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Abstract The objective of this contribution is to com-
pare two methods proposed recently in order to build
efficient reduced-order models for geometrically non-
linear structures. The first method relies on the nor-
mal form theory that allows one to obtain a nonlinear
change of coordinates for expressing the reduced-order
dynamics in an invariant-based span of the phase space.
The second method is the modal derivative approach,
and more specifically, the quadratic manifold defined
in order to derive a second-order nonlinear change
of coordinates. Both methods share a common point
of view, willing to introduce a nonlinear mapping to
better define a reduced-order model that could take
more properly into account the nonlinear restoring
forces. However, the calculation methods are differ-
ent and the quadratic manifold approach has not the
invariance property embedded in its definition. Modal
derivatives and static modal derivatives are investi-
gated, and their distinctive features in the treatment
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of the quadratic nonlinearity are underlined. Assuming
a slow/fast decomposition allows understanding how
the three methods tend to share equivalent properties.
While they give proper estimations for flat symmet-
ric structures having a specific shape of nonlinearities
and a clear slow/fast decomposition between flexural
and in-planemodes, the treatment of the quadratic non-
linearity makes the predictions different in the case of
curved structures such as arches and shells. In the more
general case, normal form approach appears prefer-
able since it allows correct predictions of a number
of important nonlinear features, including the hard-
ening/softening behaviour, whatever the relationships
between slave and master coordinates are.

Keywords Reduced-order modelling · Normal form ·
Quadratic manifold · Modal derivatives

1 Introduction

Reduced-order modelling of thin structures experi-
encing large-amplitude vibration is a topic that has
attracted a large amount of researches in the last years.
A number of methods have been proposed, with vari-
ants driven by either the structure under study and its
peculiarity [63], the dynamical behaviour exhibited by
the system [64], the model [54] or the discretisation
method [33].

Roughly speaking, one can divide the techniques
proposed in the literature into two different categories,
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the first one using linear change of coordinates and in
the second family nonlinear mappings being defined.
When referring to linear methods, one can also dis-
tinguish techniques where the best orthogonal basis is
computed once and from all.Modal basis [3,12,34,56],
Ritz vectors [20], dual modes [25] and proper orthog-
onal decomposition (POD) [4,23,27] fall into that
family. The proper generalised decomposition (PGD)
[10,14] under its progressive variant (pPGD) as defined
in [32] also belongs to that case since additional vectors
are added when the dynamics is becoming more com-
plex. On the other hand, the linear change of coordinate
can be adaptive, depending on the dynamics, the com-
putation (single point or a whole branch of solution) or
the location in phase space. Nonlinear principal com-
ponent analysis (NLPCA) [22] as well as the optimised
PGD (oPGD) [32] belongs to this family of improved
linear methods, sometimes coined as nonlinear since
the basis may change depending on some parameters.

In the third class of methods, a nonlinear change of
coordinate is derived once and from all. Nonlinear nor-
mal modes [26,37,43,46,57], spectral submanifolds
[16,40] and the quadratic manifold derived frommodal
derivatives [19,44] belong to this family. As shown in
[5], when a linear method (e.g. POD) tries to find the
best orthogonal axis fitting a learning set that has a com-
plex shape, then the number of vectors will be larger
than the number of curved subspaces one can use to
describe the same data sets. In this particular exam-
ple, it was shown that invariant manifolds pass exactly
through the learning set, thus diminishing the number
of coordinates needed to describe the dynamics.

Nonlinear normal modes (NNMs) and spectral sub-
manifolds (SSM) offer a rigorously established con-
ceptual framework for reducing geometrically nonlin-
ear structures. In particular, the invariance property
of reduction spaces is encapsulated in their definition,
ensuring that the dynamical solutions computed from a
reduced-order model (ROM) also exist for the full sys-
tem [17,45,50,52]. This key ingredient allows deriving
accurate ROMs, which, for example, are able to predict
the correct hardening/softening behaviour of nonlinear
structure, which is not the case for their linear counter-
parts [57]. More specifically, recent contributions by
Haller and collaborators have shown that SSMs are
unique continuations of spectral subspaces of the lin-
ear system under the nonlinear terms [16] and are thus
the best mathematical object to be used in the present
context. For nonlinear conservative vibratory systems,

SSMs simplify to the classic Lyapunov subcentre man-
ifolds (LSM) that are filled with periodic orbits, thus
unifying a number of definitions given for NNMs in the
past decades, see, e.g. [21,43,45,59].

On the other hand, modal derivatives (MDs) have
been proposed independently [18,64], and they share
a number of common points with NNMs. In partic-
ular, MDs are defined by assuming that the mode
shape (eigenvector) and its eigenfrequency have a
dependence on amplitude, so that one can differentiate
the classical Sturm–Liouville eigenvalue problem that
defines linear normal modes, in order to make appear a
quantity which is defined as themodal derivative. Sym-
metrically, NNMs also rely on the fact thatmodal quan-
tities depend on amplitude, a key feature in nonlinear
oscillations. Thebackbone curve and the dependence of
the eigenmode shape with amplitude are then a result
from the computation of NNMs, defined as invariant
manifold in phase space. However, a complete com-
parison of both methods has not been drawn out yet.
The only related paper uses the modal derivatives as a
reduction method, from which the NNM, seen in this
case as the family of periodic orbit in phase space—
and thus reducing their information to the backbone
curve only, without using the geometrical information
in phase space—can be computed [49].

A recent development in the use of modal deriva-
tives is to form a quadratic manifold for more accurate
model order reduction. The properties of this nonlin-
ear mapping are such that it is tangent to a subspace
spanned by the most relevant vibration modes, and its
curvature is provided by modal derivatives [19]. An
idea also claimed in [44] is that such a quadratic mani-
fold should be able to cancel the quadratic forces in the
ROM. Incidentally, NNMs defined in the framework
of normal form theory, as proposed in [53,57], already
present these features. Indeed, a third-order nonlinear
change of coordinate is given, which has the property to
be identity-tangent when the initial model is expressed
in modal coordinates, thus conserving the linear modes
as first approximation. Also, in case of no second-
order internal resonance, the mapping exactly cancels
all quadratic terms. Finally, the invariance property is
directly inherited from the definition of an NNM as an
invariant manifold in phase space, while the invariance
of the quadratic manifold computed from MDs is not
at hand.

The aim of this contribution is thus to investigate
more properly the commonpoints anddifferences in the
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two methods and explain their advantages and draw-
backs in the context of building reduced-order mod-
els for geometrically nonlinear structures. The paper is
organised as follows. Section 2 is concerned with the
theoretical developments. The framework of geometri-
cally nonlinear structures is briefly recalled; then, both
methods of interest, normal form theory, modal deriva-
tives and their extension to quadratic manifold (QM),
are recalled and analysed in depth. The general deriva-
tion of the QM framework for both modal derivatives
(MDs) and static modal derivatives (SMDs) is high-
lighted, whereas previous contributions generally use
the simplifying assumption of SMDs in the develop-
ments. As a consequence of this development, the dis-
tinctive treatment of the quadratic nonlinearity between
MDsandSMDs is specifically underlined.Of particular
interest is the comparison of methods when a slow/fast
decomposition of the system can be assumed. In the
course of the paper, we will contrast the results given
by MDs, SMDs and normal form and underline that
the simplifying assumption of slow/fast approximation
allows retrieving partly the correct results. By doing so,
an illustration of the general theorem given in [17] is
thus provided for amore restrictive framework. Indeed,
theorems given in [17] encompass more generality and
exact results, allowing to deal with the case of damp-
ing and forcing. We give, however, here more detailed
comparisons and in particular analyse how the SMD
can produce incorrect predictions for structures having
a strong quadratic coupling such as arches and shells.
Section 3 illustrates the findings of the previous section
on two simple two-degree-of-freedom (dof) systems.
Finally, Sect. 4 applies the previous results to continu-
ous structures discretised with the finite-element (FE)
procedure.

2 Models and methods

2.1 Framework

Geometric nonlinearity refers to the case of thin struc-
tures vibrating with large amplitudes, while the mate-
rial behaviour remains linear elastic. In this framework,
the semi-discretised version of the equations ofmotion,
generally obtained from a finite-element procedure,
reads :

Mü + F(u) = Q, (1)

where M is the mass matrix, u the displacement vec-
tor at the nodes, F the nonlinear restoring force and Q
the external force. The number of degrees of freedom
(dofs) is N , being thus the dimension of vectors u, F
and Q. Note that damping is presently not taken into
account since most of the present work deals with effi-
cient treatments of nonlinearities in the restoring force.
While the concepts of NNMs and spectral submani-
folds (SSM) can be straightforwardly extended to the
cases with damping, as already shown, for example, in
[53] for normal form or in [16] for SSM, a clear exten-
sion of MDs to damped systems does not seem to be
present in the literature, to the best of our knowledge.
Consequently, we restrict ourselves in this contribution
to the treatment of the nonlinear stiffness without con-
sidering the effect of damping, butwe acknowledge that
damping has important effects in nonlinear vibrations
that should thus need further investigations.

Geometric nonlinearity for slender structures is
assumed so that F, for the sake of simplicity, only
depends on the displacement vector u, but other cases
can also be treated.More particularly, a number ofmod-
els have been derived for thin structures such as plates
and shells, relyingon simplifying assumptions (e.g. von
Kármán models for beams and plates [7,28,51], Don-
nell’s assumption for shallow shells [1,2]), showing
that the partial differential equations of motion only
contain quadratic and cubic terms with respect to the
displacement. On the other hand, general equations
for three-dimensional elasticity with geometric non-
linearity (linear stress/strain relationship but nonlin-
ear strain/displacement relationship) also show that the
nonlinear terms in the restoring force should be of this
type [12,30,33,58]. Consequently, we consider in this
contribution a nonlinear force that can be expressed as
a function of the displacement up to cubic-order terms,
reading:

F(u) = Ku + Guu + Huuu. (2)

In this equation, we use a simplified notation of the ten-
sor product for the quadratic and cubic terms, already
introduced in [19,44]. The notation is fully explained
in “Appendix A”, where the indicial expressions of the
products are detailed for the sake of clarity.G is a third-
order tensor of quadratic coefficients with current term
Gp

i j , while H is the fourth-order tensor grouping the

cubic coefficients H p
i jk . For example, the vector Guu

of the quadratic terms can be written as:
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Guu =
N∑

i=1

N∑

j=1

Gi j ui u j , (3)

withGi j being theN-dimensional vector of coefficients
Gp

i j , for p = 1, . . . , N . Note also that in this contri-
bution, the representation of quadratic and cubic terms
does not use the fact that the usual product is commu-
tative (uiu j = u jui ), so that the second summation
in (3) could be limited to the indices such as j ≥ i ,
assuming also Gi j = 0 for i ≥ j . In the representation
selected throughout the paper, all summations will be
full, as in (3) with a fully populated tensor of coefficient
G. The same rule applies for the cubic term also. This
choice has been made since it allows shorter and sim-
pler expressions for a number of equations given in the
presentation, but of course it is not a limiting assump-
tion and the other choice could have also be done.

The first (linear) term in Eq. (2) makes appear the
usual tangent stiffness matrix K defined by :

K = ∂F
∂u

∣∣∣∣
u=0

, (4)

from which one can define the eigenmodes, solution of
the eigenvalue problem:

(K − ω2
i M)φi = 0, (5)

with φi the i th being eigenvector and ωi its associated
eigenfrequency, for i = 1, . . . , N . Using u = �X,
with � being the matrix of all eigenvectors φi and X
the modal coordinates, the problem can be rewritten
in the modal basis by premultiplying Eq. (1) by �T ,
arriving at:

Ẍ + �2X + gXX + hXXX = q, (6)

where we have introduced � the matrix of eigenfre-
quencies ωi , g and h the tensors of quadratic and cubic
coefficients in themodal basis andq = �T Q themodal
external force. The equation of motion in modal space
can be written in explicit form with these coefficients
as:

∀ p = 1, . . . , N : Ẍ p + ω2
p X p +

N∑

i=1

N∑

j=1

gp
i j Xi X j

+
N∑

i=1

N∑

j=1

N∑

k=1

h p
i jk Xi X j Xk = qp. (7)

The relations between the nonlinear tensors in physical
coordinates G and H and those in modal coordinates g
and h are derived from the linear change of coordinates

and involve products with the matrix of eigenvectors
�. They are provided in “Appendix C” for the sake of
completeness.

2.2 NNMs and normal form

Nonlinear normal modes or NNMs have been used
since the pioneering work by Rosenberg [43] in numer-
ous vibratory problems. It offers a sound conceptual
framework in order to understand the organisation of
the dynamics in the phase space. Different definitions
have been given in the past, e.g. family of periodic
orbits [24,43], invariant manifold in phase space and
tangent at the linear eigenspaces near the origin [46].
More recently, a mathematically well-justified defini-
tion of NNM has been provided [16], allowing to set-
tle down the different treatments in a unified way. For
that purpose, Haller and Ponsioen proposed to refer to
the smoothest member of an invariant manifold fam-
ily tangent to a modal subbundle along an NNM as
a spectral submanifold (SSM). In that sense, SSMs
provide a rigorous framework allowing to define the
corresponding concepts in all the situations encoun-
tered in mechanical vibrations: conservative or dissi-
pative systems and autonomous or non-autonomous
systems. Interestingly, the authors also provide in [40]
automated formulations in order to derive SSMs up to
large order, allowing them to draw out comparisons
with numerous other methods proposed in the recent
years, see, e.g. [9]. Enforcing the invariant property is
key in a perspective of reduced-order modelling, since
it is the only way to ensure that the trajectories of the
ROM will also exist for the full system. Elaborating
on this idea, NNMs have been used in the perspective
of model-order reduction using either centre manifold
theorem [39,46], normal form theory [52,54,57], or
spectral submanifolds [9,16,40,60].

In this contribution, the normal form theory, as
defined in [53,57], is used. The main idea is to define a
nonlinear change of coordinates, from the modal coor-
dinates to new ones defined as the normal coordinates.
The nonlinear mapping is inherited from Poincaré and
Poincaré–Dulac theorems, based on the idea of finding
out a nonlinear relationship capable of eliminating as
much as possible of nonlinear terms. In this contribu-
tion, only the main results are recalled; the interested
reader is referred to [52,53,57] for more details. The
nonlinear change of coordinates is identity-tangent and
formally reads:
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X p = Rp + Pp(Ri , S j ), (8a)

Yp = Sp + Qp(Ri , S j ), (8b)

where Pp and Qp are the third-order polynomials, the
analytical expressions of which are given in [57] for
the undamped case and in [53] for the damped case.
X p is the modal coordinate, Yp the modal velocity, and
(Ri , S j ) are the new coordinates related to the invariant
manifolds and called normal coordinates.

The method used to derive the nonlinear mapping
is based on the recognition of nonlinear resonances
involving the eigenfrequencies of the system. In case
where no internal resonance is present, one can show,
for example, that all the quadratic terms can be can-
celled from the normal form which is thus much sim-
pler than the original system.

