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Abstract The dynamic analysis of systems with non-
linearities has become an important topic inmany engi-
neering fields. Apart from the forced response anal-
yses, nonlinear modal analysis has been successfully
extended to such non-conservative systems thanks to
the definition of damped nonlinear normal modes.
The energy balance method is a tool that permits to
directly predict resonances for a conservative system
with nonlinearities from its nonlinear modes. In this
work, the energy balance method is extended to sys-
tems with non-conservative nonlinearities using the
concept of the damped nonlinear normal mode and
its application in a full-scale engineering structure.
This extended method consists of a balance between
the energy loss from the internal damping, the energy
transferred from the external excitation and the energy
exchanged with the non-conservative nonlinear force.
The method assumes that the solution of the forced
response at resonance bears resemblance to that of the
damped nonlinear normal mode. A simplistic model
and full-scale structure with dissipative nonlinearities
and a simplistic model showing self-excited vibration
are tested using the method. In each test case, res-
onances are predicted efficiently and the computed
force–amplitude curves show a great agreement with
the forced responses. In addition, the self-excited solu-
tions and isolas in forced responses can be effectively
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detected and identified. The accuracy and limitations of
the method have been critically discussed in this work.

Keywords Damped nonlinear normal modes ·
Force–amplitude responses · Frictional contact

1 Introduction

The dynamic responses of structures with various
nonlinear characteristics have become an important
research field that is able to improve the design of
future engineering structures. Most of the nonlinear-
ities involved in a complicated engineering system can
be generally classified by two main types: conserva-
tive nonlinearities and non-conservative nonlinearities.
Geometric nonlinearity can be seen as an example of a
conservative nonlinearity if viscoelasticity of material
is not considered and it has been widely explored by
many researchers [2]. Frictional contact is instead an
example of non-conservative nonlinearities, and it is
important for many engineering applications. In some
systems, the frictional contact, considered as a dis-
sipative nonlinearity, is able to provide the external
damping to reduce the vibrational stress under reso-
nance. The frictional damping has been widely used
and studied in the turbomachinery industry [15,19,20].
On the other hand, non-conservative frictional forces
can also provide energy to a system, as in the case
of brake-squeal models where self-excited vibrations
can be induced by full sliding frictional belts [10]. The
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energy dissipated by or gained from the nonlinear force
makes the system non-conservative and classical non-
linear modal analysis not applicable.

In the context of nonlinear modal analysis, the
nonlinear modes are computed and used to study a
dynamic system. The nonlinear modes are considered
as dynamic responses of a conservative autonomous
system with nonlinear characteristics. In a linear sys-
tem, the responses of free vibration are defined as nor-
malmodes. Unlike the linear normalmodes, superposi-
tion and orthogonality properties are not valid for non-
linear modes. The first definition of nonlinear modes
given by Rosenberg [23] defined the nonlinear normal
mode (NNM) as a vibration unison, where all points in
a structure reach their equilibrium position and their
extreme position simultaneously. However, the defi-
nition proposed by Rosenberg cannot explain internal
resonances. After that, many further developments of
the NNM have been proposed in [21,27]. Then, dif-
ferent methods are used to derive the NNM (e.g. nor-
mal form [12,28] or multiple scales [17]). Analytical
analysis of NNM unmasks the dynamics of nonlinear
autonomous system including energy dependence of
NNM, interaction and bifurcation ofNNM.To compute
the NNM of large scale structures, various numerical
methods were attempted [22], i.e. a shooting method
with continuation procedure [18]. However, most of
works mentioned above considered undamped NNM
with a periodic solution, i.e. system with conservative
nonlinearities. When non-conservative nonlinear char-
acteristics are taken into account, the NNMs are no
longer periodic and defined as damped nonlinear nor-
mal mode (dNNM) [24]. Shaw and Pierre defined the
dNNM using the concept of invariant manifold [25].
Then, Laxalde and Thouverez described a numerical
method to compute the dNNM using the extension of
complex nonlinear modes by solving complex eigen-
problems [16]. Thanks to the methods proposed in
[16], the dNNM of full-scale structures with frictional
contact can be efficiently computed. To obtain a peri-
odic based dNNM, Krack [14] developed a numeri-
cal method, namely extended periodic motion concept
(EPMC), where an artificial modal damping is intro-
duced into the system to compensate the energy dissi-
pated by the nonlinear forces. Compared to the numeri-
calmethod described in [16], this EPMCmethod is able
to provide a periodic solution and energy dissipated can
be effectively quantified by the artificial modal damp-
ing ratio. Therefore, EPMC is considered as an efficient

method to investigate frictional systems and used in this
work [11].

In an engineering perspective, the resonances in
forced responses are always considered as an impor-
tant topic for the issue of high cycle fatigue. At res-
onance, the dynamic response has a similar solution
than that of the nonlinear mode at a specific energy
level. In fact, backbone curves are sometimes seen as
the collection of resonance points for a varying value
of the excitation force. Based on these considerations,
an analytical method named energy balance method
(EBM) has been attempted by Hill [8] to predict where
the resonant solution of the forced response crosses
the underlying nonlinear mode. Before this EBM, sim-
ilar energy transfer analysis has been described in
[5,13,29]. Grenat used similar energy analysis to cal-
culate the non-conservative NNM based on NNM [6].
The EBM is originally developed for systemswith con-
servative nonlinearities using the theory of NNM and
successfully applied to a two-degree-of-freedom (DoF)
nonlinear oscillator [8]. EBM is also able to capture iso-
las in forced responses and isolated branches of non-
linear modes [9]. The method relies on the fact that, for
any steady-state response, the net energy transferred
into a system over one period of vibration must be zero
[8]. Moreover, the work of Cenedese and Haller [4]
uses Melnikov function analysis that defines the math-
ematical conditions under which the EBM is valid.

