r

solely for numerical reasons: themodel changes only in
the average value of the intercept α(ν) if the population
of province r is included instead. Secondly, only four
out of five B-splines are included in Eq. (2) because
of the presence of the intercept α(ν), which completes
the basis: if the full basis of B-splines is included,
perfect collinearity amongst regressors would emerge.
Finally, the functional basis of B-splines is defined
over the range of days between 24 February 2020 and
20 April 2020.

The epidemic-within component—the second term
on the right-hand side of Eq. (1)—models the time
dependence of the conditional mean μr,t through the
temporal lag Yr,t−2 and the autoregressive parameter
λr,t . The reason time dependence is modelled through
the second order instead of the first-order time lag
is twofold. Firstly, temporal autocorrelation of resid-
uals is effectively removed if the second-order lag is
included instead of the first-order lag (see Fig. 2). Sec-
ondly, the spatial dependence is modelled through the
number of contagions of neighbouring provinces at
time t − 1 (wr,hYh,t−1); thus, the use of the second-
order time lag (instead of the first order) contributes
to the reduction in correlation amongst the epidemic-
between and epidemic-within components in Eq. (1).

The temporal autoregressive parameter λr,t deter-
mines the contribution of the past number of contagions
(Yr,t−2) to the current expected number of contagions
(μr,t ) within the same region r . The parameter λr,t is
constrained to be positive and primarily determines the
speed of contagions in time. It is thusmodelled through
a log-linear equation and has the same structure as νr,t
in Eq. (2):

ln(λr,t ) = α(λ)
r +γ (λ) ln(rpopr )+

4∑

j=1

β
(λ)
j B(λ)

j,t−tr
, (3)

where α
(λ)
r ∼ N (α(λ), σ 2

λ ) is the random intercept;
rpopr is the relative resident population of province r ,
computed as the ratio between the resident population
of province r and the average resident population of
the Italian provinces, and finally, B(λ)

j,t−tr
is the value of

the j th B-spline of the basis computed at time t − tr , tr
being the day when the first contagion in region r was
detected.

The only remarkable difference between Eqs. (2)
and (3) is in the basis of B-splines. In particular, in
the case of Eq. (3), the B-splines are computed with
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Fig. 2 Correlograms of
deviance residuals of the
fitted model. 95%
confidence bands, computed
according to [6], are robust
with respect to
heteroskedasticity