The dynamics, expressed with the newly introduced
normal variables (Ri , S j ), is written in an invariant-
based span of the phase space and thus prone to open
the doors to efficient reduced-order models, as already
shown in [52]. The general equation for the dynamics
expressed in the new coordinates reads:

∀ p = 1, . . . , N : R̈p + ω2
p Rp

+
(
Ap
ppp + h pppp

)
R3
p + B p

ppp RpS
2
p

+ Rp

N∑

j=1
j �=p

((
3 h ppj j + 2 Ap

j jp + Ap
pj j

)
R2
j + B p

pj j S
2
j

)

+ Sp

N∑

j=1
j �=p

(
2 B p

j jp R j S j
)

= 0. (9)

Note that the expression is slightly different from the
one proposed in [57], a direct consequence of the choice
of the representation of quadratic and cubic terms, with
full summations. The coefficients Ap

i jk and B p
i jk stem

from the cancellation of the quadratic terms. Their
expressions read:

Ap
i jk =

N∑

s=1

2 ḡ p
isa

s
jk, (10a)

B p
i jk =

N∑

s=1

2 ḡ p
isb

s
jk, (10b)

where ḡ p
is = (gp

is + gp
si

)
/2 is the mean value between

two adjacent terms implying the same monomial term.
The coefficients asjk and bsjk appearing in the expres-

sion of Ap
i jk and B p

i jk are related to the quadratic terms

of the change of coordinate. For the sake of complete-
ness, the interested readers can find their full expres-
sions in “AppendixB”.As known from the theory, these
second-order coefficients have a singular behaviour
in the vicinity of internal resonances. In this case, a
strong coupling is present between the nonlinear oscil-
lators whose eigenfrequencies are commensurate, and
the associated coefficient in the change of coordinate is
set to zero, so that the corresponding monomial terms
stay in the normal form.

From Eq. (9), one can observe that invariant-
breaking terms are no longer present in the equa-
tions of motion. Invariant-breaking terms are defined
as quadratic monomials of the form gkppX

2
p and cubic

monomials hkpppX
3
p on kth oscillator equation. As soon

as mode p has some energy, these invariant-breaking
terms directly excite oscillator k, thus breaking the
invariance of the linear mode subspace. As these terms
are no longer present inEq. (9), it shows that the dynam-
ics is now expressed in an invariant-based span. One
can also note that the only monomial terms present in
Eq. (9) are those related to trivially resonant terms.

A ROM is simply selected by keeping in the trunca-
tion only the normal coordinates (Rp, Sp) of interest,
depending on the problem at hand. By doing so, one
restricts the motion in the invariant manifold described
by the master normal coordinates retained, giving rise
to efficient reduced models, that simulate trajectories
existing in the complete phase space, and allowing to
recover the correct type of nonlinearity [55,57] as well
as nonlinear frequency response curves [54]. The sim-
plest ROM is built by restricting the motion to a single
NNMbykeeping only one pair (Rp, Sp) and cancelling
all the other: ∀ k �= p, Rk = Sk = 0. In this case, the
nonlinear change of coordinates for the master coordi-
nates reads:

X p = Rp + a p
pp R

2
p + bp

ppS
2
p, (11a)

Yp = Sp + γ
p
pp RpSp, (11b)

whereas for the slave coordinates, one has:

∀ k �= p : Xk = akpp R
2
p + bkppS

2
p

+ rkppp R
3
p + ukppp RpS

2
p, (12a)

Yk = γ k
pp RpSp + μk

pppS
3
p + νkpppSp R

2
p. (12b)

Again, all the introduced coefficients, γ p
pp, rkppp, u

k
ppp,

μk
ppp and νkppp, originate from the explicit expression
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of the polynomials Pp and Qp of Eq. (8). They are all
analytic, and their expressions are given in [57]. Inter-
estingly, Eq. (12) describes the geometry of the invari-
ant manifold in phase space, up to order three, but of
course one can limit the development of this equation to
second order only. The dynamics on the invariant man-
ifold (pth NNM) is found by cancelling all (Rk, Sk) for
k �= p in Eq. (9). In the case of a single-NNM motion,
the equation is particularly simple and reads:

R̈p + ω2
p Rp + (Ap

ppp + h p
ppp
)
R3
p + B p

ppp Rp Ṙ
2
p = 0.

(13)

Of particular interest here is the fact that the correcting
coefficients Ap

ppp and B p
ppp appearing in this equation

are provided by the second-order terms in the nonlinear
change of coordinates. Consequently, the third-order
terms have no influence on this reduced dynamics,
which is thus exactly the one given by the second-order
truncation of the normal form nonlinear mapping.

All these formulas can be used to reconstruct the
mode shape dependence on amplitude, assuming the
motion is enslaved to a single NNM, i.e. lying in the
invariant manifold associated with mode p. Assuming
this single-NNM motion, the physical displacement is
reconstructed from

u =
N∑

k=1

Xkφk = X pφ p +
N∑

k=1
k �=p

Xkφk, (14)

where X p is replaced using Eq. (11a) and Xk using
Eq. (12a), so that one finally obtains the amplitude-
dependent mode shape as:

u =
(
Rp + a ppp R

2
p + bpppS

2
p

)
φ p

+
N∑

k=1
k �=p

(
akpp R

2
p + bkppS

2
p + rkppp R

3
p + ukppp RpS

2
p

)
φk .

(15)

This formula has already been used in order to rep-
resent the amplitude dependence of mode shapes on
amplitude, see, e.g. [47,57], and will be further anal-
ysed and compared to the prediction given by the
method of quadratic manifold from modal derivatives
in Sect. 2.4.2.

Note that as a comparison to quadratic manifold is
targeted, a detailed description of the effects of order
truncation in the normal form approach is in order. In

the present approach of the normal form, the change
of coordinates is up to order three, but the reduced-
order dynamics can be considered as up to the second
order, since the effect of cancelling the cubic terms
to the higher orders has not been taken into account
due to the third-order truncation of all asymptotic
developments. Also, most of the comparisons in the
remainder of the paper will be drawn between single-
mode reduced-order dynamics. In this simplified con-
text, Eq. (13) clearly shows that the cancellation of the
third-order non-resonant monomials has absolutely no
effect on this equation which is left unchanged. Conse-
quently, Eq. (13) is the reduced dynamics obtainedwith
a second-order normal form nonlinear mapping. The
only difference between second-order and third-order
nonlinear mapping is in Eq. (12), which describes how
the exact invariant manifold is approximated in phase
space, and one can analyse the effect of either second-
order or third-order nonlinear mapping in this respect.
In the remainder of the paper, a clear attention will
be devoted to these two specific truncations in order to
draw out a fair comparison with the quadratic manifold
approach.

We now turn to the definition of modal derivatives
and the associated nonlinear mapping: the so-called
quadratic manifold, before comparing the two meth-
ods in detail.

2.3 Modal derivatives

Modal derivatives havebeenfirst introducedby Idehlson
and Cardona to solve structural vibrations problems
with a nonlinear stiffness matrix [18]. They have been
used in recent years in the context of reduced-order
modelling [64], and the last developments propose to
use them in order to create a nonlinear mapping with a
quadratic manifold [19,44]. In this section, we derive
again the most important definitions, make the distinc-
tion betweenmodal derivatives (MDs) and static modal
derivatives (SMDs) and introduce the quadratic mani-
fold approach.

2.3.1 Definition of modal derivatives and static modal
derivatives

The modal derivatives have been first introduced with
the aim of offering a framework taking into account
the dependence of mode shapes and eigenfrequencies
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on amplitude for nonlinear system. This is a common
point with nonlinear normal modes, which also recog-
nises this fact as a major outcome that needs to be
addressed correctly in the modelling. The introduc-
tion of the modal derivatives proposed in this section
is mostly heuristic and based on previous works. Let
us denote φ̃i (u) this amplitude-dependent eigenvector.
The already introduced eigenvector φi , solution of the
Sturm–Liouville problem, Eq. (5), represents the value
of φ̃i (u) when u = 0. The i j th modal derivative (MD)
is defined as the derivative of φ̃i with respect to the
j th coordinate used for the reduced basis, denoted here
as R j . For the sake of clarity, Xi is the modal coor-
dinates and R j the reduced coordinates, following the
notations introduced for the normal form approach. At
first order, one has Xi = Ri , but as we consider non-
linear change of coordinates, these relationships will
be enriched by higher-order terms. For the quadratic
manifold approach, this will be explained in the next
subsections, so that for the present definitions, one can
assume Ri = Xi . In that context, the i j th MD �i j

is the derivative of φ̃i with respect to a displacement
enforced along the direction of the j th eigenvector φ j

as introduced in [18,19,44,64] and writes:

�i j
.= ∂φ̃i (u)

∂R j

∣∣∣∣
u=0

. (16)

In order to derive an equation from which the MD can
be computed, one has to rewrite the eigenproblemgiven
by Eq. (5) assuming the known dependencies on the
amplitude, as:
(

∂F(u)

∂u
− ω̃2

i (u)M
)

φ̃i (u) = 0, (17)

where the linear stiffness matrix is replaced by the
full nonlinear restoring force, and both eigenvalues and
eigenvectors are amplitude dependent. Note that, in this
contribution, themassmatrix is assumed to be indepen-
dent of the amplitude, since this is the selected frame-
work for this paper focusing on geometric nonlinearity.
However, further development could include a depen-
dence of the mass matrix on the amplitude in order to
extend the use of MDs to other cases. The nonlinear
eigenproblem of Eq. (17) must be complemented with
the nonlinear mass normalisation equation:

φ̃i (u)T Mφ̃i (u) = 1. (18)

Equations (17)–(18) can then be Taylor-expanded as
function of the amplitude, assuming moderate vibra-
tions in the vicinity of the position at rest defined by

u = 0. Assuming that the displacement u depends on
the coordinates introduced for the reduced basis, R1 to
Rn , each term can then be expanded along these new
coordinates. The full derivation of this Taylor expan-
sion is given in “Appendix E”.

The Taylor expansion of Eqs. (17) and (18) in the
R j coordinates, up to first order, generates constant
terms that coincide with the linear eigenproblem and
mass normalisation. The next order terms, linear in
R j , allow deriving the following system, where the
two unknowns are the MD vector �i j and the scalar
describing the variation of the squared eigenfrequency

with respect to amplitude,
∂ω2

i
∂R j

:

[
K − ω2

i M −Mφi

−φT
i M 0

]{
�i j
∂ω2

i
∂R j

}
=
{−2Gφ jφi

0

}
,

(19)

where the quadratic tensor G of the restoring force
introduced in Eq. (2) has been used. The detailed
proof for the derivation of this system is given in
“Appendix E”.

In most of the studies concerned with application
of modal derivatives to model order reduction, the
so-called static modal derivatives (SMDs) are used
instead.Let us denote as�(S)

i j theSMDof�i j , obtained
by neglecting the terms related to the mass matrix
in (19), which then simplifies to:

K�
(S)
i j = −2Gφ jφi . (20)

This simplification evidently highlights the fact that
MDs and SMDs are able to retrieve the quadratic cou-
pling generated by the nonlinear restoring force, since
being directly proportional to the tensor of coefficients
G. Equation (20) also shows that the computation of
SMDs is drastically reduced as compared to MDs, for
two main reasons. The first one is that given the usual
symmetry of the quadratic tensorG at hand in structural
problems, one has Gφ jφi = Gφiφ j , so that the SMDs

are symmetric �
(S)
i j = �

(S)
j i . This involves that the

number of calculations for indexes i �= j is then halved
in the case of SMDs as compared to MDs. The second
reason lies in the fact that although the sizes of the sys-
tems to solve are comparable (the size of system (19) is
N + 1 and the size of system (20) is N ), the computa-
tion of a SMD can be done with a standard operation in
commercial FE software, whereas the computation of a
MD cannot. Indeed, the non-intrusive computation of a
SMD requires to solve a linear system Ku = f , where
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the applied force f is the right-hand side of Eq. (20) and
the resultant displacement u is the SMD. Solving such
linear system coincides with operating a simple linear
static analysis on the structure with imposed force and
unknown displacement. Conversely, the linear system
to compute aMD is the one in Eq. (19). The solution of
this system does not correspond to the standard oper-
ation one could easily perform in FE software. Con-
sequently, to compute the MD, one needs not only to
access the full stiffness and mass matrices but also to
export them in an external code to be able to solve the
linear system. When the structure is discretised with a
large number of dofs, such operation can be memory
and time-consuming when not infeasible.

2.3.2 Expression of MDs as function of the quadratic
coefficients from the modal basis

In this section, the relation between MDs and SMDs
and the coefficients of the quadratic tensor in modal
basis g are derived. This relation will help to draw
comparisons between the normal form method and the
quadratic manifold method that will be introduced in
the next section. For that purpose, the i j th MD in the
modal basis, denoted as θ i j , is introduced as

�i j = �θ i j =
N∑

s=1

φsθ
s
i j , (21)

following the linear change of basis from physical to
modal space, where the summation thus spans over all
the modes of the structure, being� the full eigenvector
matrix. In themodal basis, the eigenvectorφi coincides
with the i th vector basis ei , where the entries of ei are
all zero except 1 in position i , so that: φi = �ei .

The system of Eq. (19) can be now written in modal
coordinates by premultiplying the first N rows by �T

and by substituting the values of φi and �i j with their
values in modal coordinates. One finally obtains:
[

�2 − ω2
i I −ei

−eTi 0

]{
θ i j
∂ω2

i
∂R j

}
=
{−2gi j

0

}
, (22)

where the right-hand side has been simplified using
the relationship gi j = �T Gφiφ j , demonstrated in
Eq. (84a) of “Appendix C”.

System (22) is easier to understand when written by
term:

(ω2
s − ω2

i )θ
s
i j = −2gsi j , for s �= i, (23a)

∂ω2
i

∂R j
= 2gii j , for s = i, (23b)

θ ii j = 0. (23c)

One can notice that the i j th modal derivatives are
then directly proportional to the i j th component of
the quadratic tensor in modal coordinates. This clearly
shows that the i j th MD is able to retrieve a strong
quadratic coupling occurring between slave mode s
and the master modes i and j . The value of the modal
derivative in physical coordinates can be now eas-
ily reconstructed from the preceding development and
reads:

�i j =
N∑

s=1
s �=i

φs
−2 gsi j

ω2
s − ω2

i

. (24)

If one follows a similar procedure for the case of static
modal derivative, Eq. (20) is written in modal coordi-
nates as �2θ

(S)
i j = −2gi j and the static modal deriva-

tive in physical coordinates is directly given as:

�
(S)
i j =

N∑

s=1

φs
−2 gsi j

ω2
s

. (25)

In both cases, MDs and SMDs can be simply defined
as a linear combination of modes weighted by a fac-
tor proportional to gsi j , the quadratic modal coupling
coefficient. In the case of modal derivative, the method
shows a divergent behaviour in case of 1:1 internal res-
onance between two eigenfrequencies, a feature that
will be further commented in Sect. 2.4.1. One can also
note that the weighting factors have larger values for
the modes, the eigenfrequencies of which are closer to
the eigenfrequency of the i th mode. On the other hand,
for static modal derivatives, the weighting factors are
simply proportional to the inverse of the squared eigen-
frequencies and thus should decrease for highermodes.
Note, however, that this fact can be severely compen-
sated by the values of the quadratic coefficients, which
scales according to the linear stiffness. Consequently,
as shown, for example, in [49,61] for thin and flat sym-
metric structures (beams and plates), the SMD is able
to recover the most important couplings with in-plane
modes.

