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Abstract Policy makers around the world are facing

unprecedented challenges in making decisions on

when and what degrees of measures should be

implemented to tackle the COVID-19 pandemic.

Here, using a nationwide mobile phone dataset, we

developed a networked meta-population model to

simulate the impact of intervention in controlling the

spread of the virus in China by varying the effective-

ness of transmission reduction and the timing of

intervention start and relaxation. We estimated basic

reproduction number and transition probabilities

between health states based on reported cases. Our

model demonstrates that both the time of initiating an

intervention and its effectiveness had a very large

impact on controlling the epidemic, and the current

Chinese intense social distancing intervention has

reduced the impact substantially but would have been

even more effective had it started earlier. The optimal

duration of the control measures to avoid resurgence

was estimated to be 2 months, although would need to

be longer under less effective controls.
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1 Introduction

The outbreak of coronavirus disease 2019 (COVID-19)

led to a global epidemic [1]. The World Health

Organization (WHO) declared the outbreak as a Public

Health Emergency of International Concern and sub-

sequently a pandemic [2]. Several countries introduced

tough measures including lockdown of borders and

major cities, social distancing, and isolation of the

infected population. All these efforts were aimed at

controlling the spread of this highly infectious virus and

thereby to reduce severe illness in humans. However, it

is still unclear what role these intervention policies have

played in controlling the spread of the epidemic.

On March 27, 2020, at the time of writing this

paper, 4 months after the ‘‘first’’ case was reported

(December 8, 2019) [3], 81,394 infected cases had

been confirmed in mainland China with 3295 reported

deaths. Of these, 61.4% of the infections and 77.1% of

the deaths had occurred in Wuhan [4], the initiating

center of this outbreak. Globally, the USA, Italy,

Spain, Germany, France, Iran, UK, and Switzerland

now each have more than 10,000 confirmed cases [5].

Recent studies have shown that human mobility

plays a key role in the spread of epidemics [6–12].

Specifically, epidemic spread in urban networks can be

regarded as a reaction–diffusion process in which local

reaction occurs within cities, and city-wide diffusion is

driven by the human mobility across those cities [13].

However, most conventional epidemic spread models

(e.g., susceptible–infected–recovered, SIR) [14] cannot

fully account for the diffusion dynamics caused by

mobility, which are extremely important in highly

connected urban networks. The situation in Wuhan also

highlighted the role of human mobility in spreading and

controlling COVID-19. As a central transportation hub,

Wuhan has direct links to its surrounding cities and

most of the major cities in other parts of China

(Fig. 1a), which made the epidemic quickly spread to

China through the urban transportation networks. In

order to control the spread of the epidemic, Wuhan has

been ‘‘locked down’’ since January 23, 2020 [15], and

strictly controls population movement (Fig. 1b). In

terms of infected cases, the lockdown of the city has

achieved remarkable results, with fewer than 100 new

cases reported daily in Wuhan since March 6, 2020 (the

population of Wuhan is over 10 million) [16].

Right now, policy makers in all countries are facing

unprecedented challenges in making decisions on when

and what degrees of intervention measures should be

implemented to tackle the pandemic. Meanwhile, a

large number of publications provide medical and

policy support from different perspectives [17]. The

biological, clinical [18–21], and spreading characteris-

tics of the virus [3, 22, 23] have been extensively

discussed, and several modeling-based studies have

addressed the spread of the virus through human

migration [24–26], and different measure policies.

Literatures [27–30] review the modeling frameworks

on general disease dynamics and COVID-19 virus

transmission. However, few have modeled the effect of

intervention timing and its strength on controlling the

spread of the epidemic [31–34].

Here, by using a nationwide human movement

dataset, we developed a networked meta-population

model to estimate the spread of COVID-19 across 371

prefectural-level cities in mainland China under differ-

ent intervention scenarios. We found that both the time

of initiating an intervention and its effectiveness had a

very large impact on controlling the epidemic. Under

the least effective scenario, i.e., doing nothing, we

estimated that the virus would have infected over one

billion people, approximately 85% of the Chinese

population. By implementing a tough intervention as

imposed in Wuhan (city-wide quarantine, strictest

travel ban, minimized social contact, widespread testing

and isolation, etc.), the spread was reduced substan-

tially, and the cumulative infected population in China

was modeled to be 0.28 million (95% CI 0.178–0.604)

in 7 months, 0.02% of 1.18 billion with no intervention.