A novel extended energy balance method (E-EBM)
is described in this work and used to predict the res-
onance in systems with non-conservative nonlinear-
ities. In such systems with non-conservative nonlin-
earities, the energy dissipated or gained by nonlinear
forces needs to be taken into consideration. To do so,
the dNNMs are used instead of the NNMs. E-EBM is
tested and validated for three different test cases: a one-
DoF system with frictional contact, a two-DoF system
interacting with a moving belt and a full-scale joint
beam with contact interface.

The paper is organised as follows: the general non-
linear dynamic equations for a forced system and
autonomous system are given in Sect. 2; the method
to compute dNNMs is explained in Sect. 3; the E-EBM
is introduced and explained in Sect. 4; the results from
three test cases are investigated in Sects. 5–6; finally,
the benefits and the limitations of this E-EBM are criti-
cally discussed in Sect. 7 followed by the conclusions.
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2 System with non-conservative nonlinearities

The objective of this section is to describe the equation
of motion for a general nonlinear system. The gen-
eral dynamic equation to compute the nonlinear forced
response is expressed as Eq. (1), where M is the mass
matrix;K is the stiffnessmatrix;C is the viscous damp-
ingmatrix. Q

f
(t) is the displacement of the system, the

underline of the symbol is used to represent the vector,
and variable t does not appear explicitly in all equations
in this work. Fe is the external excitation force. Fnl is
the non-conservative nonlinear force. � is the excita-
tion frequency; γ is the excitation forcing level; ϕ is
the absolute phase of the excitation force. The forced
responses of a nonlinear system are computed by solv-
ing Eq. (1).

M Q̈
f
+ C Q̇

f
+ K Q

f
+ Fnl(Q f

)

= Fe(γ, ϕ,�, t)
(1)

The nonlinear modes are defined as the solutions of
the autonomous nonlinear systems. In an autonomous
system, the external excitation force and viscous damp-
ing term are not considered. Therefore, the general
equation of motion to calculate the nonlinear modes
is represented in Eq. (2), where Q is the displacement
along the nonlinear mode of the system.

M Q̈ + K Q + Fnl(Q) = 0 (2)

3 Nonlinear modal analysis

The general dynamic equations for forced responses
and nonlinear modes have been explained in the previ-
ous section. The objective of this section is to describe
the methodology used to compute the dNNMs for sys-
tems with non-conservative nonlinear characteristics.
For such systems, the dynamic solutions are typically
not periodic and the periodic-based definition of non-
linear modes is not applicable in the classic sense.
Therefore, the EPMC approach [14] is used to com-
pute the dNNMs. Based on the concept of dNNM, the
nonlinear modes and other modal properties are modal
energy-dependent and vary with the level of energy
within the system.

The energy dependency is achieved by introducing a
new parameter, modal amplitude α . The modal ampli-
tude α is used to quantify the modal energy within the
system. The modal displacements of the system are

expressed as Q = α · Q
0
, where Q

0
is the mass nor-

malised modal displacement. Furthermore, since the
total energy of the autonomous system is not conser-
vative, an artificial damping term is introduced into the
system to balance the energy dissipated or gained from
the nonlinear forces Fnl. The artificial damping term is
presented in Eq. (3), where ω0 is the energy-dependent
resonant frequencyof studied dNNMand ζ is themodal
damping ratio.

C̃ = −2ω0ζM (3)

The modal damping ratio ζ is either positive or neg-
ative and depends on the nonlinear force. In a system
with dissipative nonlinear forces, the modal damping
ratio is positive and the total energy of the autonomous
system is dissipated by the nonlinear force. However,
in a nonlinear system showing self-excited vibration,
the modal damping ratio is negative. In this case, the
energy is injected into the system due to the nonlin-
ear force. After introducing the modal amplitude and
modal damping, the dynamic equation of the nonlinear
autonomous system is rewritten as in Eq. (4). The mass
normalised modal displacements Q

0
, the resonant fre-

quencyω0 and the modal damping ratio ζ vary with the
modal amplitudeα. In an autonomous system, the abso-
lute phase of the mass normalised solution Q

0
is arbi-

trary. Therefore, to solve the equation above, a phase
normalisation constraint and amass normalisation con-
straint are required. Both constraints are applied in a
similar way with [26].

α · M Q̈
0
+ α · C̃ Q̇

0
+ α · K Q

0
+ Fnl(α · Q

0
) = 0

(4)

The harmonic balancemethod (HBM)with alternat-
ing frequency/time method [3] is used to solve Eqs. (1)
and (4). In this method, the continuous properties in
time domain Q are discretised based on Fourier series
into frequency domain (Qc

p+Qs
pi) as shown in Eq. (5),

where Nh is total number of the harmonics used and p is
order of harmonic. The dynamic equations are solved
in frequency domain by using HBM. The ω can be
excitation frequency � in a forced responses and reso-
nant frequency ω0 in the computation of dNNMs. The
detailed description of themethod can be found in [26].

Q =
Nh∑

p=0

real
{
(Qc

p + Qs
pi) · eipωt

}
(5)

In forced responses analysis, the evolution of the
nonlinear forced responses with respect to the excita-
tion frequency is expected, whereas in nonlinear modal
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analysis, the dNNMs and other modal properties are
required for a range of modal amplitude. The contin-
uation method is the numerical technique to track the
evolutionof the system for a specific chasingparameter.
Readers are invited to refer [1] for a detailed descrip-
tion of the formulations. In this work, a secant predictor
and arc-length corrector are used in the continuation
method.