Vibo Valentia Vicenza Viterbo

Treviso Trieste Udine Varese Venezia Verbano−Cusio−Ossola Vercelli Verona

Sondrio Sud Sardegna Taranto Teramo Terni Torino Trapani Trento

Rimini Roma Rovigo Salerno Sassari Savona Siena Siracusa

Pordenone Potenza Prato Ragusa Ravenna Reggio Calabria Reggio Emilia Rieti

Parma Pavia Perugia Pesaro Pescara Piacenza Pisa Pistoia

Modena Monza Brianza Napoli Novara Nuoro Oristano Padova Palermo

Lodi Lucca Macerata Mantova Massa Carrara Matera Messina Milano

Imperia Isernia L'Aquila La Spezia Latina Lecce Lecco Livorno

Ferrara Firenze Foggia Forlì−Cesena Frosinone Genova Gorizia Grosseto

Chieti Como Cosenza Cremona Crotone Cuneo Enna Fermo

Brescia Brindisi Cagliari Caltanissetta Campobasso Caserta Catania Catanzaro

Bari Barletta−Andria−Trani Belluno Benevento Bergamo Biella Bologna Bolzano

Agrigento Alessandria Ancona Aosta Arezzo Ascoli Piceno Asti Avellino

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

−0.6

−0.3

0.0

0.3

0.6

−0.6

−0.3

0.0

0.3

0.6

−0.6

−0.3

0.0

0.3

0.6

−0.6

−0.3

0.0

0.3

0.6

−0.6

−0.3

0.0

0.3

0.6

−0.6

−0.3

0.0

0.3

0.6

−0.6

−0.3

0.0

0.3

0.6

−0.6

−0.3

0.0

0.3

0.6

−0.6

−0.3

0.0

0.3

0.6

−0.6

−0.3

0.0

0.3

0.6

−0.6

−0.3

0.0

0.3

0.6

−0.6

−0.3

0.0

0.3

0.6

−0.6

−0.3

0.0

0.3

0.6

−0.6

−0.3

0.0

0.3

0.6

123



1838 M. M. Dickson et al.

respect to time difference from the first contagion in
region r , that is t − tr . This entails that the basis of
B-splines is defined over the interval [−maxr tr ≤
t ≤ 56−minr tr ], and that the evolution of the tempo-
ral autoregressive parameter λr,t is homogeneous with
respect to the occurrence of COVID-19 in the Italian
provinces, which is, as it will be shown in the next
section (Fig. 4a), fairly heterogeneous.

The epidemic-between component models the dyn-
amics of contagions between neighbouring provinces
by including the average number of infections Yh,t−1

recorded the day before (t − 1) in provinces h, which
neighbour province r . In particular, coefficients wr,h

in the summation
∑

h �=r wr,h Yh,t−1 are positive if
provinces h and r share a border, whereaswr,h are zero
otherwise. The coefficient φr,t determines the magni-
tude of the effect of inter-province spread of contagion
and changes both in time and amongst provinces.

The spatial autoregressive parameter φr,t is mod-
elled following the same approach adopted for λr,t , by
means of the following log-linear equation:

ln(φr,t ) = α(φ)
r + γ (φ) ln(rpopr )

+
4∑

j=1

β
(φ)
j 1(t ≥ tr ) B

(φ)
j,t−tr

, (4)

where α
(φ)
r ∼ N (α(φ), σ 2

φ ) is the random intercept;
rpopr is the relative resident population of province r ;
1(·) is the indicator function; and B(φ)

j,t−tr
is the value

of the j th B-spline of the basis computed at time t − tr .
Also, in the case of Eq. (4), the basis of B-splines

has been adapted. In particular, the basis has been
defined over the interval of days after the first con-
tagion detected in each province (that is, [0 ≤ t ≤
56−minr tr ]), whereas the regressors used for includ-
ing the B-spline functions equal zero for days before
the first contagion. This adaptation enables us both to
model the post-infection dynamics of parameters (as in
the case of λr,t ) and to reduce the numerical instability
of the estimators.

It is worth pointing out that the adaptation of the
domains of the basis of the B-splines in Eqs. (3) and (4)
is only required because COVID-19 is not endemic to
the Italian population; thismade it necessary to account
for the asynchronous occurrence of the disease amidst
Italian provinces.

The estimation of the model has been carried out
through the package surveillance [17] implemented
in R [21].

2.2 Model assessment

The inclusion of random intercepts in the model equa-
tions makes the canonical likelihood-based approaches
to significance testing andmodel goodness-of-fit assess-
ment unfeasible. To deal with this problem, Paul and
Held [19] suggested evaluating the performance of
the model by assessing its predictive capability with
respect to that of alternative competing models using
adequate accuracy measures [5]. In this framework, the
predictive capability is evaluated through a comparison
between the observed values of the time series and the
model-predicted ones obtained by sequentially refitting
themodel up to each day of the time series and comput-
ing the one-day-ahead predictions for the correspond-
ingnext day [19].According toCzado et al. [5], a proper
comparison between observations and predictions can
be made using specific scoring rules for negative bino-
mial predictions that account for uncertainty by con-
sidering the predictive distribution instead of the point
predictions only. Czado et al. [5] suggest, in particular,
using the logarithmic score (logs), the ranked prob-
ability score (rps), the Dawid–Sebastiani score (dss)
and the squared error score (ses). Each has different
properties and advantages; therefore, it is advisable to
compute all of them in order to evaluate the predictive
capability, and hence the goodness of fit, of an esti-
mated model in a comprehensive way [19].