As a conclusion, MDs and SMDs can be seen as
a displacement field that takes into account the con-
tribution of all quadratically coupled modes into one
equivalent vector. From this perspective, the use of a
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reduced basis composed of MDs is equivalent to using
a basis composed of all quadratically coupled modes,
with the supplementary condition that the quadratic
couplings makes appear new directions in phase space
that are independent of the already selectedmode. If the
quadratic coupling is only dependent onmodes already
present in the reduced basis, then the new vector will
not bring out new eigendirections.

2.3.3 Quadratic manifold

The quadratic manifold approach has been introduced
in [19,44] in order to extend the use of modal deriva-
tives in the context of model order reduction and pro-
pose a nonlinear mapping from initial to reduced coor-
dinates. The nonlinear mapping is quadratic in nature
anddoes not account for nonlinear internal resonance as
the normal form theory does. In this section, the deriva-
tion of reduced-order models using the quadratic man-
ifold is given, following the previous results obtained
in [19,44]. A particular attention is paid on writing
the differences one can await when using the quadratic
manifold with MDs and SMDs, in comparison with
the results provided by normal form theory in mind,
thus giving rise to new developments. The coordinates
describing the reduced-order models are denoted as Rp

for all the methods in order to compare more directly
the equations. One has, however, to keep in mind that
the meaning of these coordinates is not the same for
each method.

Since theMDs are defined from a second-order Tay-
lor expansion of the nonlinear eigenvalue problem, it is
intuitive to use them in a quadratic nonlinear mapping.
If one operates a Taylor expansion of the approximate
solution u in the reduced coordinates R up to quadratic
order, one finds:

u(R) = u(0) +
n∑

i=1

∂u(R)

∂Ri

∣∣∣∣
0
Ri

+1

2

n∑

i=1

n∑

j=1

(
∂2u(R)

∂R j∂Ri

) ∣∣∣∣
0
Ri R j + O(|R|3),

(26)

where n is the number of master modes retained for
the ROMS, R = (R1, . . . , Rn). By extending the defi-
nition of linear eigenvectors to the nonlinear ones, the
nonlinear eigenvector spans the tangent space of the
displacement with respect to the reduced coordinates,
so that:

∂u
∂Ri

= φ̃i (R). (27)

In Eq. (26), we can then substitute u(0) = 0 (the
position at rest is at the origin of the coordinates), and

∂u(R)

∂Ri

∣∣∣∣
0

= φi , (28)

∂2u(R)

∂Ri∂R j

∣∣∣∣
0

= �i j . (29)

However, this series of operations would lead to an
inconsistent formulation in the case of MDs due to
their asymmetry, as already outlined in [19]. In fact,
since�i j �= � j i , it implies that the Schwarz’s identity
∂2u/∂Ri∂R j �= ∂2u/∂R j∂Ri is not fulfilled anymore.
To overcome this issue, and given the independence of
the quadratic mapping on the asymmetric part of each
MDshown in [19], the correct strategy proposed in [19]
is to express both the mapping and its tangent space by
means of symmetrised MDs �̄i j = (�i j + � j i )/2,
leading to:

u(R) ≈
n∑

i=1

φi Ri + 1

2

n∑

i=1

n∑

j=1

�̄i j Ri R j = φR

+ 1

2
�̄RR, (30)

φ̃i (R) ≈ φi +
n∑

j=1

�̄i j R j = φi + �̄R. (31)

Note that these expressions are used in order to define
the reduced-order model, so the dimension n of R is
much smaller than the dimension N of u, n � N , since
only the master coordinates of the ROM are present in
R. Consequently, φ is the matrix of eigenvectors rel-
ative to the master coordinates and should be distin-
guished from the full matrix of eigenvectors � used,
for example, in (21). Finally, �̄ is the third-order tensor
gathering the MDs �̄i j .

For future comparisonwith the normal formmethod,
it is useful to alsodefine thequadraticmapping inmodal
coordinates:

X(R) ≈ R + 1

2
θ̄RR, (32)

and by components:

Xk ≈ Rk + 1

2

n∑

i=1

n∑

j=1

θ̄ki j Ri R j . (33)
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2.3.4 Reduced-order model obtained with quadratic
manifold

The nonlinear mapping can then be used in order to
derive the reduced-order equations by directly apply-
ing Eq. (30) to the original equations ofmotion, Eq. (1),
and using a standard Galerkin projection. For that pur-
pose, one has to compute the derivatives of Eq. (30)
with respect to time and finally left-multiply Eq. (1) by

φ̃
T
i . These derivations have already been proposed in

[19,44], and we refer the interested reader to these arti-
cles for details about the procedure. Here, we give the
reduced-order dynamics obtained once the projection
realised, as a function of the modal coupling coeffi-
cients g and h, a derivation that is not given in [19,44]
and will allow drawing out more direct comparisons
with the normal form approach.

The dynamics for each reduced coordinates Rp

finally reads, for p = 1, . . . , N :

R̈p + ω2
p Rp +

n∑

i, j=1

((
gpi j + ω2

p

2
θ̄
p
i j

)
Ri R j

+ θ̄
p
i j (Ṙi Ṙ j + Ri R̈ j ) + θ̄

j
pi (ω2

j Ri R j + Ri R̈ j )
)

+
n∑

i, j,k=1

((
h pi jk +

n∑

s=1

(
ḡ pis θ̄ sjk

+ θ̄ spk

(
gsi j + ω2

s
2

θ̄ si j

)))
Ri R j Rk +

n∑

s=1

(
θ̄ spk θ̄ si j

)

(Ṙi Ṙ j Rk + R̈i R j Rk)
) = 0,

(34)

where the following notations have been introduced

for simplifying the expressions : ḡ p
is = gp

is+gp
si

2 . Note
that this formula simplifies in the case of a symmetric
quadratic tensor, which is generally the case in struc-
tural mechanics.

One can observe that the linear part is uncoupled,
resulting from the fact that the first termof the quadratic
manifold in Eq. (30) is the usual expansion onto the
eigenmodes, thus implying, at linear order, uncoupled
linear oscillators. The nonlinear terms can be compared
to those obtainedwhen using the normal form approach
as nonlinear mapping, Eq. (9). In particular, one can
observe that the normal form approach completely can-
cels all quadratic terms, provided that no second-order
internal resonance is present, a key feature embedded
in the derivation which makes the distinction between
resonant and non-resonant terms. On the other hand,
quadratic terms are always present in (34). A second

comment is on the presence of terms depending on
accelerations in (34), not present in the reduced-order
dynamics given by the normal form approach.

The restriction to a single master dof is provided,
so that one could draw out a term-by-term comparison
between the reduced-order dynamics provided by the
two methods. Assuming that only mode p is present as
reduced coordinates and thus Ri = 0, for all i �= p,
Eq. (34) simplifies to:

R̈p + ω2
p Rp +

(
gp
pp + ω2

p

2
θ
p
pp

)

R2
p + θ

p
pp (Ṙ2

p + Rp R̈p) + θ
p
pp (ω2

p R
2
p + Rp R̈p)

+ h p
ppp R

3
p +

n∑

s=1

(
ḡ p
ps θ spp R3

p

+θ spp

(
gspp + ω2

s

2
θ spp

)

R3
p +

(
θ spp

)2
(Ṙ2

p Rp + R̈p R
2
p)

)
= 0.

(35)

This equation can then be used for either MD or SMD,
so that one can contrast the results obtained by using
one of these two strategies (modal derivatives, be they
static or dynamic) with the nonlinear change of coor-
dinates provided by normal form theory, which is the
aim of the next section.

2.4 Comparison of the methods and slow/fast
approximation

This section aims at comparing the different nonlin-
ear mappings used to derive reduced-order models
on the different outcomes they provide: reduced-order
dynamics, and prediction of typical nonlinear features
such as hardening/softening behaviour, and depen-
dence of mode shapes on amplitude. For that purpose,
we restrict ourselves to a single master mode. More-
over, from now on, we introduce the symmetry prop-
erty of the quadratic tensor g, which results from the
fact that the internal force derives from a potential, thus
leading to gijk = gik j and gijk = g j

ki = gki j . Note, how-
ever, that, due to our initial choice of fully populated
sums and tensors without assuming commutativity of
the product, the symmetry property may appear a bit
different from, for example, [34] when equal indexes
are present. Indeed, in [34] one can read, for example,
gp
ps = 2gspp. This is the only consequence of the initial
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choice since in [34] one has gp
sp = 0 for s > p. In our

case, the relationship reads gp
ps = gspp and gp

sp = gspp.
By using such symmetry property, we can also sim-

plify ḡ p
ps = gp

ps = gspp, and substituting the value of the
modal derivative in modal space θ spp = −2gspp/(ω

2
s −

ω2
p) when s �= p and θ

p
pp = 0 in Eq. (35), one obtains:

R̈p + ω2
p Rp + gp

pp R2
p + h p

ppp R
3
p

−
n∑

s=1
s �=p

(gspp)
2 2

ω2
s − ω2

p

(
ω2
s − 2ω2

p

ω2
s − ω2

p
R3
p

− 2

ω2
s − ω2

p
(Ṙ2

p Rp + R̈p R
2
p)

)
= 0.

(36)

If the value of the SMD is used instead of the MD,
then the reduced-order dynamics writes:

R̈p + ω2
p Rp − gp

pp
2

ω2
p

(
ω2
p R

2
p + Ṙ2

p + 2Rp R̈p

)

+ h p
ppp R

3
p −

n∑

s=1

(
gspp
)2 2

ω2
s

(
R3
p

− 2

ω2
s

(
Ṙ2
p Rp + R̈p R

2
p

))
= 0.

(37)

For the explicit comparison, we rewrite the reduced-
order dynamics derivedwith the normal formapproach,
Eq. (13), where the Ap

ppp and B p
ppp terms have been

expanded:

R̈p + ω2
p Rp + h p

ppp R
3
p −

n∑

s=1

(
gspp
)2 2

ω2
s

(
ω2
s − 2ω2

p

ω2
s − 4ω2

p
R3
p − 2

ω2
s − 4ω2

p
Ṙ2
p Rp

)
= 0.

(38)

Note that the remark on the order of the trunca-
tions given at the end of Sect. 2.2 may be better under-
stood from these single-mode reduceddynamics. Equa-
tion (38) is the ROM given by normal form, be the
calculation of the nonlinear change of coordinate trun-
cated at order two or at order three. Consequently, this
equation gives the third-order reduced dynamics pro-
duced by truncating the normal form at second order.
In the same line, Eqs. (36) and (37) are the third-order
reduced-dynamics provided by the quadratic manifold
approach. Hence, comparing the predictions given by
these reduced dynamics is correct since the same order
of asymptotic developments is at hand. The only differ-
ence one can estimate in the analysis thus relies in the
nonlinear mapping, which can be pushed at third order

easily in the normal form approach since the calcula-
tion has already been proposed in the past. This means
that in the comparisons, the only difference will be on
the geometry of the manifold in phase space and the
reconstruction formula, but not on the reduced-order
dynamics.

In order to have a better view on the reduced-order
dynamics for each of the methods, the general non-
linear oscillator equation describing the dynamics on
the reduced subspace can be written under the general
form as:

R̈p + ω2
p Rp + C1R

2
p + C2

Ṙ2
p

ω2
p

+ C3
R̈p Rp

ω2
p

+C4R
3
p + C5

Ṙ2
p Rp

ω2
p

+ C6
R̈p R2

p

ω2
p

= 0, (39)

withC1 toC6 being different coefficients, whose values
are summarised in Tables 1 and 2 for the three different
methods.

As already remarked, only thenormal formapproach
is able to cancel the quadratic nonlinearity and pro-
duce a parsimonious, cubic-order reduced dynamics,
depending on two separate coefficients only. Using
SMDs creates the larger number of coefficients, while
only four are needed for MDs. Most importantly, the
closeness of the results given by the three methods can
be underlined in the case where a slow/fast decompo-
sition can be assumed between the master mode p and
the slave modes s. This case is often encountered in
mechanical vibrations since one has often to deal with
a large number of modes with very high eigenfrequen-
cies. Let us assume that all the slave modes s are well
separated from the master mode, so that for all s one
has ωs � ωp. It is then very easy to verify on the
coefficients given in Tables 1 and 2 that those provided
by the normal form and the MD method tend to the
values given by the SMD approach. More specifically,
C4 and C5 from normal form exactly match those from
the SMD, so that the only difference between the two

Table 1 Table of coefficients of the reduced system given by the
three methods

C1 C2 C3

MD gp
pp 0 0

SMD −2gp
pp −2gp

pp −4gp
pp

NF 0 0 0
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Table 2 Table of coefficients of the reduced system given by the three methods

C4 C5 C6

MD h p
ppp −∑n

s=1
s �=p

(
gspp
)2 2

(
ω2
s − 2ω2

p

)

(
ω2
s − ω2

p

)2
∑n

s=1
s �=p

(
gspp
)2 4 ω2

p
(
ω2
s − ω2

p

)2
∑n

s=1
s �=p

(
gspp
)2 4 ω2

p
(
ω2
s − ω2

p

)2

SMD h p
ppp −∑n

s=1

(
gspp
)2 2

ω2
s

∑n
s=1

(
gspp
)2 4 ω2

p

ω4
s

∑n
s=1

(
gspp
)2 4 ω2

p

ω4
s

NF h p
ppp −∑n

s=1

(
gspp
)2 2

(
ω2
s − 2ω2

p

)

ω2
s

(
ω2
s − 4ω2

p

)
∑n

s=1

(
gspp
)2 4 ω2

p

ω2
s

(
ω2
s − 4ω2

p

) 0

reduced-order dynamics lies in the additional termsC1,
C2,C3 andC6 for the SMDmethod. On the other hand,
using the slow/fast approximation for the coefficients
provided by the MD shows that C4, C5 and C6 tend
exactly to the values obtained with SMDs, the only
difference being in the summation, where the p term is
excluded in the MD approach, whereas it is not in the
SMD, as a direct consequence from Eq. (23). Indeed,
Eq. (23b) shows that for MD, the gp

pp term is taken
into account in the amplitude–frequency relationship,
and not in the reconstruction of the vector as given by
Eq. (24). On the other hand, for SMD, the gp

pp term
is taken into account in the vector defining the SMD,
Eq. (25), but not in the frequency dependence on ampli-
tude. This important difference between the two meth-
ods will have consequences that are commented further
in the next sections, and the gp

pp will be denoted further
as the self-quadratic term.

In order to better understand the observed differ-
ences on the reduced-order dynamics, a fair compari-
son has to be given not onto a term-by-term compari-
son, since the meaning of the reduced variables is not
the same, but on the general predictions given by each
reduction method on the most important nonlinear fea-
tures. The next sections are thus devoted to compar-
ing the prediction of the type of nonlinearity provided
by each method (i.e. the first term in the amplitude–
frequency relationship that dictates the hardening or
softening behaviour), as well as the mode shape depen-
dence on amplitude.