4 Extended energy balance method

The methodology to compute the dNNMs for a system
with non-conservative nonlinearities is explained in
Sect. 3. The objective of this section is to describe theE-
EBM to predict the resonance in forced responses. The
idea behind EBM is that the solution of the nonlinear
forced response and that of the nonlinear mode share
similarities and, for small enough levels of damping and
forcing, these solutions can be assumed to be identical
and have been named ‘resonant shared solutions’[8].
This concept also applies to dNNM in that the solution
of the autonomous system bears resemblance with that
of the nonlinear forced response at resonance. In this
work, we extend the application of EBM from NNMs
to dNNMs.

In systems with non-conservative nonlinear charac-
teristics, the dNNMs of the system are computed firstly
and the E-EBM is applied to predict the resonances in
forced responses. The dynamic equation to calculate
the nonlinear forced responses is shown in Eq. (1). The
equation of motion for the computation of dNNMs is
represented by Eq. (4). The solutions at resonance Q

f
in nonlinear forced response are assumed to be same
as the dNNMs with certain level of modal amplitude
α, when the excitation frequency� equals the resonant
frequency ω0. The resonant shared solutions are here
called ψ . An example of resonant shared solution is
shown in Fig. 1, where the nonlinear forced response
and the dNNM are shown. In other words, the dNNM
with particular modal amplitude α is regarded as the
solution of nonlinear forced response at resonance with
a particular excitation forcing level, which is expected
to be predicted based on the E-EBM.

ψ = Q ≈ Q
f
,when � = ω0 (6)

Therefore, under resonance, the dynamic equation
of the forced system and autonomous system are rep-

Fig. 1 Demonstration of resonant shared solution between
damped nonlinear normal mode and nonlinear forced response

resented in Eqs. (7) and (8).

M Q̈
f
+ C Q̇

f
+ K Q

f
+ Fnl(Q f

)

= Fe(γ, ϕ, ω0, t)
(7)

M Q̈ − 2ω0ζM Q̇ + K Q + Fnl(Q) = 0 (8)

For each level of themodal amplitudeα, the resonant
shared solution ψ , the resonant frequency ω0 and the
modal damping ratio ζ are computed using the numer-
ical methods described in Sect. 3. For a given system
with known viscous damping term C and the vector of
the excitation force, the excitation forcing level γ and
the phase of the excitation force ϕ are expected to be
determined for each level of modal amplitude α using
such E-EBM. Recalling Eqs. (7, 8) and assuming that
the solution of the nonlinear forced response equals the
resonant shared solutionsψ , the subtraction of Eqs. (8)
to (7) must hold in its weak form.

The energy transfers caused by damping terms Ed

and forcing term Ef(γ, ϕ) are calculated by integrat-
ing the damping force and excitation force times the
velocity over one vibrational period 2π/ω0, as shown
in Eqs. (9) and (10).

Ed =
∫ 2π/ω0

0
(C + 2ω0ζM) · ψ̇ · ψ̇δt (9)

Ef(γ, ϕ) =
∫ 2π/ω0

0
Fe(γ, ϕ, ω0, t) · ψ̇δt (10)

For each solution point along the dNNM curve (see
an example in Fig. 1), i.e. for each value of the modal
amplitude α, the excitation force that generates a res-
onance at that point can be found by the E-EBM. In
Fig. 2, a typical scenario is provided; the energy trans-
fer caused by damping terms Ed is constant for a cer-
tain level of modal amplitude α, whereas the energy
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Fig. 2 The energy transferred by damping (Ed) for a fixed
modal amplitude α and the energy transferred by forcing terms
(Ef (γ, ϕ)) for different excitation levels γ with respect to the
forcing phase ϕ

exchanged by the external excitation Ef(γ, ϕ) varies
with the forcing phaseϕ and the excitation forcing level
γ . To determine the values of ϕ and γ is to find the sin-
gle intersection between the curve of Ef(γ, ϕ) and the
constant value of Ed that will occur at the maximum (if
Ed > 0) or theminimum(if Ed < 0) of Ef(γ, ϕ). If this
operation is applied to each value of the modal ampli-
tude α along the dNNM, the classic force–amplitude
curve can be built.

When the nonlinear force is non-conservative, the
modal damping ratio becomes nonzero. Depending on
the value of modal damping ratio, four different situa-
tions are possible:

(i) ζ > 0: When the modal damping ratio is positive,
the non-conservative nonlinear force in the system
provides external damping and the total energy of
the autonomous system is dissipated. In this case,
the total energy injected by the external excitation
force is required to balance the summation of the
energy dissipated by viscous damping and external
damping generated by the nonlinear force.

(ii) ζ < 0 and Ed > 0:Themodal damping ratio is neg-
ative meaning that the nonlinear force is injecting
energy into the system. Although, the energy dissi-
pated by damping terms is higher than the energy
injected by nonlinear force leading to a positive
Ed. In this case, the external excitation force has to
provide energy to the system to balance the differ-
ence between the viscous damping and the negative
modal damping generated by the nonlinear force.

(iii) ζ < 0 and Ed = 0:Themodal damping ratio is neg-
ative, and it perfectly balances the energy dissipated

by the viscous damping term, so Ed equals zero. In
this case, self-excited solutions can be found and
no external force is required to observe a periodic
solution, which coincides with the limit cycle oscil-
lation.

(iv) ζ < 0 and Ed < 0: The modal damping ratio is
negative, and it overcomes the energy dissipated
by the viscous damping term, so Ed is negative. In
this case, for periodic solution to exist, the external
force has to take energy out of the system.

In the following sections, three different test cases
are investigated: the first two cases refer to the (i) situ-
ation and the third one to the (ii–iv) situations.

5 Systems with dissipative nonlinearities

In this section, a one-DoF system and a full-scale joint
beam structure with frictional contact are studied. The
frictional contact involved is able to provide the fric-
tional damping, and the total energy of the system is
dissipated. In the system with dissipative nonlineari-
ties, a positive modal damping ratio is expected. The
dNNMs are calculated, and E-EBM is applied. The
results are numerically validated using the nonlinear
forced responses.