The scoring rules herein considered measure, in dif-
ferent ways, the deviation between the fitted model’s
predictive distribution, say P , and the later observed
actual value, say y. The logarithmic score is given
by [11]

logs(P, y) = − log(P(Y = y))

This is a proper score which has the characteristic of
being “local” since it evaluates the fitted model’s pre-
dictive distribution only for the observed value y [5].
Due to this, however, it is strongly affected by extreme
values as it tends to assign very low scores to counts
with low probabilities [19]. A more robust measure in
this perspective is the ranked probability score ([5,7]),

rps(P, y) =
∞∑

k=0

(P(Y ≤ k) − 1(y ≤ k))2

which is less sensitive to unusual values as it assigns a
relatively higher importance to events with extremely
high predicted or observed values [19]. Finally, the
more “traditional”Dawid–Sebastiani score and squared
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Fig. 3 Time series of daily COVID-19 infections in Italy from
24 February 2020 to 20 April 2020, according to data released
by the Italian Department of Civil Protection in natural (left)

and logarithmic (right) scales. Note the exponential trend of the
time series until about 20March 2020, and the subsequent period
when a decreasing trend emerged

error score, which depend on the fitted model’s predic-
tive distribution only with respect to its moments, are
also proper, though not strictly proper, but providemea-
sures that can be interpreted more straightforwardly
[10]. They are given, respectively, by

dss(P, y) =
(
y − μP

σP

)2

+ 2 log σP

and

ses(P, y) = (y − μP )2,

whereμP and σP are the first twomoments of the fitted
model’s predictive distribution P [10].

3 Results

3.1 Data

The data on COVID-19 infections used to estimate the
model are made freely available by the Civil Protec-
tion Department of the Italian Government through the
official GitHub repositoryCOVID-19 [20]. The repos-
itory is updated daily, and possible errors in past col-
lected data are constantly revised. The data refer to the
cumulative number of contagions in each of the 107

Italian provinces from 24 February 2020 to 20 April
2020, in which a total of 107 ·57 = 6,099 observations
were available. In Fig. 3, the overall number of daily
contagions in the country is reported. It is noteworthy
that, since the beginning of the epidemic, the number of
contagions follows an exponential trend, which starts
to decrease around 20 March 2020. Besides data on
COVID-19 infections, demographic information about
the size of the population of the Italian provinces has
also been included in the paper. Those data are freely
available on the official website of the Italian Institute
of Statistics [14]. Figure 4 presents contagion maps for
the 107 Italian provinces in terms of number of days
to the first contagion and cumulative incidence, respec-
tively.

3.2 Model estimates

Table 1 shows the results for the model described in
Sect. 2. The first group of parameters in Table 1 refers
to the endemic component νr,t . Although the param-
eter estimators are not normally distributed, the large
ratios between point estimates and standard errors sug-
gest that all coefficients of the endemic component are
highly statistically significant.
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Fig. 4 Maps of Italian provinces colour-coded according to the number of days after 24 February, when the first COVID-19 contagion
was detected (left), and the cumulative incidence of COVID-19 between 24 February 2020 and 20 April 2020 (right)

Table 1 Point estimates and standard errors of parameters of
Model (1) based on observations between 24 February 2020 and
20 April 2020

Parameter Estimate SE

α(ν) 2.707 0.151

γ (ν) 1.121 0.161

β
(ν)
1 − 7.276 0.302

β
(ν)
2 − 1.665 0.206

β
(ν)
3 1.130 0.172

β
(ν)
4 0.429 0.170

α(λ) − 3.732 5.711

γ (λ) 0.035 0.236

β
(λ)
1 9.130 18.111

β
(λ)
2 0.462 9.157

β
(λ)
3 5.864 4.288

β
(λ)
4 − 4.173 10.815

α(φ) − 73.125 51.805

γ (φ) 0.596 0.219

β
(φ)
1 72.228 51.779

β
(φ)
2 69.835 51.949

β
(φ)
3 75.259 51.364

β
(φ)
4 65.374 52.613

ψ 0.575 0.015

The coefficient γ (ν) on province population seems
not to be statistically different from 1, suggesting that
the contribution of the endemic component of the
model is proportional to the population size. On the
other hand, intercept α(ν) and the coefficients of the
B-spline regressors (β(ν)

1 , β(ν)
2 , β(ν)

3 , β(ν)
4 ) are each sta-

tistically significant (the Z-scores are larger than 6.5
except for the Z-score of β

(ν)
4 which equals about 2.5),

and the resulting shape of the endemic component is
represented in Fig. 5.