2.4.1 Hardening/softening behaviour

The generic reduced-order dynamics, Eq. (39), can be
solvedwith a perturbationmethod in order to derive the

type of nonlinearity predicted by eachmethod.Keeping
the general notationwith theCi coefficients for the ease
of reading, the general solution up to second order in
amplitude reads:

Rp = a0 cos
[
ωp t (1 + Γ a20)

]

+ a20

(
C1 − C2 − C3

6ω2
p

cos
[
2ωp t

(
1 + a20Γ

)]

− C1 + C2 − C3

2ω2
p

)
+ O(a30), (40)

with a0 being the amplitude and Γ the general coeffi-
cient that dictates the hardening/softening behaviour.
Indeed, one can introduce the nonlinear frequency
ωNL = ωp(1 + Γ a20). If Γ > 0, then the system is
hardening. The general expression for Γ with all the
Ci coefficients writes:

Γ = − 1

24ω4
p

(
10C2

1 + 10C1C2 + 4C2
2 − 7C2C3

+C2
3 − 11C1C3

)
+ 1

8ω2
p

(3C4 + C5 − 3C6) .

(41)

One can note in particular that with the normal form
approach, one has C1 = C2 = C3 = 0 since the
method fully cancels the quadratic terms, so that there is
no second harmonic term in the reduced-order dynam-
ics and Eq. (40) reduces to its first term at order two.
However, since quadratic terms are present in the non-
linear change of coordinates, this simplification does
not imply that the second harmonic is not present in
the reconstructed displacements, as it will be shown in
the next section. Once again, these two last equations
show that normal form approach produces a parsimo-
nious representation of the reduced dynamics which is
generally easier to read and interpret.
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Replacing the values of the Ci coefficients obtained
for each method (MD, SMD or NF for normal form),
one arrives at the prediction of the type of nonlinearity
provided by each reduced-order model as:

ΓMD = − 5

12 ω2
p

(
gp
pp

ωp

)2

+ 3

8 ω2
p

⎛

⎜⎜⎝h
p
ppp −

n∑

s=1
s �=p

2

(
gspp
ωs

)2
(
1 + ω2

p(4ω2
s − 3ω2

p)

3(ω2
s − ω2

p)
2

)
⎞

⎟⎟⎠ ,

(42a)

ΓSMD = − 5

12 ω2
p

(
gp
pp

ωp

)2

+ 3

8 ω2
p

⎛

⎜⎜⎝h
p
ppp −

n∑

s=1
s �=p

2

(
gspp
ωs

)2
(
1 + 4ω2

p

3ω2
s

)
⎞

⎟⎟⎠ , (42b)

ΓNF = − 5

12 ω2
p

(
gp
pp

ωp

)2

+ 3

8 ω2
p

⎛

⎜⎜⎝h
p
ppp −

n∑

s=1
s �=p

2

(
gspp
ωs

)2
(
1 + 4ω2

p

3(ω2
s − 4ω2

p)

)
⎞

⎟⎟⎠ .

(42c)

One can note that the first terms of the prediction are
the same, while the difference arises from the way the
slave (or neglected) coordinates are taken into account
in order to predict the type of nonlinearity. This fea-
ture is, however, key in order to give a correct predic-
tion since there is a strong need to take properly into
account the curvature of the manifolds in phase space;
otherwise, incorrect predictions are given [57].

In order to give more insights into Eq. (42), let us
first notice that in the summed terms, the first one is
always the same since the different expressions all start
with 1+ · · · . Let us isolate this term and introduce the
following notation :

CsSC = 2

(
gspp
ωs

)2

. (43)

One can notice that this correction term is the one
obtained by using static condensation, as already
shown, for example, in [48,61], and thus the subscript
SC. Denoting as CMD, CSMD and CNF the correction

factors given by each method (i.e. the term in the sum-
mation), one can then simply compares all these terms
to CsSC in order to have an expression depending only on
the eigenfrequencies. Assuming that there is only one
slave mode s in the summation in order to highlight the
contribution brought by each term, the following ratios
can be written:

CMD

CSC = 1 + 4

3

ρ2 − 3/4

(ρ2 − 1)2
, (44a)

CSMD

CSC = 1 + 4

3

1

ρ2 , (44b)

CNF
CSC = 1 + 4

3

1

ρ2 − 4
, (44c)

whereρ = ωs/ωp has been introduced in order to high-
light their behaviourwith respect to the fulfilment of the
slow/fast partition. These expressions clearly underline
the fact that eachmethod refines the correction factor of
static condensation by an additional term. One can also
observe that the refinement of the CsSMD comes from the
inertia and velocity terms C5 and C6, whereas the term
C4 is exactly the one from static condensation. Conse-
quently, using SMD without quadratic manifold could
lead to erroneous predictions since inertial and veloc-
ity corrections could be missed. This remark should be
particularly relevant in a case of geometric nonlinear-
ity involving inertia, as, for example, in the case of a
cantilever beam.

To better assess the quality of the predictions given
by the three methods, Eq. (44) can be Taylor-expanded
by using the slow/fast assumption ωs � ωp for the
slave modes s. This assumption allows introducing a
small parameter ωp/ωs , or, equivalently, considering
the expansion under the assumption ρ → ∞. One then
obtains:

CMD

CSC = 1 + 4

3

1

ρ2 +
∞∑

i=2

3 + i

3 ρ2i , (45a)

CSMD

CSC = 1 + 4

3

1

ρ2 , (45b)

CNF
CSC = 1 + 4

3

1

ρ2 +
∞∑

i=2

4i

3 ρ2i . (45c)

These formulas show in particular that all the methods
predict the same first two terms in the expansion that
assumes slow/fast partition, and the limit for ρ → ∞ is
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the same for allmethods, including static condensation,
since the ratios tends to 1 in this case. This means that a
formal equivalence in the prediction of the type of non-
linearity is obtained only in the limit case of ωs � ωp

for all the studied methods. Figure 1 illustrates this
convergence and shows that it is obtained rapidly, indi-
cating, in particular, that from the value ωs/ωp 
 4,
all methods are almost converged in terms of type of
nonlinearity, thus quantifying more properly the value
from which the slow/fast partition is effective so that
one can use the methods based on modal derivatives
safely. In order to be a bit more quantitative, one can
remark that the relative difference between CMD and
CNF is equal to 5% for ρ = 3.25 and 1% for ρ = 4.6,
so that the proposed bound ωs/ωp 
 4 has not to be
understood as a strict one. Moreover, the error on Γ

will be smaller than the error on the correction fac-
tor C, being Γ composed of other terms that are not
affected by the reduction method. The conclusion is
that ρ ∈ [3, 4] can be understood as a transition region,
and converged results thanks to slow/fast assumption
can be faithfully obtained over 4, but below 3 caution
has to be exercised.

Figure 1 shows also other interesting features on
the behaviour of the type of nonlinearity. Besides the

0 1 2 3 4
−3

−1

1

3

5

7

9

ρ

C
CSC

QM SMD
QM MD
NF
SC

Fig. 1 Evolution of the ratios
CMD

CSC
,
CSMD

CSC
and

CNF
CSC

, defined

in Eq. (44), as a function of the parameter ρ = ωs/ωp , from
which the behaviour of the type of nonlinearity defined by the
Γ coefficients in Eq. (42) can be directly deduced. Dashed grey
line is the (constant) value predicted by static condensation. (All
curves are normalised with respect to this value.) Yellow curve:
CSMD

CSC
predicted by static modal derivatives; orange curve:

CMD

CSC
computed from modal derivatives; blue curve:

CNF
CSC

given by

normal form theory. (Color figure online)

convergence of all curves in the limit ρ → ∞, impor-
tant differences occur in the regions where the methods
have a singularity. The normal form approach displays
a singular behaviour in the vicinity of the 1:2 internal
resonance when ωs 
 2ωp. This fact is logical and
has already been commented in numerous prior publi-
cations. Indeed, when such a resonance exists, then a
strong coupling arises between the two modes, so that
reducing the dynamics to a single master mode has
no meaning anymore, and the minimal model should
be composed at least by these two internally resonant
modes. The divergence in the behaviour of CNF/CSC
reflects this fact, meaning that in this zone the defini-
tion of the type of nonlinearity is of no more use since
another dynamical regime takes place. Previous publi-
cations also clearly underline that the prediction given
by ΓNF in Eq. (42c) is correct [57], which has been
confirmed with comparisons to direct simulations of
the full-order model, and this prediction of the type of
nonlinearity has then been used for continuous struc-
tures such as cables and shells [6,38,41,55].

On the other hand, the prediction given by MD
displays a divergence at the 1:1 resonance, when the
slave and master modes have close eigenfrequencies,
ωs 
 ωp. This divergence does not rely on a firm the-
oretical result from dynamical systems. Indeed, even
though in the case a 1:1 internal resonance exists so
that the two modes need to be taken into account to
study the coupled dynamics, uncoupled solutions still
exist and the backbone curves of these uncoupled solu-
tions can be computed, thus preserving the meaning
of the Γ coefficients defined in Eq. (42), see, e.g.
[13,31,56]. Thus, the divergence of CMD/CSC is inter-
preted as a failure of the method. Finally, for small
values of ρ, one can observe that the SMD method
shows a singular behaviour and will predict unreason-
ably stiff behaviour. On the other hand, MD method
gives a finite value, which is a bit different from the
correct one given by normal form approach. All these
results underline that MD and SMD can be used safely
only when the assumptionωs > 4ωp is fulfilled; other-
wise, unreliable predictions may be given by these two
methods.

2.4.2 Drift and mode shapes

A second comparison on the global outcomes of the
three method can be provided by contrasting the mode
shape dependence on amplitude. Indeed, assuming a
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single mode motion with Rs = 0 for all s �= p (only
master mode p participates to the vibration), allows
recovering the amplitude dependence of the pth mode
shape. At small amplitude, the three methods recover
the usual eigenmode, but they then differ in the way
they are taking into account the cross-couplings with
slave modes. Let us denote as uMD, uSMD and uNF the
physical displacement following single-mode motion
for each of the three methods. Using the previous for-
mula allows one to reconstruct

uMD(t) = φ p Rp(t) −
N∑

s=1
s �=p

gspp
ω2
s − ω2

p
R2
p(t)φs, (46)

uSMD(t) = φ p Rp(t) − φ p
g p
pp

ω2
p
R2
p(t)

−
N∑

s=1
s �=p

gspp
ω2
s
R2
p(t)φs, (47)

uNF(t) = φ p Rp(t) − φ p
g p
pp

ω2
p

1

3

(
R2
p(t) + 2

ω2
p
Ṙ2
p(t)

)

−
N∑

s=1
s �=p

gspp
ω2
s

(
ω2
s − 2ω2

p

ω2
s − 4ω2

p
R2
p(t)

− 2

ω2
s − 4ω2

p
Ṙ2
p(t)

)
φs . (48)

Comparing themode shapes given byMDandSMD,
one can already underline that the summed term given
by MD reduces to that given by SMD if one considers
the slow/fast assumption with ωs � ωp. However, a
difference persists in the two methods since with SMD
an added quadratic term, depending on mode p only,
is present (second term in (47)). This comes again
from the treatment of the self-quadratic gp

pp term in
Eq. (23), already underlined in Sect. 2.3.2. Indeed, the
gp
pp term for theMDmethod is not present in the recon-

struction, but in the dependence of the nonlinear fre-
quency with amplitude instead, while the SMDmethod
distributes the influence of this gp

pp term on the spa-
tial reconstruction, but not on the amplitude–frequency
relationship. This explains why the prediction of the
hardening/softening behaviour appears to bemore gen-
eral for the MD method than for the SMD. Comparing
now with the normal form approach, one can see that

NF reduction gives rise to velocity-dependent terms in
these formula, a feature that is not present in the other
method, which is a direct consequence of the fact that
NF method takes into account both independent dis-
placement and velocity variables as it should be from
a dynamical system perspective.

Again, one can also observe that the summed term
in (48) reduces (at first significant order) to that pro-
vided by SMD when the slow/fast assumption is at
hand, showing that the SMDmethod provides the most
simplified expressions.

From thegeneral expressions given in (46)–(48), one
can isolate the constant term (zeroth harmonic) which
is produced by the quadratic nonlinearity, in order to
compare more closely one term of this general expan-
sion. This constant term is known as a drift since it
corresponds to the fact that due to quadratic nonlinear-
ity, the oscillations are no more centred around zero,
and it has alreadybeen compared for different reduction
methods, see, e.g. [35,57]. One can then simply replace
Rp(t) by the expression given by Eq. (40), while the
values of R2

p(t) and Ṙ2
p(t) up to second order write:

R2
p(t) =a20

2
(1 + cos[2ωNLt]) + O

(
a30

)
(49)

Ṙ2
p(t) =a20

2
ω2
NL (1 − cos[2ωNLt]) + O

(
a30

)
, (50)

where the nonlinear frequency ωNL = ωp(1 + a20Γ )

has been introduced. Isolating the constant term leads
to the following expressions for the drift d predicted by
each reduction method:

dMD =a20
2

⎛

⎜⎜⎝−gp
pp

ω2
p

φ p −
n∑

s=1
s �=p

gspp
ω2
s − ω2

p
φs

⎞

⎟⎟⎠ , (51)

dSMD =a20
2

⎛

⎜⎜⎝−gp
pp

ω2
p

φ p −
n∑

s=1
s �=p

gspp
ω2
s

φs

⎞

⎟⎟⎠ , (52)

dNF =a20
2

(
−gp

pp

ω2
p

(
1

3
+ 2

3

ω2
NL

ω2
p

)
φ p
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−
n∑

s=1
s �=p

gspp
ω2
s

⎛

⎝1 −
2
(
ω2
NL − ω2

p

)

ω2
s − 4ω2

p

⎞

⎠φs

⎞

⎟⎟⎠ .

(53)

One can observe that assuming slow/fast dynamics, the
drift predicted by MD reduces to that given by SMD.
On the other hand, one can also see that in order to
retrieve the drift predicted by SMD from dNF, one has
to assume that the deviation of the nonlinear frequency
ωNL is small as compared to the linear frequency so
that ωNL 
 ωp. Hence, the prediction of the mode
shape dependence on amplitude given by SMD is reli-
able only in the case where the backbone curve does
not depart severely from the linear resonance, which is
a strong assumption.

In order to point out a last difference on the theo-
retical expressions which will have important conse-
quences in the next sections, let us also follow the first
harmonic of the solution in the reconstruction proce-
dure. Using Eq. (40) to define the harmonic content of
the master variable, and going back to the harmonic
content of the modal coordinates Xi defined using
either the QM method, Eq. (33), or the normal form
approach, Eqs. (11)–(12), one can easily follow the
first harmonic and retrieve its expression in the modal
coordinates. Since p is the master mode and at lowest
order X p = Rp, then themost important contribution is
present in X p as compared to other Xk’s. Let us denote

as
[
X (H1)

p

]

MD
the first harmonic for the MD approach

(and SMD and NF for the other two methods); these
expressions write:

[
X (H1)

p

]

MD
= a0 cos(ωNLt)

(
1 + O

(
a40

))
, (54a)

[
X (H1)

p

]

SMD
= a0 cos(ωNLt)
⎛

⎝1 − a20
2

3

(
gp
pp

ω2
p

)2

+ O
(
a40

)
⎞

⎠ ,

(54b)
[
X (H1)

p

]

NF
= a0 cos(ωNLt)

(
1 + O(a40)

)
. (54c)

They underline the importance of the treatment of the
self-quadratic gp

pp termbetweenMDandSMDmethod.
Indeed, whereas the amplitude a0 defined from (40)
corresponds, for the MD and NF cases, to the ampli-

tude of the first harmonic in X p, this is not the case
for the QM derived from SMD. In that case, the ampli-
tude has an extra term implying the self-quadratic cou-
pling term. Importantly, this term appears as a differ-
ence so that the amplitude of the first harmonic can
tend to small values with increasing a0. Whereas all
the comparisons led in this section show that the meth-
ods tend to be equivalent under a slow/fast assumption,
this last expression highlights the fact that, for the SMD
method, the amplitude of the master mode can be very
different from the amplitude of the initial coordinate.
The consequence of this finding will be more clearly
illustrated in the next sections on examples and will be
key to understand why the SMD method can fail even
under the slow/fast assumption.