5.1 One-DoF system with frictional contact

A one-DoF system with frictional contact is tested as
shown in Fig. 3. In this test case, a simple mass–spring
model with tangential friction is considered. A Jenkins
element with constant normal load is used to model the
frictional force [31]. In this simplistic contact model,
there are two contact conditions, which are sticking
and sliding. The parameters of the system are given in
Table 1. A simple harmonic excitation force is consid-
ered in horizontal direction.

The resonant frequencyω0, themodal damping ratio
ζ and the predicted excitation forcing level γ are plot-
ted with respect to the amplitude of the tangential dis-
placement as shown in Fig. 4. The resonant frequency
for sticking contact condition is 213.3 rad/s. When the
amplitude is smaller than 5 mm, the mass is sticking
to the ground and the system is linear. The resonant
frequency ω0 remains as a constant; the modal damp-
ing ratio ζ is zero. In force–amplitude plot (Fig. 4c),
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N0

Fe(γ, ϕ, Ω, t)
k

c

m

kt

Fig. 3 One-DoF system with frictional contact

Table 1 Parameters for one-DoF system with frictional contact

Symbol Value Unit

m 1 kg

k 3.55e4 N/m

kt 1e4 N/m

c 0.01 Ns/m

N0 100 N

μ 0.5

the predicted excitation forcing level γ is linearly pro-
portional to the amplitude. An increase in amplitude
leads to a sliding contact condition. A softening effect
can be observed and the resonant frequencyω0 starts to
decreasewhen the sliding contact conditionoccurs. The
total energy of this autonomous system is dissipated
caused by the rubbing motion between the mass and
ground. A positive modal damping ratio ζ is achieved,
and maximum frictional damping is around 4.1%. The

predicted excitation forcing level γ increases nonlin-
earlywith the amplitude. To validate the predicted exci-
tation forcing level γ (force–amplitude plot), nonlinear
forced responses of this system under different excita-
tion forcing levels (1 N, 20 N, 40 N, 50 N and 60 N)
are computed.

The numerical validation is completed and shown
in Fig. 5. On the left, the evolution of amplitude with
respect to the predicted excitation forcing level (force–
amplitude plot computed from the E-EBM) is repre-
sented by black curve. For given excitation forcing
level, the solutions of the system are found and marked
in the figure by different colours. On the right, the evo-
lution of amplitude with respect to the resonant fre-
quency (resonant frequency–amplitude plot) as well as
the nonlinear forced responses is shown. The 3D view
(frequency–force–amplitude) of the dNNMand several
nonlinear forced responses is represented in Fig. 5b.
Generally, the E-EBM is able to provide accurate pre-
diction of the amplitude of the system under resonance
for a given excitation force as shown in Fig. 5a. To
achieve a better evaluation of the accuracy, the hystere-
sis loops under resonance from dNNM and nonlinear
forced responses are shown in Fig. 6. From the figure,
the hysteresis loops from dNNMare almost identical to
that from nonlinear forced responses under resonance.
To further demonstrate the accuracy of the E-EBM, for
each excitation forcing level, the amplitude |Q| calcu-
lated based on the E-EBM is compared with the ampli-
tude obtained from the resonance |Q

f
| in nonlinear

forced responses. The resonant amplitude and percent-

Fig. 4 Numerical results from damped nonlinear normal mode
within a range of modal amplitude for one-DoF system with
friction: a resonant frequency–amplitude plot; b modal damp-

ing ratio–amplitude plot; c force–amplitude plot using extended
energy balance method
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(a) (b)

Fig. 5 Using nonlinear forced response (1 N, 20 N, 40 N, 50 N
and 60 N) to validate the predicted excitation forcing level for
one-DoF system with friction: a left: force–amplitude plot using
extended energy balance method (black curve); right: resonant

frequency–amplitude plot (black curve) and several nonlinear
forced responses; b a 3D view of damped nonlinear normal
mode (amplitude–force–resonant frequency) and several nonlin-
ear forced responses

(a) (b) (c) (d) (e)

Fig. 6 Comparison of hysteresis loops from damped nonlinear normal mode (black curve) and nonlinear forced responses under
resonance (red dash-curve) for different excitation forcing level

age difference are calculated and listed in Table 2. From
the table, the resonant amplitude calculated from the E-
EBM shows a great agreement with the resonant ampli-
tude obtained from nonlinear forced responses. The
maximum percentage difference achieved is around
1.36%, when the excitation force is 60 N.

The error obtained in this case is mainly from the
numerical method. There is only mode in this one-
DoF system. The classic HBM is used to compute the
periodic solutions, which are decomposed into Fourier
series truncated to certain order of harmonics. In non-
linear forced response, the first-order harmonic excita-
tion is applied to this one-DoF system,whereas, in non-
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Fig. 7 Percentage differences for different harmonics and dif-
ferent excitation forcing level for one-DoF system with friction

linear modal analysis, the harmonics up to fifth order
are used to compute the dNNM. The physical theory
behind the E-EBM is that the energy exchanged by the
damping terms is balanced by the energy exchanged
by the excitation force. When the damping terms are
completely equal to the excitation force, the E-EBM is
expected to theoretically predict the actual resonance
with zero error for this one-DoF system. However, this
cannot be achieved in nonlinear systems. In a nonlin-
ear system, harmonicswith higher order can be excited,
even the excitation force is in first order. In Fig. 7, the
percentage differences for different harmonics (used in
computation of dNNM) and different excitation forc-
ing level are shown. The best prediction or smallest
percentage difference can be observed when only the
first order is used in the computation of dNNM. Apart
from that, according to Table 2 and Fig. 7, the per-
centage difference increases with the excitation forc-
ing level. In this one-DoF system, the higher excitation
force leads to more sliding and the nonlinear force has
higher impact on the periodic solutions.When the exci-
tation force is 1 N, as shown in Fig. 6a, the system is
almost linear (sticking contact condition) and harmon-
icswith higher order are negligible. Therefore, percent-
age error is almost zero, which can be considered as an

idea situation. In summary, the differences in amplitude
between the predicted resonance and actual resonance
are mainly caused by the higher order of harmonics
through the numerical computation.