As discussed in Sect. 2, the endemic component
consists of province-specific effects (the random effect
on intercept and the population size) and a common
(nationwide) trend. It is worth noting that the inver-
sion of the nationwide trend in Fig. 5 occurs around
1 April, about ten days after the inversion of the overall
number of contagions (see Fig. 3). Such a discrepancy
should be attributed to the contribution of the dynamics
of both the epidemic-within (temporal autoregressive)
and epidemic-between (spatial autoregressive) compo-
nents of themodel. This evidence suggests that the local
dynamics should not be neglected when studying the
diffusion of COVID-19 in Italy.

The second group of coefficients in Table 1 refers
to the epidemic-within component, which assesses the
strength of intra-province contagion. The evolution in
time of this component is represented in Fig. 6, which
shows that there is a certain heterogeneity in the value
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Fig. 5 Time evolution of the endemic component νr,t of Italian
provinces (left) and national average with 95% confidence band
(right). Vertical dotted lines mark dates when: (i) the Italian Gov-
ernment issued the RCA; (ii) the Italian Government established

the national quarantine. Vertical shaded band highlights the 95%
confidence interval of the incubation period of COVID-19 as
estimated in [15] for contagions that occurred the day that the
DPCM of 11 March 2020 came into force

of the temporal autoregressive coefficient (λr,t ) at the
beginning of the outbreak. The large values of λr,t dur-
ing the first two weeks of the disease diffusion are
consistent with the extraordinary speed which charac-
terised the growth in the number of contagions since the
very first days when the COVID-19 appeared in Italy.
At the end of the first week of March, the value of λr,t
was still large for several provinces (see the graph on
the left in Fig. 6), whereas a substantial reduction both
in the average value and in the proportion of provinces
where λr,t was close to or larger than 1 is recorded after
15 March 2020.

The timing of such a change in regime is consistent
both with the inversion in the number of overall num-
ber of contagions shown in Fig. 3 and with the effects
of the government decree issued on 11 March 2020,
which extended the quarantine to the whole country.
This fact can be checked by looking at the graph on
the right in Fig. 6, where a vertical shaded band high-
lights the 95% confidence interval of the incubation
period of SARS-CoV-2 infections that occurred on
11March 2020, when the government decree came into
force. (The duration of the incubation period has been
computed according to estimates obtained from [15].)
The first effects of the containment measures of the

government would be expected to become detectable
during that period as long as theywere effectively oper-
ational. It seems additionally banning the movement of
people across towns in the same province had positive
effects on the local containment of contagions.

The third group of coefficients in Table 1 refers to
the epidemic-between component, which accounts for
the contagions amongst neighbouring provinces. Its
coefficient φr,t is modelled in Eq. (4), and its evolu-
tion in time is represented in Fig. 7. As discussed in
Sect. 2, coefficient φr,t ≥ 0 allows us to model the
spread of contagions amongst neighbouring regions;
thus, the larger the value of φr,t , the larger the contri-
bution of contagions from neighbouring provinces to
province r . The evolution of the average of φr,t consists
of two phases. The first period begins when COVID-19
appeared in Italy and concludes around 20March 2020.
During this phase, the average spatial autoregressive
parameter grows as COVID-19 spreads amongst Ital-
ian provinces at increasing speed and affects the entire
territory of Italy (see Fig. 4a). The second phase begins
around 20 March 2020 and continues to the end of the
period (20 April 2020). During this phase, there are a
stabilisation and a rapid decrease in the value of most
coefficients φr,t (left graph in Fig. 7) and in their aver-
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Fig. 6 Time evolution of temporal autoregressive parameters
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with 95% confidence band (right). Vertical dotted lines mark
dates when: (i) the Italian Government issued the RCA; (ii) the
Italian Government established the national quarantine. Vertical
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Fig. 7 Time evolution of spatial autoregressive parameters (φr,t )
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the Italian Government issued the RCA; (ii) the Italian Govern-