3 Comparison on two-degree-of-freedom systems

In this section, the comparisons drawn out on the theo-
retical expressions are illustrated on two-dof systems,
in order to highlight the main differences on simple
cases. Two different models are selected. The first one
is derived from the equations of motion of a beam
and is selected in order to mimic the nonlinearities
present in a flat symmetric system, where these simpli-
fying assumptions help in letting the methods based on
SMD work properly. The second example has impor-
tant quadratic couplings and better accounts from the
problems arising with curved structures such as arches
and shells.

3.1 A two-dof model representing a flat symmetric
structure

3.1.1 Presentation of the model

The particular nature of the nonlinear couplings in the
case of flat symmetric structures such as beams and
plates relies on the simplifying facts that flexural and
in-planemodes are linearly uncoupled and their nonlin-
ear couplings involve simple terms that can be easily
traced from the von Kármán models. These simplifi-
cations have been used in numerous recent papers in
order to explain why a number of methods for pro-
ducing ROMs are able to predict very good results in
this case, see, e.g. [12,19,60,61]. In order to propose a
simple two-dof systemmimicking these particular rela-
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tionships, the von Kármán model for slender beams is
used and simplified to twovibrationmodes, oneflexural
and one longitudinal, in order to produce the simplified
system, from which the coefficients can be related to
meaningful quantities of the beam and in particular to
its slenderness.

A non-prestressed beam of length L is thus con-
sidered, with a uniform rectangular cross section of
area S = bh (h being the thickness and b the width)
and second moment of area I = bh3/12, made in an
homogeneous and isotropic material of Young’s modu-
lus E and density δ. Boundary conditions are clamped
at X = 0 and X = L .

The equations of motion for the transverse dis-
placementW (X, T ) and the longitudinal displacement
U (X, T ) (X and T being the dimensional space and
time variables), assuming von Kármán theory, read
[12,36]:

Ẅ + E I

δS
W

′′′′ − E

δ

(
U

′
W

′ + 1

2
W

′ 3
)′

= 0, (55a)

Ü − E

δ
(U ′′ + W

′
W

′′
) = 0. (55b)

A particular feature of Eq. (55) is that the longitudi-
nal displacements are only quadratically coupled with
the transverse, as shown in (55b). On the other hand,
the only nonlinear terms appearing on the equations
of motion for the flexural term W are: (i) a quadratic
coupling involving a product between one in-plane and
one transverse component, and a cubic term with only
transverse components, see Eq. (55a).

Following [12], the equations of motion can be
made non-dimensional so that the resulting system
depends only on two physically meaningful parame-
ters: the slenderness ratioσ = h/L , and thewavelength
β appearing naturally when solving the eigenvalue
problem. Indeed, focusing on the linear problem for
the transverse motion, the eigenvalue problem φ

′′′′ =
ω2 δS

E I φ is solvedbyusing a combinationof sine, cosine,
hyperbolic sine and hyperbolic cosine functions of kx ,
with k-dimensional wavelength such that k4 = δS

E I ω
2

and β = kL . Assuming clamped boundary conditions,
the characteristic equation for β, fromwhich the eigen-
frequencies are deduced, reads: cos(β) cosh(β) = 1.
The reader is referred to “Appendix F” for the details
of this classical derivation.

Introducing the thickness h as characteristic length,
so that the non-dimensional displacements are as w =
W/h and u = U/h, normalising time using t =
T (β2/L2√E I/δS) and the space variable with the
beam length, x = X/L; Eq. (55) is rewritten as
follows:

w,t t + 1

β4w,xxxx − 12

β4σ

(
u,xw,x

)
,x

− 6

β4

(
w,x

3
)

,x
= 0, (56a)

u,t t − 12

β4σ 2 u,xx − 12

β4σ
w,xw,xx = 0. (56b)

In order to derive a minimal two-dof system from
these equations, we select the first flexural eigenmode
and the most important longitudinal mode coupled
to the first flexural. From previous studies, see, e.g.
[12,49,61], it is known that the fourth in-plane mode is
strongly coupled to the first flexural. Let us denote as q1
the modal amplitude of the first transverse mode and
p4 the modal amplitude of the fourth in-plane mode
(see “Appendix F” for the details). Using a standard
Galerkin projection (see, e.g. [12]), Eq. (56) can be
rewritten as

q̈1 + q1 + 2G

σ
p4q1 + Dq31 = 0, (57a)

p̈4 + (4π)212

β4σ 2 p4 + G

σ
q21 = 0, (57b)

where D and G are the nonlinear coupling coefficients
arising from the Galerkin projection and involve inte-
gral on the length of products of derivatives of themode
shape functions, see [12] for the general calculation
and “Appendix F” for the detailed expression of these
two coefficients. One can note, in particular, that due
to the choice of the non-dimensional time to arrive at
Eq. (56), the eigenfrequency of the first flexural mode
is 1, while the natural frequency of the fourth in-plane

mode reads ω2
2 = (4π)212

β4σ 2 . Due to the normalisation

selected (involving ω1 = 1 for the fundamental mode),
the term in factor of p4 in Eq. (57a) can be easily inter-
preted as the square of the ratio ρ = ω2/ω1, recovering
the term introduced in Sect. 2.4.1. Thanks to its explicit
expression, ρ can now be directly related to the slen-
derness ratio:
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ρ = 4π
√
12

β2

1

σ
≈ 1.95

1

σ
, (58)

so that the final two-dof system that will be used for
the investigations reads:

Ẍ1 + X1 + 2 Ḡ ρ X1X2 + DX3
1 = 0, (59)

Ẍ2 + ρ2X2 + Ḡ ρX2
1 = 0, (60)

where Ḡ = G β2/(4π
√
12) has been introduced for

the ease of reading. Also the notation for the variables
has been changed with X1 = q1 and X2 = p4 for the
sake of simplicity. A particular feature of this system
is that the coupling between master and slave mode
is purely quadratic. Consequently, the potential third-
order tensors from the normal form approach are all
vanishing. In this case, the two nonlinear mappings are
thus exactly at the same order due to the very simplified
shape of the starting equations.

This system is now investigated in order to see how
themethods under study behavewhen reducing the sys-
tem to its first (flexural) mode using different nonlinear
mappings. The advantage of this formulation is that all
coefficients are related to a physical problem so that
some insights can be given to the results obtained with
this simplistic model with regard to continuous prob-
lems. In particular, Sect. 2.4 underlines that all meth-
ods show a convergence on some properties when a
slow/fast assumption is assumed, which has been quan-
tified precisely on the type of nonlinearity as occurring
for ρ > 4. Also, divergent behaviours have been under-
lined and explained for ρ 
 1 (case of MD) and ρ 
 2
(case of normal form).Consequently, the systemwill be
studied for three different values close to these points,
namely ρ = 1.25, ρ = 2.5 and ρ = 10. Note that a
beam is generally considered as slender if σ ≤ 1/20.
Thanks to Eq. (58), this means that ρ ≥ 40. The con-
sequence of this remark is that in all slender beams
the slow/fast assumption is very well fulfilled, and our
study concerns specific cases occurring for very thick
beams. Regarding the nonlinear coefficients G and D,
they only depend on the modes selected in the expan-
sion. In our study, we will always consider the first
flexural and fourth axial, so that G and D are constants
since they only depend on the non-dimensional shape
functions of the selected modes. In the remainder of
the study, we have selected D = 2.67, Ḡ = 0.63.

3.1.2 Results

The comparisons between the different methods are
drawn out on the geometry of the manifolds, as well
as on the dynamics onto these manifolds, described
by the frequency–amplitude relationship (backbone
curve). All the solutions are computed thanks to a
numerical continuation method using the asymptotic–
numerical method, implemented in the softwareMAN-
LAB, where the unknowns are represented thanks to
the harmonic balance method [11,15,29]. After a con-
vergence study, the number of harmonics retained in
the computations is 7. In each case, the master mode
is the fundamental one, X1, and the slave mode, X2.
The dynamics onto the reduced subspaces is given by
Eq. (36) when using the MD approach, Eq. (37) if
one considers SMD instead, and Eq. (38) with the nor-
mal form method, with R1 the master coordinates. For
the reduced models, continuation is performed on the
master coordinate in order to compute the frequency–
amplitude relationships. From these values, the non-
linear mappings, given either by Eq. (8) for the normal
form approach or by Eq. (33) for theQMmethod, allow
to retrieve the initial modal amplitude X1 and X2. From
all these data, one can plot either the geometry of the
manifolds in phase space (X1,Y1, X2,Y2), or the back-
bone curves.

Figure 2 shows the geometry of the manifolds
obtained for this first system, when one increases the
values of ρ so as to meet the slow/fast assumption. One
can remark that the reduced subspaces produced by the
quadratic manifold method do not show a dependence
on the velocity. Increasing the values of ρ it is observed
that the real manifold obtained from the full system
loses this velocity dependence so that this approxi-
mation is less and less wrong. On the other hand, the
manifold produced by normal form has two important
advantages: it is an invariantmanifold of the full system
by construction, and it has this velocity dependence,
hence allowing for a correct prediction of the reduc-
tion subspace, whatever the value of ρ. As a matter of
fact the only limitation of the normal form approach
is that it relies on a Taylor expansion, so that for large
amplitudes, the solution departs from the exact man-
ifold. But in any case, the correct invariant subspace
is approximated. As already remarked, due to the fact
that only quadratic couplings are present between mas-
ter and slave coordinates, themanifolds shown in Fig. 2
for the normal form are obtained thanks to the second-
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(a) ρ = 1.25. (b) ρ = 2.5. (c) ρ = 10.

Fig. 2 Comparison of manifolds in phase space for the first
example, and for three different values of ρ = ω2/ω1. The
exact NNM, represented in violet (full system solution: FS),
is compared to the reduction manifolds obtained by QM from

MDs (dark orange), SMDs (yellow) and normal form (blue). a
ρ = 1.25, b ρ = 2.5, c ρ = 10 with slow/fast assumption
fulfilled. (Color figure online)

order expansion, the third-order terms being all equal
to zero.

Figure 2a shows also that the quadratic manifold
produced by MD encounters a problem near the 1:1
resonance, which is here underlined since ρ has been
selected close to 1. Comparison with a full-order solu-
tion clearly shows that this is a failure of themethod.On
the other hand, Fig. 2c shows that when the slow/fast
assumption is verified, all methods converge to the
same reduced subspace, in line with the theoretical
results.

We now turn to the prediction given on the back-
bone curves. First of all, one can compare the values
of the Γ coefficients dictating the type of nonlinearity.
Equation (42) has thus been rewritten for the present
two-dof system and now read, as a function of the ratio
ρ = ω2/ω1:

ΓMD = 3D

8
− Ḡ2(3ρ2 − 2)ρ2

4(ρ2 − 1)2
, (61a)

ΓSMD = 3D

8
− Ḡ2(3ρ2 + 4)

4ρ2 , (61b)

ΓNF = 3D

8
− Ḡ2(3ρ2 − 8)

4(ρ2 − 4)
. (61c)

These values are represented in Fig. 3, which shows
important similaritieswithFig. 1.Again the samediver-
gent behaviours are observed, and the convergence of
all methods for ρ > 4 is clearly observed. To be more
quantitative, the relative difference between ΓMD and
ΓNF is 5% for ρ = 2.95 and 1% for ρ = 3.93. On the

0 2 4 6
−1

0

1

2

ρ

Γ

QM SMD
QM MD
NF

Fig. 3 Values of the coefficient Γ dictating the harden-
ing/softening behaviour for the first two-dof system. Compar-
ison of ΓMD, ΓSMD and ΓNF, given, respectively, by QM with
MDs, with SMDs, and normal form, Eq. (61), and for varying
ρ = ω2/ω1 ratio

other hand, the difference between ΓSMD and ΓNF is
5% for ρ = 3.06, and 1% for ρ = 4.18, underlining
clearly that ρ ∈ [3, 4] has to be understood as a tran-
sition zone. For very small values of ρ, the quadratic
manifold based on SMD will predict incorrect result
with a softening behaviour. Also, after its failure at
ρ = 1, the MD method will also produce an incorrect
prediction with a softening behaviour.

Figure 4 shows the backbone curves obtained from
the reduced-order dynamics and compared to that
obtained from the full system.The comparison is drawn
on the main modal amplitude X1, which shows the
largest values (first row), but also on the slave coor-
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Fig. 4 First-mode
backbone curves as a
function of modal
amplitudes X1 (first row)
and X2 (second row) and
for different values of
ρ = ω2/ω1. Comparisons
between the exact solution
(FS: full system, violet),
that predicted by QM with
MDs (dark orange), SMDs
(yellow) and normal form
(NF, blue). (Color figure
online)
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dinate X2 (second row). The first case selected, just
after the 1:1 resonance with ρ = 1.25, shows, as envi-
sioned in Fig. 3, that the QM produced from MD can
be very wrong in this case and predict at first order a
softening behaviour. When ρ = 2.5, the three methods
predict a very similar behaviour and are almost undis-
tinguishable. One can note that for large amplitude, the
full system solution is less and less hardening. This is
probably a consequence of the vicinity of the 2:1 inter-
nal resonance. Since ω2 = 2.5ω1 and the behaviour is
hardening, the nonlinear frequency tends to approach
the 2:1 ratio at higher amplitudes, which could explain
this particular behaviour of the full system solution.
Finally, for ρ = 10, the three methods give the same
predictionswhich are fully alignedwith the full system.

The conclusion on this first example with simple
nonlinearities is in the line of the theoretical results,
since all methods tend to perform well in the limit of
the slow/fast assumption, again estimated as a ratio of
4 between the eigenfrequencies of the master and slave
mode. On the other hand, when this assumption is not
fulfilled, the quadratic manifold is not reliable and can
produce incorrect predictions, in contrary to the normal
form approach, that gives a correct ROMup to the third
order, whatever the link between slave andmaster coor-
dinates. These results explain also why the application
of modal derivatives on slender structures that are flat
and symmetric produce accurate results. Indeed, slen-
derness is fulfilled when ρ is larger than 40, and our

numerical experiments show that the slow/fast assump-
tion can be considered as valid as soon as ρ > 4.

3.2 A two-dof model representative of a shell
structure

3.2.1 Equations of motion

In this section, a system composed of a mass connected
to two springs representing geometric nonlinearity is
selected. This system has been used in a number of
studies so that numerous results are already present in
the literature; the interested reader is referred to [57]
for the derivation of the equation of motions specify-
ing the behaviour of the springs, and to [9,42,53,57]
for different results already published on this example
system. The equations of motion read:

Ẍ1 + ω2
1X1 + ω2

1

2

(
3X2

1 + X2
2

)
+ ω2

2X1X2

+ ω2
1 + ω2

2

2
X1

(
X2
1 + X2

2

)
= 0,

Ẍ2 + ω2
2X2 + ω2

2

2

(
3X2

2 + X2
1

)
+ ω2

1X1X2

+ ω2
1 + ω2

2

2
X2

(
X2
1 + X2

2

)
= 0.