5.2 Full-scale joint beam with contact interface

A full-scale joint beam with contact interface is tested
by the E-EBM, and the structure is shown in Fig. 8.
The contact interface between two beams is coloured in
yellow. This joint beam contains two 3D beams, which
are modelled by linear brick element. This full-scale
joint beam model has been well explained in [33], and
parameters of the model are given in Table 3. There
are 3003 nodes in total within the model and includ-
ing 121 contact pairs (242 contact nodes) within the
contact interface. For nonlinear dynamic analysis, non-
linear static analysis is completed in the first place by
using finite element software. The nonlinear static solu-
tion and contact pressure within the contact interface
are obtained and used for further dynamic analysis. A
3D node-to-node contact element which is made of two
1D Jenkins elements in tangential direction and a cou-
pling spring in normal direction is used to simulated the
frictional force within the contact interface, as shown
in Fig. 9. In this contact model, kt1 and kt2 are con-
tact stiffness in tangential direction and kn is normal
contact stiffness. The gap � or normal force N0 for
each pair of contact nodes is computed through non-
linear static analysis. The detailed description for this
3D node-to-node contact element can be found in [32].
There are three contact conditions, which are sticking,
sliding and separation. In the first place, the frictional
contact within the contact interface is modelled by lin-
earised contact stiffness. Then, the first four modes of
the linearised joint beam are computed and shown in
Fig. 10. Figure 10a, c shows the linearisedmode shapes
of thefirst and second in-plane bendingmodes. Thefirst

Table 2 Comparison of the
resonant amplitude for
one-DoF system with
frictional contact

Energy balance method (mm) Nonlinear forced response (mm) Percentage difference (%)

1 N 5.075 5.075 0.00

20 N 7.284 7.278 0.07

40 N 13.354 13.382 0.21

50 N 22.761 22.945 0.80

60 N 72.235 73.231 1.36
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Fig. 8 Full-scale joint beam with frictional interface (contact
interface is coloured in yellow)

Table 3 Parameters for full-scale joint beam with contact inter-
face

Symbol Value Unit

l1 40 mm

l2 140 mm

w 20 mm

h 5 mm

Young’s Modulus 116 GPa

Density 4.5e−6 kg/mm3

Poisson’s Ratio 0.32

Fig. 9 A 3D node-to-node
contact model: two 1D
Jenkins elements in
tangential direction and a
coupling spring in normal
direction

kt1 kt2
kn

Δ or N0

qn(t)
qt2(t)

qt1(t)

t̂2

t̂1 n̂

edge-wise flapping mode is shown in Fig. 10b, and the
first torsion mode is represented in Fig. 10d. The first
edge-wise flapping mode is studied in this test case.

The resonant frequencyω0, themodal damping ratio
ζ and the predicted excitation forcing level γ for the
first edge-wise flapping mode are represented with
respect to the displacement of the tip of the beam as
shown in Fig. 11. At the low level of vibrational ampli-
tude, the contact nodes within contact interface stay in
sticking contact condition and system is linearly.When
the system vibrates at lager amplitude, some contact
nodes start to slide and the total energy of the system
is dissipated. The results shown in Fig. 11 are typical
to the structures with frictional contact as explained in
Sect. 5.1.

To the validate the predicted excitation forcing level
in Fig. 11c (force–amplitude plot), the nonlinear forced
responses with excitation force 0.1 N, 0.2 N, 0.4 N,
0.8 N and 2N are computed and shown in Fig. 12a. The
3D view of the dNNM and nonlinear forced responses
is shown in Fig. 12b. From the figures, the amplitude
calculated from the E-EBMfor given excitation forcing

levels is very close to the resonant amplitude obtained
from the nonlinear forced responses. The comparison
of resonant amplitude calculated from the E-EBM and
nonlinear forced responses is listed in Table 4. The
maximum percentage difference is around 0.76%. To
further demonstrate the accuracy of the method, the
maps of contact status and energy dissipated within
contact interface are compared between the dNNMand
nonlinear forced responses under resonance. There are
121 contact nodes on each beam. In Fig. 13a, b, the
contact status is plotted within the contact interface,
where black squares represent the sticking condition
and red diamonds represent sliding condition. The map
of contact status from the dNNM looks similar with
the one from nonlinear dynamic response. As for the
map of energy dissipated, it is computed based on each
contact node by calculating the area within hysteresis
loop and shown in Fig. 13c, d. The total energy dissi-
pated from dNNM and nonlinear forced responses is
0.228 J and 0.241 J. From the distribution, the nodes
near the corners of the map shows the maximum damp-
ing ability (more energy dissipated). By comparing
the contact status and energy dissipation, the results
show a great agreement between the predicted reso-
nance using dNNM and resonant solution in nonlinear
forced response.

As discussed in Sect. 5.1, the main error shown in
the E-EBM comes from the numerical method used in
the computation the periodic solutions either in dNNM
or nonlinear forced responses. In these test cases, har-
monics of the same order are used inHBM. In Sect. 5.1,
a one-DoF system is tested and there is only one mode
within that system. However, in this test case, a full-
scale joint beam is analysed. For this 3D structure, the
forced responses are normally coupled by more than
one modes. The amplitude raised by other modes can-
not be taken into consideration. Therefore, the differ-
ences in resonant amplitude are mainly caused by the
other modes within the system.