ment established the national quarantine. Vertical shaded band
highlights the 95% confidence interval of the incubation period
of COVID-19 as estimated in [15] for contagions that occurred
the day that the DPCM of 11 March 2020 came into force
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Table 2 Mean predictive assessment scoring rules based on the
last six one-day-ahead predictions for three alternative model
specifications

logs rps dss ses

M1 3.590041 9.750904 6.189101 641.9364

M2 3.605362 10.055681 6.243500 687.5992

M3 3.609414 9.938079 6.207128 697.0025

Lower values indicate better predictions. M1 is the most general
model as it includes B-spline regressors in all three components.
M2 does not contain B-spline regressors in the within-epidemic
component, whileM3 excludes them from the between-epidemic
part

age value (right graph in Fig. 7), until they basically
reach zero around 15 April 2020. This pattern is con-
sistent with the effects which would be expected from
the containment measures of the Italian government,
which extended the quarantine to all Italian provinces
on 11 March 2020 and stopped, with the government
decree DPCM of 22 March 2020, all non-essential
businesses and banned any movement inside the coun-
try other than for “non-deferrable and proven busi-
ness or health reasons or other urgent matters” since
25 March 2020 (the so-called lockdown).

Finally, it is worth noting that the estimate of the
overdispersion parameter ψ in Table 1 justifies the
modelling approachbasedon the negative binomial dis-
tribution instead of the Poisson distribution.

3.3 Goodness-of-fit assessment

As discussed in Sect. 2, to assess the significance of
the estimated model parameters and to evaluate the
model goodness of fit, we cannot rely on the stan-
dard approaches, which are unfeasible in these cir-
cumstances, and we have to resort to focusing on the
predictive quality of the estimated model. In partic-
ular, following Paul and Held [19], we can conclude
that a model has a relatively good fit, and hence,
its parameters are globally significant, by whether
it leads to better predictions than those provided by
other competing models. In this respect, Table 2 com-
pares the prediction ability of our model (labelled
M1), which includes B-spline regressors in both the
epidemic-within and epidemic-between coefficients,
against those of two restricted specifications, namely
M2, which excludes the B-spline regressors from the

within-epidemic component, and M3, which excludes
them from the between-epidemic coefficient. The pre-
dictive ability of the three models is assessed by means
of proper scoring rules (see Sect. 2.2). Specifically,
Table 2 reports the mean scores based on one-day-
ahead predictions for the last six days and shows that
model M1 has the best predictive performance and
hence the relatively highest goodness of fit. Moreover,
the results for the ses score indicate that the M1 model
greatly outperforms the others in terms ofmean squared
error, implying that it is necessary to include B-spline
regressors in all components to obtain an adequate
goodness of fit.

4 Discussion

The results from the estimated model show that, on
average, lockdown measures have succeeded in drasti-
cally reducing the transmission of the COVID-19 dis-
ease amongst individuals both within and across Italian
provinces, as clearly indicated in Figs. 6 and 7. Indeed,
the two plots show, respectively, that the estimated tem-
poral and spatial autoregressive parameters started to
decrease significantly after the beginning of quaran-
tine. However, the estimates of the random effects and
the individual curves of Figs. 6 and 7 also show that
the form and extent of the reduction are highly het-
erogeneous across provinces. To better illustrate this
heterogeneity, we examine in detail the cases of nine
provinces, five from northern and four from central and
southern Italy, which may be considered indicative of
various primary trends in the spread of the disease (see
Fig. 8).