(62)

As compared to the previous example, this system has
all quadratic nonlinear terms present in the equations of
motion, and all the nonlinear coefficients are expressed
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(a) Case with ρ = 1.25. (b) Case with ρ = 2.5. (c) Case with ρ = 10.

(d) Case with ρ = 1.25. (e) Case with ρ = 2.5. (f) Case with ρ = 10.

Fig. 5 Comparison of manifolds in phase space for the second
two-dof example, and for three different values of ρ = ω2/ω1.
The exact NNM, represented in violet (full system solution: FS),
is compared to the reduction manifolds obtained by QM from
MDs (dark orange), SMDs (yellow), and normal form up to the

second order (blue manifold in the first line, plots a–c) and third
order (green manifolds, second line in plots d–f) are given. a–d
ρ = 1.25, b–e ρ = 2.5, c–f ρ = 10 with slow/fast assumption
fulfilled. In all cases, ω1 = 1. (Color figure online)

directly from the two eigenvalues ω1 and ω2, so that
the problem has only two parameters. Note that this
model is not derived from a continuous shell structure
like the previous example which was derived from the
von Kármán beam equations; however, it is known that
curved structures display strong quadratic couplings
that are found in this system. Moreover, the results will
show that this model is sufficient to show important
departures between the three testedmethods, which are
due to the way the quadratic terms are processed.

3.2.2 Results

As for the preceding example, comparisons are drawn
out on the geometry of the manifolds and the back-
bone curves. Numerical continuation is used to solve
out the different systems and compare their outcomes.
The eigenfrequency ratio ρ = ω2/ω1 is also used and
the same values, namely 1.25, 2.5 and 10, are selected
to observe the differences between the methods when

tending to fulfil the slow/fast assumption. In the com-
putation, ω1 = 1 in all cases so that one simply has
ω2 = ρ.

Figure 5 shows the geometry of the manifolds in
phase space, as compared to the exact invariant man-
ifold defining the first NNM of the system. The com-
ment on the velocity dependence, already raised in the
previous example, still holds: While for small values
of ρ the quadratic manifolds are not able to catch the
correct curvature in this direction, for large values of
ρ the velocity dependence vanishes. Note that in all
the three figures, the manifold produced by the SMD
method has a smaller range in amplitude. Thismaximal
range used for the representation has been fixed from
the frequency–amplitude relationships (Fig. 7, when
the nonlinear frequency has decreased of ten per cent
and reaches the value 0.9—a softening behaviour is at
hand in the considered cases), so that allmanifolds span
the same frequency range, but correspond to different
amplitudes. This underlines, in particular, that even if
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the correct manifold is approximated, which is the case
for ρ = 10, the amplitude–frequency relationship may
be not.

Since the only difference between second- and third-
order normal form can be appreciated from the non-
linear mapping and not the reduced dynamics, Fig. 5
illustrates the case. In the first line, the manifold pro-
duced by the second-order normal form (in blue) is
contrasted to the other methods, while the third-order
normal form is shown in the second line (in green).
One can observe that the effect of retaining the cubic
term is especially important for the smallest values of
ρ = 1.25, but then the differences between second and
third orders are barely visible. Interestingly, this exam-
ple also shows that the quadratic manifolds produced
by MD and SMD do not tend to the same geometries,
even under the assumption of slow/fast dynamics. This
is appreciated in Fig. 5, but is more clearly evidenced
in Fig. 6 where a section of the manifolds in space
(X1, X2) is shown, without the amplitude limit given
by the frequency, used in the 3D plot.

Unlike Fig. 5, Fig. 6 is directly obtained from the
manifolds expressions given by Eq. (33) for the QM
approach, and (11)–(12) for the normal form approach,
by simply prescribing the values of R1 and compute
the resulting (X1, X2) values. More specifically, let
us underline the main difference between the MD
and SMD method in this case. Substituting Eq. (33)
with (23), the reconstruction of (X1, X2) from the QM
method derived from MD reads:

X1 = R1, (63a)

X2 = − g211
ω2
2 − ω2

1

R2
1 = − ω2

2

2
(
ω2
2 − ω2

1

) R2
1 . (63b)

On the other hand, using SMD in the QM leads to:

X1 = R1 − g111
ω2
1

R2
1 = R1 − 3

2
R2
1, (64a)

X2 = −g211
ω2
2

R2
1 = −1

2
R2
1 . (64b)

One can first notice that for this specific example, the
manifold produced with the SMD method does not
depend on the parameters (ω1, ω2). Consequently, the
cut of this manifold in (X1, X2) plane in Fig. 6a–c
for different values of ρ, is always the same. The sec-
ond comment is on the slow/fast approximation: even
though the value given for X2 tends to be the same
under the slow/fast assumption ω2 � ω1, this is not
the case for X1. This is a major difference between the
two methods, so that a persistent error on the manifold
is done when using SMD, whereas MD tends to the
solution provided by the NF and full system when ρ

increases. The last interesting comment is on the fact
that the manifold produced by SMD shows a constant
folding point. Indeed, X1 fromEq. (64a) cannot exceed
the value of 1/6 (achieved at R1 = 1/3) after which
the quadratic term in Eq. (64a) is larger than the linear
one.

This is a direct consequence of the different treat-
ment of the self-quadratic coupling term g111, already
underlined at the end of Sect. 2.4.2, leading to the fact
that even under the slow/fast assumption, the QM built
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(a) Case with (b) Case with (c) Case with ρ = 10

Fig. 6 First-mode invariant manifolds cut on the Y1 = 0 plane,
evaluated with the quadratic manifold method (QM) (either with
MD in dark orange and SMD in yellow) and normal form (NF)
approach, where the distinction between NF up to second order

(blue line) and third order (dashed green line) is reported, and
compared to the numerical solution obtained with the full system
(FS). In all cases ω1 = 1. (Color figure online)
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on SMD can lead to erroneous results. This point is
further commented on the backbone curves compari-
son. First, Eq. (42) is written for this specific system,
leading to the following predictions, as a function of
the ratio ρ = ω2/ω1:

ΓMD = −16ρ4 − 27ρ2 + 12

16(ρ2 − 1)2
, (65)

ΓSMD = −1, (66)

ΓNF = −ρ2 − 3

ρ2 − 4
. (67)

In line with the constant manifold foundwith SMD, the
method also predicts a constant type of nonlinearity,
independent of the variations of the eigenfrequencies
(ω1, ω2). Assuming slow/fast partition, ρ → ∞, then
all three methods tend to predict the sameΓ coefficient
dictating the hardening/softening behaviour. However,
as underlined at the end of Sect. 2.4.2, the amplitude of
the first harmonics for each method is different. Since
in this case g111 �= 0, a direct consequence of (54b)
is that the backbone curves for the SMD method will
show a saturation effect, the amplitude X1 being unable
to overcome a maximum value. This phenomenon is
clearly visible in Fig. 7, depicting the backbone curves
obtained for the three selected values of ρ. The con-
stant value of ΓSMD has for direct consequence that the
backbone predicted by the SMD quadratic manifold
is almost unchanged with respect to variations of ρ.

When the slow/fast assumption is fulfilled for ρ = 10,
as shown in Fig. 7c, the backbone predicted by SMD
QM is in line with those predicted by the other methods
at small amplitude level. However, at higher amplitude
the SMD backbone moves away from the others and
saturates to a limit value for all cases, since the ampli-
tude is differently computed as shown in Eq. (54b).
On the other hand, the backbone predicted by the MD
method tends to the correct values under the slow/fast
approximation,while the normal formapproach always
produces a correct prediction. More specifically, the
prediction for the master X1 component given by the
normal form is the same if one considers a quadratic
or cubic normal form expansion, see Eq. (11). On the
other hand, the slave component X2 is affected by the
order and this is illustrated in Fig. 7d–f, where one
can observe that, as for the manifold approximation in
phase space, the third-order terms bring about a better
estimate.

4 Comparison on continuous structures

4.1 Presentation of the test cases

This section aims at drawing a comparison between the
different methods when applied on a continuous struc-
ture discretised with three-dimensional finite elements.
In order to investigate how the results obtained in the
previous section are confirmed in the general case, three

Fig. 7 First-mode
backbone curves for the
second two-dof example
with quadratic nonlinearity,
as a function of modal
amplitude X1 (first row),
and X2 (second row), and
for different values of
ρ = ω2/ω1. Comparisons
between the exact solution
(FS: full system, violet)
predicted by QM with MDs
(dark orange), SMDs
(yellow) and normal form
(NF, blue, NF third order,
dashed green). (Color figure
online)
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beams are considered and shown in Fig. 8. They have
been selected in order to fulfil different assumptions
that have been highlighted on the two-dof examples in
order to achieve correct predictions from the ROMs.
The first case, as shown in Fig. 8a, is a slender flat
symmetric beam. The two other examples, as shown
in Fig. 8b and c, are arches: the first one is shallow,
while the third one is non-shallow. Adding curvature
has two important effects. First, flexural and in-plane
modes are no longer linearly uncoupled. Second, the
curvature renders the restoring force asymmetric and
an important quadratic nonlinearity appears between
the bending modes. This example illustrates the fact
that the slow/fast assumption is not enough to guaran-
tee that the method based on static modal derivatives
will converge. The curvature will be used in order to
play it on the slow/fast assumption as well as on the
values of the quadratic coupling terms.

In all three cases, the boundary conditions are
clamped; thematerial parameters are selected as homo-
geneous linear elastic with Young modulus E =
124 GPa, Poisson ratio ν = 0.3 and density δ =
4400 kg m/s2. In each cases, an equal thickness h and
width b are selected: h = b = 5 cm. For the flat
beam, the length is L = 0.7 m. The arches have been
built from a portion of a circle. For the shallow arch,
the radius of curvature is set as 250 cm, for an angu-
lar span of 2π/15, resulting in a curvilinear length of
20π/3 
 1.05 m. The height of the static deflection
at centre is 5.5 cm, i.e. almost equal to the thickness.
For the non-shallow arch, the radius of curvature is set
as 50 cm, for an angular span of 2π/3, resulting in the
same curvilinear length of 20π/3 
 1.05 m, but with a

static deflection of 25 cm, i.e. five times the thickness.
All beams are discretised with three-dimensional hex-
ahedral 20-node finite elements. The flat beam uses 60
elements (4 in the section and 15 in the length), result-
ing in a total number of 1287 dofs. The two arches have
96 solid elements (4 in the section and 24 in the length)
and 2097 dofs. A relative coarsemesh has been selected
in order to have a limited number of degrees of freedom
so that all themethods canbehandled easily. Indeed, the
key point here is not to look for converged and refined
results on a large frequency range, but to compare the
different reduction methods on the same test examples.
Moreover, as already shown in [61], using 3D elements
leads to couplings with very high-frequency thickness
modes, so that truncations and convergence are difficult
to observe in general.

In the three cases, the nonlinear behaviour of the first
flexuralmode in the curvature plane is investigated. The
mode shape is shown in Fig. 8. In the case of the flat
beam, it corresponds to the first mode and its eigenfre-
quency is 545.60Hz.As already underlined inSect. 3.1,
the most important coupling arises with the fourth in-
plane mode, whose eigenfrequency is 15.19 kHz, so
that the ratio ρ between the most important slave mode
and the master mode is in this case equal to 27.83.
Consequently, the slow/fast assumption and our crite-
rion ρ ≥ 4 are perfectly fulfilled. This example can be
seen as an extension of the first two-dof example, with
the distinctive feature that now many more modes are
coupled to the first bending, all of them being of higher
frequencies than the fourth axial. Also, the nonlinear
coupling terms have in this case a simplified form, fol-
lowing the general discussion given in Sect. 3.1. In the

(a) Flat beam. (b) Shallow arch. (c) Non-shallow arch.

Fig. 8 Mesh and deformation along the mode under study for
three different test cases: a a flat beam, b a shallow arch and
c a non-shallow arch. For each test case, the mode under study

corresponds to the first flexural mode in the plane y − z where
the curvature is imposed if present
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case of the arches, for the shallow arch the first flexural
mode corresponds to the second mode of the structure
and its eigenfrequency is equal to 372.28Hz, and for the
non-shallow arch, the first flexuralmode corresponds to
the fourth mode of the structure and its eigenfrequency
is equal to 1003.99 Hz. Contrary to the case of flat sym-
metric structures, the curvature renders the restoring
force asymmetric and an important quadratic nonlin-
earity appears between the bending modes. Investigat-
ing the important couplings between the linear modes
of the curved beams shows that the first bending mode
is strongly coupled with the third one. While the ratio
between the first and third bending modes is 5.4 in the
case of the flat beam, it decreases when the curvature
increases. Consequently, for the case of the shallow
arch, this ratio is equal to 3.44 (eigenfrequency of third
bending equal to 1283.33 Hz), and 1.66 for the non-
shallow arch (eigenfrequency of third bending equal
to 1665.11 Hz). These two examples have thus been
built as an extension of the second two-dof example.
For the shallow arch, the slow/fast assumption is almost
fulfilled (3.44 is slightly smaller than the criterion we
proposed with a limit value at 4), but now important
quadratic couplings are present and in particular the
self-quadratic term gp

pp. Finally, the case of the non-
shallow arch allows testing a case where the slow/fast
assumption does not hold, and important self-quadratic
terms are present.

4.2 Amplitude–frequency relationships

The methods are compared on their ability to predict
the backbone curves. A reference solution is com-
puted thanks to a numerical continuation on all the
degrees of freedom of the structure, using a code with
parallel implementation of harmonic balance method
and pseudo-arc-length continuation algorithm [8]. In
this computation, a small amount of mass proportional
damping is added under the form ζωpM so that a
frequency-response function (FRF) is computed, in the
vicinity of the eigenfrequency of the master mode (first
flexural). The values of ζ are 0.18%, 0.27% and 0.1%
for the flat beam, shallow, and non-shallow arches,
respectively. The forcing is located in the central node
of each mesh in the y-direction in order to excite the
first flexural mode. The force amplitude is chosen in
order to have a displacement amplitude at resonance
comparable to the thickness so that its values are 5 kN,

1.5 kN and 2.5 kN for the flat beam, shallow and non-
shallow arches, respectively. It must be noticed that
in the case of curved structures the value of ampli-
tude of vibration equal to the thickness has not been
achieved and the reported FRFs excite a maximum
amplitude of approximately half of it. In fact, due to
the long computational time that the full model FRF
requires, approximately 1 day for each FRF, and due
to its high chances to undergo internal resonance with
higher modes, these values have been selected in order
to stay in the limit of one-mode approximation with-
out exciting more complex dynamics. However, with
this level of amplitudes, the nonlinearity is sufficiently
important so that its effect is clearly visible on the back-
bone curves.