6 System with self-excited solutions

The third test case is a two-DoF system interactingwith
a moving belt, and the description of such system is
shown in Fig. 14. A similar model has been introduced
to study the self-excited vibration in brakes [7,10]. The
variation presented here has been exploited to simulate
the tip rubbing problem between the blades and cas-
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Fig. 10 Mode shape for
joint beam: a first in-plane
bending mode (1010 rad/s);
b first edge-wise flapping
mode (3260 rad/s); c second
in-plane bending mode
(6060 rad/s); d first torsion
mode (13950 rad/s)

(a) (b) (c)

Fig. 11 Numerical results from damped nonlinear normal mode
within a range of modal amplitude for full-scale joint beam
with contact interface: a resonant frequency–amplitude plot; b

modal damping ratio–amplitude plot; c force–amplitude plot
using extended energy balance method

Table 4 Comparison of the
resonant amplitude for
full-scale joint beam with
contact interface

Energy balance method (mm) Nonlinear forced response (mm) Percentage difference (%)

0.1 N 0.044 0.043 0.48

0.2 N 0.081 0.081 0.16

0.4 N 0.087 0.087 0.27

0.8 N 0.094 0.093 0.25

2 N 0.103 0.104 0.76

ing within aero-engines [30]. In [30], a contact model
with only two contact conditions, which are separation
and sliding, is used. The parameters of the system are
given in Table 5. A simple harmonic excitation force is
considered in normal direction.

In [30], the undamped NNM of the system has been
studied and self-excited solutions are found. Themodal

interaction between the first and second modes occurs
through a 1:2 internal resonance, when the resonant
frequency of the first mode coincides with half of the
resonant frequency of the second mode. Underneath
this internal resonance, two self-excited solutions are
found.
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(a) (b)

Fig. 12 Using nonlinear forced responses (0.1 N, 0.2 N, 0.4 N,
0.8 N and 2 N) to validate the predicted excitation forcing level
for full-scale joint beam with contact interface: a left: force–
amplitude plot using extended energy balance method (black

curve); right: resonant frequency–amplitude plot (black curve)
and several nonlinear forced responses; b a 3D view of damped
nonlinear normal mode (amplitude–force–resonant frequency)
and several nonlinear forced responses

(a) (b)

(c) (d)

Fig. 13 Using nonlinear forced response 2 N to validate the
predicted excitation forcing level for full-scale joint beam with
contact interface: a, b map of contact status under resonance; c,

d map of energy dissipated under resonance; a, c from damped
nonlinear normal mode; b, d from nonlinear forced response
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Fig. 14 Two-DoF system interacting with a moving belt

Table 5 Parameters for two-DoF system interactingwith amov-
ing belt

Symbol Value Unit

m 1 kg

k1 1 N/m

k2 5 N/m

kn 1 N/m

c1, c2 0.06 Ns/m

θ 5π/12 rad

μ 0.5

Fig. 15 Nonlinear modal analysis for two-DoF system interact-
ing with amoving belt: undamped nonlinear normal mode (black
dash curve); damped nonlinear normal mode (black solid curve)

In this section, dNNM is used to find the branch
of all possible self-excited solutions; this branch lies
underneath the internal resonance and connects two
sides of the undamped NNM. In addition, the isolated
branches of forced periodic solutions as well as the res-

onant shared solutions are detected and predicted using
the E-EBM.

The amplitude of tangential displacement with
respect to the resonant frequency ω0 from nonlinear
modal analysis of the system is shown in Fig. 15. As
shown in the figure, the undamped NNM (black dash
curve) shows the modal interaction between the first
mode and second-order super-harmonic of the second
mode (a peak when resonant frequency ω0 is around
1.13). The solutions represented by undamped NNM
are conservative, and the modal damping ratio is zero.
Therefore, the self-excited solution cannot be observed
in undamped NNM. Applying the numerical method in
Sect. 3, the dNNM of the system is computed and it is
shown by the black solid curve in Fig. 15. A branch of
dNNM (black solid curve) is observed under the modal
interaction, and the solutions represented by this branch
are non-conservative and a negative modal damping
ratio is found. When the viscous damping applied to
the system can completely balance the negative modal
damping (Ed = 0), the self-excited solutions can be
observed. In other words, the branch of the dNNM can
be considered as the branch of the self-excited solutions
as shown in Fig. 16b, i.e. when the viscous damping
terms c1 and c2 are 0.06Ns/m, there are two self-excited
solutions of the system (grey diamonds in Fig. 16b).
When a higher viscous damping is applied into the sys-
tem, the two self-excited solutionswill move inside and
eventually merge to one solution when viscous damp-
ing terms c1 and c2 reach 0.07 Ns/m. If the viscous
damping added into the system is greater than the criti-
cal viscous damping (0.07Ns/m), the self-excited solu-
tions cannot be observable in the system.

Themode shapes of the dNNMwith different ampli-
tude are shown in Fig. 16. In Fig. 16a, there are five
points highlighted by grey markers: A and E are the
bifurcation points between the undamped NNM and
dNNM; B and D are two self-excited solutions when
viscous damping terms c1 and c2 reach 0.06 Ns/m. The
mode shapes or periodic solutions are demonstrated by
Qn − Qt plot, where Qn and Qt are displacement in
normal and tangential directions, respectively. The first
mode has a strong normal component, whereas the sec-
ond mode has strong tangential component. In all peri-
odic solutions, the 1:2 internal resonance is observable
in that the tangential component has double the period
than the normal one. Themodal damping ratios at point
A and E are zero and the area of their trajectories is null
because they are the points where the dNNMbifurcates
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(a) (b)

(c) (d) (e) (f) (g)

Fig. 16 A branch of self-excited solutions from damped non-
linear normal mode and several periodic solutions: a resonant
frequency–amplitude plot (selected self-excited solutions in grey
diamonds (B, D), three extra solutions marked by grey hexagon

(A, C, E)); b the value of viscous damping to obtain self-excited
solutions (self-excited solution c1 = c2 = 0.06 Ns/m marked by
grey diamonds); c–g periodic solutions for A, B, C, D, E in (a)

from the undamped NNM. By looking at the solutions
at point C in the middle, one may notice that it has
the maximum area and in fact it coincides with the
self-excited solution with the critical value of viscous
damping.