The first cases of the SARS-CoV-2 virus not directly
connected with the Chinese population were diagnosed
in certain provinces of Lombardy and Veneto, which
then quickly affected other areas in the north of Italy.
It seemed that the country was divided into two parts
by an imaginary line. Indeed, the epidemic took some
weeks to arrive in the central and southern provinces, in
some cases, even after the beginning of national quar-
antine. This occurrence has been previously explained,
and it is clearly displayed in Fig. 8, which plots the
number of cases estimated by the model along with the
actual number of infections. Here, it is also possible to
distinguish amongst the three components in order to
understand which of these predominate over the others
in a province.All of the provinces reported on in the fig-
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Fig. 8 Observed and predicted number of contagions between
24 February 2020 and 20 April 2020 in nine provinces. Selected
northern provinces are Alessandria (Piedmont region), Bergamo
(Lombardy region), Venezia (Veneto region), Rimini (Emilia-
Romagna region) and Pesaro-Urbino (Marche region). The cen-
tre and southern provinces are Rieti (Lazio region), Avellino
(Campania region), Crotone (Calabria region) and Caltanissetta

(Sicily region). The vertical axis represents the daily number of
infections, and the horizontal axis represents the time in days
after 24 February 2020. The dots represent the observed daily
counts. The yellow area represents the endemic component. The
light blue area represents the within-epidemic component. The
orange area represents the between-epidemic component

ure exhibit a strong presence of the endemic component
(in yellow), the behaviour of which follows the trend of
the disease over time. This component reaches its max-
imumbetween 35 and 45 days after the beginning of the
time series, namely from 19 days after the DPCM of 11
March 2020. More interesting is the behaviour of the

temporal (in light blue) and spatial (in orange) autore-
gressive components, whichmay provide an idea about
intra- and inter-province movements, respectively. If
the two components were markedly present in north-
ern provinces since the beginning of the epidemic,
they were indeed impeded the moment that contain-
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ment measures were put into effect. This confirms that
blockingmovements amongst towns and provinces had
effects not only on the global reduction in infections
but also on avoiding contagions amongst neighbour-
ing areas. The same cannot be said for the central and
southern provinces. We report four emblematic cases
which share the circumstance of not having detected
any infections at the beginningof the period and the per-
sistence of the two epidemic components even beyond
the turning point of the disease trend. These occur-
rences may be explained only by behavioural patterns
of the population: the shared belief that the contagion
was not a “local” problem but was restricted to a few
distant northern areas might have contributed to sus-
taining a low perceived risk from COVID-19, which,
in turn, reduced the tendency to enact prescribed pre-
ventive behaviours, such as distancing and adhering to
lockdown rules. Such behavioural patterns of the pop-
ulation in accordance with a low perceived risk result
in greater difficulty in stopping the diffusion of the dis-
ease, which may continue to bounce around within the
area and in neighbouring areas and certainly reduce the
effectiveness of the lockdown measures. This shows
that the effectiveness of containment measures is influ-
enced by aspects other than biological ones, such as
those related to psychological risk perception and citi-
zens’ behaviours under risk and uncertainty [23,24].

5 Conclusion

This paper investigated the impact of lockdown poli-
cies in reducing the spread of the COVID-19 disease
in Italian provinces. For this purpose, the endemic–
epidemic statistical model by Paul and Held [19] was
adapted to deal with the complex nonlinear spatio-
temporal dynamic of this disease usingB-spline regres-
sors. The model’s estimates revealed that on the one
hand, containment measures have succeeded in reduc-
ing the transmission of infections within and across
provinces. On the other hand, however, they also show
that the reduction has been highly spatially heteroge-
neous since the impact of quarantine has been rela-
tively less strong in the provinces where the infections
occurred later.

We argue that this heterogeneity can be at least par-
tially explained by psychological and behavioural fac-
tors. It is indeed likely that in the provinces where
COVID-19 hit earlier and harder, the disease risk per-

ception was higher and instilled greater respect in peo-
ple for social distancing measures and lockdown rules.
Therefore, assessing the relationship between psycho-
graphic variables and adherence to quarantine mea-
sures may represent an interesting avenue for future
research.

On the methodological side, another useful future
research direction would be to extend the proposed sta-
tistical model to include province-level random effects
for the parameters associated with the B-spline regres-
sors. Such an extension would allow better assessment
of the heterogeneity across the territory and hence pro-
vide further insights into why, in certain provinces, the
lockdown has been less effective than in others.
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