The ROMS are built using QM or NNM approach,
and their backbone curves are computed in the same
manner than in the previous section, assuming a sin-
gle master mode. For the normal form approach, the
third-order coefficients have not been included in the
computation. Indeed, the third-order tensors require the
computation of huge number of coupling coefficients
from the modal basis expressions, which would need
for an important number of precomputation steps. This
choice has also been guided by the fact that compar-
ing the two methods at the same order of accuracy is
more meaningful. The FRF of the ROMS has not been
computed since taking into account the damping of the
slave modes is important to achieve good results. If the
normal form theory has been developed for that pur-
pose, see, e.g. [53] where the effect of a small amount
of damping of the slave modes on the FRF of the mas-
ter mode is reported, the inclusion of the damping for
themodal derivatives has not been derived theoretically
yet. Hence, it appears that a better comparison is given
on the backbone curves only, and the FRF of the full
modelwith a small amount of damping is used to under-
line whether the nonlinearity is correctly addressed by
the methods.

Figure 9 shows the numerical results obtained for the
three cases. The case of the flat beam is the one having
themost assumptions fulfilled (slow/fast separation and
no self-quadratic terms). Consequently, the three meth-
odsmatch verywell and are all able to retrieve correctly
the nonlinearity of the full model with a very good
accuracy. In the case of the shallow arch, the slow/fast
assumption is almost fulfilled (since being a little bit
below the proposed criterion ρ ≥ 4), and important
self-quadratic coupling appears due to the curvature.
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(a) Flat beam. (b) Shallow arch. (c) Non-shallow arch.

Fig. 9 Comparison of backbone curves obtained from QMwith
MDs (dark orange), SMDs (yellow) and normal form approach
(blue), for the three tested structures: a flat beam, b shallow
arch, c non-shallow arch. Non-dimensional amplitude of flexu-
ral displacement (along y, non-dimensionalised with respect to
the thickness) of the central node of each beam as a function of
ω/ω1 where ω1 refers to the eigenfrequency of the first flexural

mode studied shown in Fig. 8. The backbone curves are con-
trasted to the FRF obtained on the full system (FS, violet) with
numerical continuation and a small amount of damping, see text.
The vertical grey dashed lines represent the frequency at which
the saddle-node bifurcation of the forced response occurs. (Color
figure online)

The main consequence is that the QM built from SMD
is not able anymore to predict the correct type of nonlin-
earity. As already found for the second two-dof exam-
ple, it overpredicts the softening behaviour and makes
appear again the saturation phenomenon in the ampli-
tude of the backbone. On the other hand, both QMs
based on MD and normal form methods give a cor-
rect prediction. For the non-shallow arch, the slow/fast
assumption does not hold anymore. The consequence is
that theMDmethod does not predict the correct nonlin-
earity. This example again illustrates clearly that: (i) as
soon as important self-quadratic terms appear (case of
arches and shells), then the SMDmethod is not reliable
anymore, whatever the slow/fast assumption is fulfilled
or not; (ii) the MD can still give correct result but only
if the criterion ρ ≥ 4 for the slow/fast assumption is
fulfilled. As soon as ρ gets under this value, then the
solution starts departing from the full-order model and
becomes unreliable when ρ ≤ 2.

4.3 Nonlinear mode shapes

The different approximations made by the three meth-
ods are finally contrasted on the mode shape depen-
dence on amplitude, illustrating the equations given in
Sect. 2.4.2. Recalling Eqs. (46)–(48), it is possible to
see that, for each method, the contributions to the non-
linear mode shape can be divided into (i) a deformation

along the master p mode and (ii) a deformation that
contains all the coupled modes but the pth. In order to
make the figures more illustrative, and since the ampli-
tude of the deformation along pthmode generally gives
the dominant contribution, it is decided to compare the
outcomes of the methods only on (ii) part of the solu-
tion. Also, since the normal form approach constructs
the solution both with displacements and velocities, to
draw a better comparison the focus will be on the time
step where the reduced variable Rp(t) reaches its max-
imum and minimum values (i.e. a turning point such
that Ṙp(t) = 0).

Under these assumptions, let us define as u⊥ the
component of the nonlinear mode shape u that is
orthogonal to φ p. From Eqs. (46)–(48), it reads, for
the three different methods:

u⊥
MD(t∗) = − R2

p(t
∗)

N∑

s=1
s �=p

gspp
ω2
s − ω2

p
φs, (68a)

u⊥
SMD(t∗) = − R2

p(t
∗)

N∑

s=1
s �=p

gspp
ω2
s

φs, (68b)

u⊥
NF(t

∗) = − R2
p(t

∗)
N∑

s=1
s �=p

gspp
ω2
s

(
ω2
s − 2ω2

p

ω2
s − 4ω2

p

)
φs,

(68c)
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(a) Full Model. (b) Normal Form. (c) Modal Derivatives. (d) Static MD.

Fig. 10 Comparisons of the additional terms perturbing the lin-
ear mode shape solutions (deformation orthogonal to φ p) for the
case of the flat beam, computed at the saddle-node bifurcation
point marked in Fig. 9a, fixing the frequency at which they have

been computed. a Full model solution, representation of the axial
component of displacement u⊥,sym

FS .ez of the centre line nodes,
b normal form: u⊥

NF(t
∗).ez , c modal derivative: u⊥

MD(t∗).ez , d
static modal derivative u⊥

SMD(t∗).ez

where t∗ is the time instant where Rp is either maxi-
mum or minimum.

In order to compare to the full-order solution, the
deformation must be first filtered out from its compo-
nent along the pth mode. One can thus define u⊥

FS for
the full system as:

u⊥
FS(t) = uFS(t) − φT

puFS(t)

φT
pφ p

φ p. (69)

Finally, given the quadratic nature of the deforma-
tion computed from the reduction methods based on
second-order expansions (and clearly underlined by the
dependence in R2

p in Eq. (68)), the third-order compo-

nent should be also filtered out from u⊥
FS for a closer

comparison. In order to cancel the odd harmonics of
the full-order solution, we thus define u⊥,sym

FS as the
symmetric part of u⊥

FS with respect to amplitude:

u⊥,sym
FS = 1

2

(
u⊥
FS(t

max) + u⊥
FS(t

min)
)

. (70)

This value will be used as reference and compared to
the prediction of the ROMS given by Eq. (68).

Figure 10 shows the comparison between the u⊥
defined by Eq. (70) for the full-order system and those
produced by the reduced-order models, Eq. (68), for
the case of the flat beam. Importantly enough, since
the nonlinear couplings are with in-plane modes, the
contributions of the u⊥ along the axial z direction are
shown in Fig. 8, since the most important contributions
are along this direction. As it could be awaited from
the previous analyses, Fig. 10 clearly shows that the
three ROMs are all able to recover the correct spatial
dependence of the contributions of coupled modes to
the fundamental flexural NNM. Also, this contribution
is mostly conveyed by the fourth in-plane mode, being

the most importantly coupled to the fundamental flexu-
ral mode. Note that the amplitude used to construct this
figure is the one corresponding to the upper saddle-node
bifurcation point in the FRF of the full-order system, as
shown by the grey vertical line in Fig. 9a. At that point,
the backbones and the FRF meet so that it can be used
safely for a correct comparison. It also corresponds to
an amplitude of one time the thickness for the mode
shape.

In the case of the shallow arch, some differences are
appearing due to the self-quadratic coupling term, cre-
ating a deficiency in the prediction given by the SMD.
This is underlined in the nonlinear mode shape depen-
dence in Fig. 11, where in this case, since the most
important coupling is between bendingmodes, the con-
tributions of the different u⊥ are represented along the
transverse y direction. The amplitude used for the fig-
ure is illustrated in Fig. 9b with a grey line and still
corresponds to the upper saddle-node bifurcation point
in the FRF of the full-order system. One can observe in
Fig. 11 that, in the line of the results found on the non-
linear amplitude–frequency relationships, normal form
and MDmethods are able to retrieve the correct spatial
dependence for the contribution of the slave modes. On
the other hand, the treatment of the self-quadratic term
by the SMD approach prevents the correct prediction
of this spatial dependence.

The case of the non-shallow arch is shown in Fig. 12,
for an amplitude of motion marked by the grey line in
Fig. 9c. Following the observation on the frequency,
one can notice that only the normal form approach is
able to retrieve the correct spatial dependence. On the
other hand, SMDmethod fails because of the incorrect
treatment of the self-quadratic term, while QM con-
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(a) Full Model. (b) Normal Form. (c) Modal Derivatives. (d) Static MD.

Fig. 11 Comparisons of the additional terms perturbing the lin-
ear mode shape solutions (deformation orthogonal to φ p) for the
case of the shallow arch, computed at the saddle-node bifurca-
tion point marked in Fig. 9b, fixing the frequency at which they
have been computed. a Full model solution, representation of
the displacement u⊥,sym

FS of the centre line in the y − z plane;

vertical axis u⊥,sym
FS .ey (transverse direction) and horizontal axis

u⊥,sym
FS .ez (axial direction), b normal form: u⊥

NF(t
∗), c modal

derivative: u⊥
MD(t∗), d static modal derivative u⊥

SMD(t∗). Grey
lines: position of the centre line of the beam at rest. Solution
amplified of factor 15

(a) Full Model. (b) Normal Form. (c) Modal Derivatives. (d) Static MD.

Fig. 12 Comparisons of the additional terms perturbing the lin-
ear mode shape solutions (deformation orthogonal to φ p) for the
case of the non-shallow arch, computed at the saddle-node bifur-
cation point marked in Fig. 9c, fixing the frequency at which
they have been computed. a full model solution, representation
of the displacement u⊥,sym

FS of the centre line in the y − z plane;

vertical axis u⊥,sym
FS .ey (transverse direction) and horizontal axis

u⊥,sym
FS .ez (axial direction), b normal form: u⊥

NF(t
∗), c Modal

derivative: u⊥
MD(t∗), d Static modal derivative u⊥

SMD(t∗). Grey
lines: position of the centre line of the beam at rest. Solution
amplified of factor 50

structed from MD does not produce the correct result
since the slow/fast assumption is not fulfilled anymore.

5 Conclusion

In this contribution, a detailed comparison of different
methods proposed in the recent years in order to define
nonlinear mappings with the aim of providing accu-
rate reduced-order models for geometrically nonlinear
structures, has beenmade. The quadratic manifold pro-
posed from the definitions ofmodal derivatives has thus
been contrasted to the normal form theory, related to
the definition of nonlinear normal modes as invariant
manifolds in phase space.While the quadraticmanifold
only contains the displacements as unknowns, the nor-
mal form approach takes into account displacements
and velocities, thus giving a more complete link to the

geometry in phase space. Secondly, the quadratic man-
ifold is defined up to the second order, while current
expressions of normal form are up to order three and
can be continued to higher orders easily. Thirdly, nor-
mal form theory relies of firm mathematical theorems,
ensuring a clean conceptual framework, while modal
derivatives appear as an ad hoc, yet efficient, method
used in the vibration community.

The main outcomes of this article are the following.
First, the theoretical derivations of the quadratic man-
ifold using either MD or SMD have been fully made
explicit. These calculations have highlighted the fact
that both methods do not handle the quadratic terms
in the same manner, especially the self-quadratic cou-
pling terms arising between the master coordinates.
This differencehas been found tohave important conse-
quences on the global predictions of the methods. Sec-
ondly, detailed comparisons between the threemethods
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have been fully analysed on the mathematical expres-
sions: nonlinear change of coordinates, reduced-order
dynamics, and main predictive outcomes of the meth-
ods such as type of nonlinearity, drift and mode shape
dependence on amplitude. To illustrate the results, two
two-dof systems have been used as starting example,
and the results found from these have been extended to
a continuous structure: a clamped–clamped beam with
varying curvatures.

A main result of our investigations is that the results
predicted by the QM approach with MDs converge to
those provided by the normal form approach, only in
the case where a slow/fast assumption between mas-
ter and slave coordinates holds. This result is fully in
the line of general theorems provided in [17,60] and
thus further illustrates the general findings given in
these papers where a more general framework includ-
ing damping is given, together with an exact result that
do not rely on asymptotic expansion. A first quantifi-
cation of the limit value for the slow/fast assumption
to hold has been provided, based on the predicted val-
ues for the type of nonlinearity, showing that a small
gap is needed: ωs > 4ωp, thus justifying a posteriori
the good results found by previously published papers
using this method. However, the different treatment of
the quadratic nonlinearity (and more specifically the
self-quadratic coupling term) between MD and SMD
leads to the fact that even with a slow/fast assump-
tion, the QM built from SMD can lead to erroneous
predictions, as soon as an important self-quadratic cou-
pling term is present. This result has important implica-
tions when onewants to build ROMs for slender curved
structures such as arches and shells. This specific fea-
ture has been clearly highlighted on the two-dof system
and found in the more general case of a non shallow
arch. On the other hand, the robustness of the normal
form approach has been underlined in each case.

These results argue for the use of the tools from
dynamical system theory to derive safe and robust
ROMS: invariant manifold, normal form theory and
spectral submanifold. A limitation could be the use of
these methods in the context of FE models where the
need of computing, possibly in a non-intrusive man-
ner, the nonlinear coefficients might be a difficult task,
see, e.g. all the literature related to the STEP method
(stiffness evaluation procedure, see, e.g. [12,33,34]).
However, recent developments show that the coeffi-
cients can be directly computed, for the case of spectral
submanifold [60], or for the case of normal form in a

non-intrusive manner [62], so that this limitation does
not hold anymore.
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Appendix A: Definition of dot products for tensors

The products between quadratic nonlinear tensors G
and g and the displacement vectors u andX, in physical
and modal basis, respectively, are defined as follows:

Guu =
N∑

i=1

N∑

j=1

Gi j u j ui , (71a)

gXX =
N∑

i=1

N∑

j=1

gi j X j Xi , (71b)

whereGi j andgi j are theN-dimensional vector of coef-
ficients Gp

i j and gp
i j , for p = 1 . . . N . Note that in the

course of this paper, the summation is kept complete so
that all the terms in Eqs. (71a)–(71b) are present. This
is a choice of representation, the other choice (often
realised in literature) consisting in symmetrising the
tensor, given the fact that products u jui can commute.
In this case, a quadratic tensor is made symmetric such
that for example Gi j = 0 when j < i , so that the
summations can be written for j ≥ i only. Here, we
consider full tensors of coefficients without using their
potential symmetry.
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Similarly, the cubic nonlinear tensors H and h,
with current terms H p

i jk and h p
i jk , contract to an N -

dimensional vector when multiplied with three dis-
placement vectors. The cubic terms thus explicitly
write, in indicial components, with u and X the two
associated displacement vectors:

Huuu =
N∑

i=1

N∑

j=1

N∑

k=1

Hi jkuku j ui , (72a)

hXXX =
N∑

i=1

N∑

j=1

N∑

k=1

hi jk Xk X j Xi , (72b)

where again Hi jk is the N -dimensional vector with
entries H p

i jk , for p = 1, . . . , N . The innermost prod-
uct defined above coincides with a matrix product per-
formed on the last index of the tensors; amore extensive
definition of this notation is provided:

(Gu)i =
N∑

j=1

Gi j u j , (73a)

(Hu)i j =
N∑

k=1

Hi jkuk, (73b)

(Huu)i =
N∑

j=1

N∑

k=1

Hi jku j uk . (73c)

Same definition holds for the equivalent products in
modal basis.