The resonant frequency ω0, modal damping ratio
ζ and the predicted excitation forcing level γ of the
dNNM are plotted with respect to amplitude of the tan-
gential displacement as shown in Fig. 17, when the
viscous damping terms c1 and c2 are 0.06 Ns/m. Two
self-excited solutions of the system are marked by grey
diamonds in Fig. 17. A negative modal damping ratio
ζ is observed as shown in Fig. 17b. In this case, the

contact force makes extra work on the system and total
energyof the autonomous system is increased due to the
non-conservative contact force. The force–amplitude
plot is shown in Fig. 17c. When the excitation forcing
level is zero, there are two resonant shared solutions
between the nonlinear forced responses and dNNM,
which are the self-excited solutions described above.
For a larger excitation forcing level (0 < γ < 0.0025),
it is expected to find four resonant shared solutions. In
this case, two isolated branches of the nonlinear forced
responses are expected. When the excitation forcing
level γ is great than 0.0025 N, there are only two reso-
nant shared solutions observed leading to one isolated
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(a) (b) (c)

Fig. 17 Numerical results from damped nonlinear normal mode
within a range of modal amplitude for two-DoF system inter-
acting with a moving belt (self-excited solution c1 = c2 =

0.06 Ns/m marked by grey diamonds): a resonant frequency–
amplitude plot; b modal damping ratio–amplitude plot; c force–
amplitude plot using extended energy balance method

branch of the nonlinear forced response. In summary,
from Fig. 17c, a zero excitation forcing level can lead
to two self-excited solutions; further increasing exci-
tation forcing level, two isolated branches of the non-
linear forced responses are expected; then these two
isolated branches will merge to one when excitation
forcing level is greater than 0.0025 N.

To validate the prediction of the isolated branch,
the nonlinear forced responses with viscous damping
c1 = c2 = 0.06 Ns/m and excitation force 0.001 N,
0.002 N, 0.0025 N and 0.003 N are computed and
shown in Fig. 18. For each subfigure in Fig. 18, on the
left side, the force–amplitude plot computed with E-
EBM is represented by a black curve; on the right side,
resonant frequency–amplitude plot and the nonlinear
forced responses are shown. The self-excited solutions
are marked by grey diamonds. The predicted resonant
shared solutions are highlighted by black markers. The
3D view (frequency–force–amplitude) of the dNNM
and several nonlinear forced responses is represented
in Fig. 19. In Fig. 18a, b, two isolated branches of the
nonlinear forced responses and four resonant shared
solutions are observed when excitation forcing level
is 0.001 N and 0.002 N, respectively, which corre-
sponds to the prediction in Fig. 17b. Recalling the four
possible situations introduced in Sect. 4, two different
behaviours can be observed in this these cases (0.001 N
and 0.002N). The two inner most resonant shared solu-
tions have a negative Ed, which means the excitation

force has to take the energy out of the system (see situa-
tion (iv) in Sect. 4). Instead, the two outermost resonant
shared solutions fall into the category of positive Ed

(see situation (ii) in Sect. 4). The accuracy of the predic-
tion for the casewith excitation force 0.002N is slightly
lower than the case with 0.001 N. Figure 18c, d shows
one isolated branch for each nonlinear forced response,
when excitation forcing level is 0.0025 N and 0.003 N,
respectively. For the case with 0.0025N, there are three
predicted resonant solutions: two outer resonant shared
solutions and one in the middle. The two outer most
belong to situation (ii) in Sect. 4, whereas the one in
the middle belongs to situation (iv). As for Fig. 18d,
there two resonant shared solutions predicted (situa-
tion (ii) in Sect. 4). All self-excited solutions (marked
by grey diamonds in Fig. 18) are examples of the sit-
uation (iii) in Sect. 4. The accuracy of the E-EBM is
lower than that of the first two test cases, especially in
the cases with 0.0025 N and 0.003 N. To achieve a bet-
ter understanding, the case with 0.0025 N is selected
and periodic solutions are shown in Fig. 20.

The dNNM (black curve) and nonlinear forced
response (orange curve) for the case with 0.0025 N are
shown in Fig. 20. All three predicted resonant shared
solutions are highlighted by the black squares and two
self-excited solutions in grey diamonds. The periodic
solutions of the two outer predicted resonant solutions
are shown by the black dash dot curve in the figure. The
orange dash dot curves represent the solutions obtained
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Fig. 18 Using nonlinear forced responses (0.001 N, 0.002 N,
0.0025 N and 0.003 N) to validate the predicted excitation forc-
ing level for two-DoF system interacting with a moving belt:
left: force–amplitude plot using extended energy balancemethod

(black curve); right: resonant frequency–amplitude plot (black
curve) and several nonlinear forced responses; self-excited solu-
tions marked by grey diamonds; predicted resonant shared solu-
tions are marked by black markers in (a–d)

from nonlinear forced response when it crosses with
the dNNM. From the figure, the predicted solutions are
very close to the one from nonlinear forced response.
However, there are no resonant solutions corresponding
to the predicted resonant shared solution in the middle.
The predicted resonance shared solution in the mid-
dle is underneath an internal resonance. In this case,
the first mode and second mode are strongly coupled,
leading to a lower accuracy. In other words, the accu-
racy of the E-EBM cannot be guaranteed under internal
resonance.

As described in Sect. 5.1, the resonance can be pre-
dicted based on the fact that net energy exchanged by
the damping terms and excitation force is zero. When
the damping terms mathematically equal the excitation
force, the method can provide perfect predictions. In
this test case, the excitation force is a simple harmonic

excitation applied in the normal direction, whereas,
from the periodic solution, the displacement in both
normal and tangential directions is found due to the
internal resonance. This similarity between excitation
force and damping term cannot be achieved in case of
internal resonance, thus explaining the inaccurate pre-
dictions observed in this test case. When the excitation
force has a different shape than the resonant shared
solution, some part of the energy can be injected into
other modes instead of the mode studied. This discrep-
ancy between the shapes of the excitation force and res-
onant shared solutions is considered as themajor source
of the inaccuracy. In addition, the classic HBM is used
as the numericalmethod to solve the nonlinear dynamic
equation. In this test case, the frictional contact shows
a great nonlinearity and non-smoothness. The harmon-
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Fig. 19 A 3D view of damped nonlinear normal mode (black
curve) and several nonlinear forced responses for two-DoF sys-
tem interacting with a moving belt

ics with higher order also have a great impact on the
accuracy of the prediction.

7 Discussion

TheEBM is extended to systemswith non-conservative
nonlinearities by using their dNNMs instead of their

NNMs. The E-EBM is used to predict the resonant
condition (resonant amplitude, resonant frequency and
modal damping under resonance) for a given excitation
force. This method has been applied to three different
test cases, and results are numerically validated by the
nonlinear forced responses. From three test cases stud-
ied, the advantages and limitations of the method will
be critically discussed in this section.

Firstly, the E-EBM is able to predict the resonant
condition for systems with non-conservative nonlin-
earities, i.e. system with frictional contact. Accord-
ing to the results from the first two test cases in
Sect. 5, the periodic solution of the nonlinear forced
responses under resonance can be effectively predicted
with higher accuracy. The maximum percentage dif-
ference in the resonant amplitude for first two cases
is 1.36% and 0.76%, respectively. A negligible differ-
ence is obtained between the predicted resonant solu-
tions and solution from nonlinear forced response. Sec-
ondly, the classic force–amplitude plot can be gener-
ated during the computation of the dNNMs. It is able to
identify the resonant amplitude according to the excita-
tion forcing level in an efficient way. Then, for systems
with self-excitedmechanism, the E-EBM is able to eas-
ily find the self-excited solutions. The method makes
the detection and track of the isolated forced responses
applicable. Finally, the EBM was only used in simple
systems (i.e. system with few DoFs) in the literature.

Fig. 20 Using nonlinear
forced response 0.0025 N to
validate the predicted
excitation forcing level for
two-DoF system interacting
with a moving belt: damped
nonlinear normal mode
(black curve); nonlinear
forced response (orange
curve); self-excited
solutions marked by grey
diamonds; predicted
resonant shared solutions
marked by black squares;
periodic solutions of
resonant shared solution
obtained from damped
nonlinear normal mode
(black dash dot curve) and
nonlinear forced response
(orange dash curve)
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This work has proven that the E-EBM can be applied
for real engineering problems by using their dNNM,
i.e. joint structures with contact interface.

The limitations of the E-EBM have been identified
in this paper from the investigation of three test cases.
The inaccuracy of the method can be mainly consid-
ered from two different aspects. The effect caused by
the numerical method is considered in the first place.
All three test cases are solved by using the classic HBM
method. In HBM, the continuous solutions are discre-
tised by Fourier series truncated to certain order. When
the solution of an system has a strong nonlinear charac-
teristic, higher order of harmonics shows a great impact
on the accuracy of the method (see Fig. 7). Secondly,
the effect from other modes can lead to a lower accu-
racy in the prediction of the resonance. In a complicated
structures, other mode can also contribute to the reso-
nant amplitude in a forced response. When the reso-
nant solution from the forced responses shows a strong
coupling between two modes, a lower accuracy can be
found for the prediction of the resonant amplitude.

Actually, there is no proof that the method can work
when an internal resonance is present. One can imag-
ine that when there is an internal resonance, a small
forcing on one mode will produce a large amplitude
response on the coupled mode. In that case, the method
can fail at predicting this response due to the orthogo-
nality between suchmodes. However, in the case tested
in this work, the E-EBM was applied to the branch of
self-excited solutions underlying the internal resonance
and not at the peak of the internal resonance where
only the coupled mode would have been responded. In
the computation of dNNM, the solutions calculated is
already the mixture of the two modes involved in the
internal resonance; thus, the method is able to provide
quite accurate predictions from the dNNM.

Frictional contact is a common type of non-
conservative nonlinear force and has been widely
explored in the literature. All three test cases in this
work can be seen as system with frictional contact.
However, other types of non-conservative nonlineari-
ties are expected to be tested using dNNMcoupledwith
E-EBM.

8 Conclusion

The major contribution of this paper is the extension
of the energy balance method to systems with non-

conservative nonlinearities. A one-DoF system with
frictional contact, a two-DoF system interacting with
a moving belt and a full-scale joint beam model are
tested. The method has been validated in a numeri-
cal way by comparing the predicted resonant solutions
using the extended energy balance method to the actual
resonant solutions obtained from forced responses.
Generally, the method is able to predict the resonance
for a given excitation force without the computation
of the nonlinear forced response. The classic force–
amplitude plot can be constructed during the compu-
tation of the damped nonlinear normal mode. Besides
the simplistic model, this work also attempts to use the
extended energy balance method to solve a real engi-
neering problem. In addition, the main features of the
isolated branches for a forced response can be directly
detected and tracked using the method. However, the
accuracy of the method is limited by the contribution
of the other modes in the forced responses, especially
in the case of internal resonance. The accuracy of the
method is also affected by the numerical method used
to solve the nonlinear dynamic problem. The extended
energy balance method coupled with damped nonlin-
ear normal mode can be used for engineering design
problem to dramatically reduce the computational cost
while ensuring an accurate prediction of the resonance
in the future.
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