Appendix B: Normal form coefficients

In this appendix, the nonlinear coefficients of the map-
pinggivenby the normal form theory are given in detail.
For the sake of brevity, only the coefficients appear-
ing in the simplified case where a single master mode
p is selected in the reduced model, are recalled. The
interested reader can refer to [53,57] for most com-
plete expressions covering all the cases, including also
damping. We begin with the second-order coefficients,
aspp, b

s
pp and γ s

pp coefficients, with p the master mode
and s a slave mode :

aspp = gspp
2ω2

p − ω2
s

−ω2
s

(
4ω2

p − ω2
s

) , (74a)

bspp = gspp
2

−ω2
s

(
4ω2

p − ω2
s

) , (74b)

γ s
pp = gspp

2

4ω2
p − ω2

s
. (74c)

The third-order nonlinear mapping coefficients are
equal to zero in the specific case when s = p. Their
full expressions for s �= p read:

rsppp =
(
Asppp + hsppp

) (
7ω2

p − ω2
s

)
+ 2Bs

ppp

(
ω4
p

)

(
ω2
s − ω2

p

) (
ω2
s − 9ω2

p

) ,

(75a)

usppp =
6
(
Asppp + hsppp

)
+ Bs

ppp

(
3ω2

p − ω2
s

)

(
ω2
s − ω2

p

) (
ω2
s − 9ω2

p

) , (75b)

μs
ppp =

6
(
Asppp + hsppp

)
+ Bs

ppp

(
3ω2

p − ω2
s

)

(
ω2
s − ω2

p

) (
ω2
s − 9ω2

p

) , (75c)

νsppp =
3
(
Asppp + hsppp

) (
3ω2

p − ω2
s

)
+ 2Bs

ppp

(
ω2
pω

2
s

)

(
ω2
s − ω2

p

) (
ω2
s − 9ω2

p

) ,

(75d)

where

As
ppp =

N∑

l=1

2gspla
l
pp, (76a)

Bs
ppp =

N∑

l=1

2gsplb
l
pp, (76b)

with gpl being the vector of quadratic coupling between
themastermode p and agenericmode l of the structure.

Appendix C: Linear change of coordinates from
physical to modal basis

The nonlinear force vector in physical basis reads:

F(u) = Ku + Guu + Huuu. (77)

The nonlinear force vector inmodal basis is in the form:

f(X) = �2X + gXX + hXXX, (78)

where the assumption of mass normalised eigenvectors
is used to retrieve the squared eigenfrequencies on the
diagonal of the matrix �2.
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The transformation from physical to modal basis
uses the full linear eigenvector matrix � and reads:

f(X) = �T F(�X). (79)

Expanding the right-hand side (RHS) term, it reads:

f(X) = �T K �X + �T G �X �X

+�T H �X �X �X. (80)

The relation between linear stiffness matrix in physical
and modal coordinates can easily be found by compar-
ing the linear terms in Eqs. (78) and (80), allowing one
to retrieve the classical formula:

�2 = �T K�. (81)

To relate the quadratic and cubic tensors in physical
basis to those in modal basis, it is necessary to expand
the term�X into the sum of all eigenvectors multiplied
by their modal amplitudes:

�X =
N∑

i=1

φi Xi , (82)

and substitute this sum into Eq. (80). By doing so, one
obtains:

�T G �X �X

= �T G
N∑

i=1

φi Xi

N∑

j=1

φ j X j

=
N∑

i=1

N∑

j=1

�T Gφiφ j Xi X j , (83a)

�T H �X �X �X

== �T H
N∑

i=1

φi Xi

N∑

j=1

φ j X j

N∑

k=1

φk Xk

=
N∑

i=1

N∑

j=1

N∑

k=1

�T Hφiφ jφk Xi X j Xk, (83b)

where this simplification comes from the rearrange-
ment of summations made in order to isolate the modal
amplitudes. Finally, comparing the RHS of Eq. (83)
with the definition of products given in Eqs. (71b)
and (72b) of “Appendix A” leads to:

gi j = �T Gφiφ j , (84a)

hi jk = �T Hφiφ jφk . (84b)

These two equations allow expressing the quadratic
and cubic coefficients of the modal basis from those
computed in the physical basis. Please note that the
obtained formula directly depends on the choice of the
representation used for the coefficients. Since we have
selected to keep full-order tensors of coefficients with-
out exploiting the symmetries arising from the fact that
the usual product is commutative, the obtained formula
are as in (84a)–(84b). If one chooses to use symmetric
tensors for the coefficients, then, for the quadratic term,
the relationshipwould have read gi j = 2�T Gφiφ j and
g j i = 0.

Appendix D: First- and second-order derivatives of
the nonlinear force vector

Given the definition of the nonlinear force tensor in
physical basis, one can show that:

(
∂F
∂u

)r

s
= ∂Fr

∂us
= Krs +

N∑

j=1

(Gr
s j + Gr

js)u j

+
N∑

j=1

N∑

k=1

(Hr
s jk + Hr

jsk + Hr
jks)u juk

= Kr
s +

N∑

j=1

2 Gr
s j u j

+
N∑

j=1

N∑

k=1

3 Hr
s jku j uk,

where this simplification is derived from the symmetry
of the quadratic and cubic tensors [34]. In compact
form, we can write:
∂F(u)

∂u
= K + 2Gu + 3Huu, (85)

and similarly, for the second-order derivatives:

(
∂2F
∂u∂u

)r

sp
= ∂Fr

∂us∂u p
= (Gr

sp + Gr
ps)

+
N∑

k=1

(Hr
spk + Hr

psk + Hr
pks

+ Hr
skp + Hr

ksp + Hr
kps)uk

= 2 Gr
sp +

N∑

j=1

N∑

k=1

6 Hr
spkuk
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and in compact form:

∂2F(u)

∂u∂u
= 2G + 6Hu. (86)

Appendix E: Derivation of modal derivatives

In this appendix, we derive the Taylor expansion of
the nonlinear eigenproblem defined by Eq. (17) and
recalled here for the sake of completeness:
(

∂F(u)

∂u
− ω̃2

i (u)M
)

φ̃i (u) = 0, (87)

Assuming small motions in the vicinity of the position
at rest, this nonlinear eigenproblem can be expanded
up to second order as:

(
∂F(u)

∂u
− ω̃2

i (u)M
)

φ̃i (u)

=
((

∂F(u)

∂u
− ω̃2

i (u)M
)

φ̃i (u)

) ∣∣∣∣
u=0

+
n∑

j=1

(
∂

∂R j

((
∂F(u)

∂u
− ω̃2

i (u)M
)

φ̃i (u)

)) ∣∣∣∣
u=0

R j

+ O(|R|2),

(88)

where the second term has been expanded along the
coordinates R j used for the reduced basis, and the
expansion has been written up to O(|R|2) terms, or
equivalently O(|u|2) terms. As the constant term of
the expansion, one retrieves the linear eigensystem of
Eq. (5), since the Jacobian of the nonlinear force vector
at u(R = 0) coincides with the linear stiffness matrix
K:

∂F(u)

∂u

∣∣∣∣
u=0

= K. (89)

Consequently, the first term of the expansion allows
recovering the i th eigenvalueωi aswell as the i th eigen-
vector φi .

To verify Eq. (17) up to first order, not only the con-
stant term, but also all the linear terms in R j ,∀ j =
1, . . . , N must be zero. By expanding the j th term,
one obtains the condition:
((

∂

∂R j

(
∂F(u)

∂u

)) ∣∣∣∣
0
− ∂ω̃2

i (R)

∂R j

∣∣∣∣
0
M

)
φi

+
(

K − ω2
i M
) ∂φ̃i (R)

∂R j

∣∣∣∣
0

= 0. (90)

In this equation, the sought modal derivatives are the

vector ∂φ̃i (R)

∂R j

∣∣∣∣
0
and the other unknown of the system is

the value
∂ω̃2

i (R)

∂R j

∣∣∣∣
0
. Moreover, by noticing that:

(
∂

∂R j

(
∂F(u)

∂u

)) ∣∣∣∣
0

=
(

∂

∂u

(
∂F(u)

∂u

)
∂u
∂R j

) ∣∣∣∣
0

=
(

∂2F(u)

∂u ∂u

) ∣∣∣∣
0
φ j , (91)

one can write Eq. (90) as:
(

∂2F(u)

∂u ∂u

) ∣∣∣∣
0
φ jφi − ∂ω̃2

i (R)

∂R j

∣∣∣∣
0
Mφi

+
(

K − ω2
i M
) ∂φ̃i (R)

∂R j

∣∣∣∣
0

= 0. (92)

The first term can be further simplified by recalling the
definition of the nonlinear force vector and the value of
the second derivatives of it given in Eq. (86), leading
to:

2Gφ jφi − ∂ω̃2
i (R)

∂R j

∣∣∣∣
0
Mφi

+
(

K − ω2
i M
) ∂φ̃i (R)

∂R j

∣∣∣∣
0

= 0. (93)

This is now an undetermined system of equation in the

unknowns ∂φ̃i (R)

∂R j

∣∣∣∣
0
and

∂ω̃2
i (R)

∂R j

∣∣∣∣
0
. To solve this system,

the additional equation of mass normalisation must be
introduced.

Following a similar approach, i.e. expanding in Tay-
lor series the nonlinear mass normalisation equation,
one obtains:

φ̃i (R)T Mφ̃i (R) − 1 =
(
φ̃i (R)T Mφ̃i (R)

) ∣∣∣∣
0

− 1 +
n∑

i=1

(
∂

∂R j

(
φ̃i (R)T Mφ̃i (R)

)) ∣∣∣∣
0
R j

+O(|R|2). (94)

The constant term is verified by the linear eigenvectors
φi , whereas the linear terms must be equal to zero. The
linear term in R j becomes the required complement to
Eq. (93). By expanding the derivatives in R j , it reads:

∂φ̃i (R)

∂R j

∣∣∣∣
T

0
Mφi + φT

i M
∂φ̃i (R)

∂R j

∣∣∣∣
0

= 0. (95)

In the usual case of symmetric mass matrix, the LHS
only reduces to one of its terms as they are equal. In
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light of this, the system that permits to evaluate the
modal derivatives reads:
[

K − ω2
i M −Mφi

−φT
i M 0

]⎧⎨

⎩

∂φ̃i (R)

∂R j
|0

∂ω̃2
i (R)

∂R j
|0

⎫
⎬

⎭ =
{
2Gφ jφi

0

}
.

(96)

Appendix F: Derivation of the two-dof system from
von Kármán beam equations

In this appendix, we give the detailed calculation for
obtaining all the coefficients of the two-dof model used
in Sect. 3.1, from the von Kármán beam model. As
described in Sect. 3.1.1, we only refer to the coupling
between the first flexural mode and the fourth axial
mode of a clamped–clamped beam. The eigenfunctions
and eigenvalues of these two modes can be found solv-
ing the linear eigenproblem for, respectively, flexural
and longitudinal vibrations.

Recalling Eq. (55) and focusing only on their linear
part read:

Ẅ (X, T ) + E I

δS
W

′′′′
(X, T ) = 0, (97a)

Ü (X, T ) − E

δ
U ′′(X, T ) = 0. (97b)

Equation (97a) can be solved assuming:

W (X, T ) = Q(T )Φ(X), (98)

where Φ(X) has to respect the clamped–clamped
boundary conditions, namely Φ(0) = Φ(L) =
Φ

′
(0) = Φ

′
(L) = 0. The first three conditions

are respected by the eigenfunction Φ(X) of arbitrary
amplitude A:

Φ(X) = A(cos kX − cosh kX)(sin kL − sinh kL)

−A(sin kX − sinh kX)(cos kL − cosh kL),

(99)

whereas this condition gives rise to the wavelength
equation:

cos kL cosh kL = 1. (100)

The first value of k > 0 that verifies the transcendental
Eq. (100) is the dimensional wavelength k1 of the first
flexural mode. Its eigenfrequency is then obtained by
solving Eq. (97a) and reads:

ω2
1 f = E I

δS
k41 . (101)

As for the fourth longitudinal mode, a similar
approach is followed. Imposing the separation of vari-
ables on U :

U (X, T ) = P(T )Ψ (X), (102)

and imposing the clamped–clamped boundary condi-
tions Ψ (0) = Ψ (L) = 0, one can find the eigen-
function that has now a simpler form being Eq. (97b)
a second-order differential equation in X . The first
boundary condition is verified by:

Ψ (X) = B sin κX , (103)

and the second one by the wavelength equation:

sin κL = 0. (104)

The dimensional wavelength of the fourth axial mode
is fourth value of κ > 0 that respects Eq. (104) equal
to κ4 = 4π/L . The eigenfrequency of the fourth axial
mode is then obtained from Eq. (97b) and reads:

ω2
4a = E

δ

(4π)2

L2 . (105)

Before operating the reduction that will produce
the two-dof system of ODEs, it is convenient to make
Eq. (97) non-dimensional with the following identities:

X = xL ,

T = tT0,

W = wh,

U = uh,

Q = qh,

P = ph,

and by introducing the additional quantities:

c = √E/δ,

β = k1L ,

σ = h/L ,

T0 = 1/ω1 f = √
12L2/(chβ2),

where the rectangular section assumption is used in this
equation to simplify I/S = h2/12. It is now possible
to rewrite Eq. (55) with respect to the new variables
x, t, w, u as:

h

T 2
0

(
w,t t + 1

β4w,xxxx − 12

β4σ

(
u,xw,x

)
,x
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− 6

β4

(
w,x

3
)

,x

)
= 0, (106a)

h

T 2
0

(
u,t t − 12

β4σ 2 u,xx − 12

β4σ
w,xw,xx

)
= 0, (106b)

which coincides with Eq. (56) multiplied by the
nonzero factor h/T 2

0 .
This system of equations can be reduced to a system

of ODEs using the equations for w and u now in their
non-dimensional form:

w(x, t) = q1(t)Φ1 f (x), (107)

u(x, t) = p4(t)Ψ4a(x), (108)

with:

Φ1 f (x) = α1(cosβx − cosh βx)(sin β − sinh β)

− (sin βx − sinh βx)(cosβ − cosh β)

Ψ4a(x) = α4 sin 4πx,

by projecting Eq. (106a) on the shape functionΦ1 f and
Eq. (106b) on the shape function Ψ4a .

The Galerkin projection of Eq. (106) leads to:

q1,t t + q1 − 2

σ
Gq1 p4 + Dq31 = 0, (109a)

p4,t t + 12(4π)2

β4σ 2 p4 − 1

σ
Cq21 = 0, (109b)

with the coefficients G, D, C being equal to:

G = − 6

β4

⎛

⎝
∫ 1
0 Φ

(
Ψ,xΦ,x

)
,x dx∫ 1

0 Φ2dx

⎞

⎠ , (110)

C = −12

β4

(∫ 1
0 Ψ

(
Φ,xΦ,xx

)
dx

∫ 1
0 Ψ 2dx

)
, (111)

D = − 6

β4

⎛

⎝
∫ 1
0 Φ

(
Φ,x

3
)
,x dx∫ 1

0 Φ2dx

⎞

⎠ . (112)

If the arbitrary amplitudes α1 and α4 are chosen to
have mass normalised eigenfunctions:

α1 :
∫ 1

0
Φ2dx = 1,

α4 :
∫ 1

0
Ψ 2dx = 1,

the quadratic coupling coefficients are symmetric G =
C = 1.23, the cubic coefficient is D = 2.67 and Eq. 57
is finally retrieved.
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