If the time of the intervention had been brought forward

by ten days, the estimated number of infected cases for

the same period would be 65,200 (95% CI

4100–13,900), which was a quarter of the tough

intervention case. For a less effective intervention, the

model estimated a tenfold increase in infected cases and

deaths, but even here if it was implemented earlier, the

number of the cases would reduce substantially.

2 Methods

2.1 Data

2.1.1 Population migration dataset

The city-level mobility network is constructed from

the Baidu Migration Project [35]. This dataset is
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calculated based on the movement of mobile phones

using Baidu location-based services. It includes two

parts: (1) a daily origin–destination matrix recording

the migration percentage Pt
ij of the top 100 inflow and

outflow cities for 371 prefecture-level cities in China.

The total population of these cities is 1.39 billion,

accounting for over 99% of the national population. Pt
ij

denotes the proportion of migration from the city j to i,

to the total population that moved out from the city j in

day t; and (2) a flux index Ft
j of the daily inflow and

outflow for each city j in day t. This index is

proportional to the number of mobile phone users

who migrate into or out of a certain city (Fig. 1a, b).

Both parts cover movements between January 1, 2020,

and February 7, 2020. To alleviate the fluctuation of

Pt
ij, an ‘‘average’’ mobility matrix P over the whole

period is derived, where Pij ¼ Rt Pt
ijF

t
j

� �
=RtF

t
j .

2.1.2 Case dataset

We collected city-level reported case data from the R

package nCov2019 [36], which includes the cumula-

tive number of confirmed, dead, and recovered

individuals each day in each city (Fig. 1c, d). To

estimate the parameters of our model, such as

incubation time, we also used individual case data

derived from the Wolfram database [37]. The original

sources of these case data are from the National Health

Commission, local health commissions, and Chinese

Centers for Disease Control and Prevention [38]. We

supplemented the cumulative confirmed case data

before January 10, 2020 (the start date of the case

dataset provided by the R package) with cases reported

by Li et al. [3].

Fig. 1 Population flow and the cumulative number of

confirmed cases. a Population flow from Wuhan to other cities

of China as of January, 2020. b Outflow index of Wuhan from

January 1, 2020, to February 7, 2020. The quarantine policy was

implemented on January 23, 2020. The outflow dropped

dramatically after that day. The dataset to calculate population

flow is detailed in Methods. c, d The number of cumulative

confirmed cases of four cities from R dataset in Hubei and five

main cities (see Sect. 2)

123

Investigating time, strength, and duration of measures in controlling the spread of COVID-19 1791



2.2 Model

2.2.1 The networked meta-population model

We extended the classic SIR model [39] by introduc-

ing two new health states, i.e., unconfirmed cases and

death, as well as taking into account inter-city human

mobility [9]. In our model, health states were defined

by susceptible, unconfirmed infectious, confirmed,

recovered, and dead (SICRD model). The setting of

the five-state model reflects the real-life situation in

which an infectious person may recover or die before

receiving a formal diagnosis (unconfirmed cases). The

model structure and the transition among the five

states are illustrated in Fig. 2a.

Specifically, health states were defined as follows:

• Susceptible state: healthy individual without

COVID-19; a person in this state can be infected

if they contact an infectious person.

• Unconfirmed infectious state: persons in this state

can be symptomatic or asymptomatic but they are

infectious. A person in this state can stay in the

same state, or move to a confirmed state, recovered

state, or dead state.

• Confirmed state: those with viral confirmation. We

have assumed that a person in this state will be

isolated; therefore, he/she will have no chance to

infect other people. A person in a confirmed state

can stay in the same state or move to recovered or

dead states.

Fig. 2 Schematic of the SICRD model, the initial conditions,

and timeline of the simulation. a Model schematic and initial

conditions. Sn, In, Cn, Dn, and Rn are the populations of the

states, and sn, in, cn, dn, and rn are the relative fractions of the

states, respectively, which can be easily calculated by dividing

S, I, C, D, and R with the city’s population. The explanation of

model parameters is listed in Table 1. As the initial condition for

Wuhan, the value of the I state is estimated by fitting the case

data (see SI Section 2). The number of confirmed cases, C = 57,

is based on Li et al. [3]. S, the initial susceptible number, is

assumed to be the city population size, which is collected from

city population data (https://www.citypopulation.de/). b The

timeline of the simulation
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• Recovered state: those who are cured and immune.

We have assumed that a person in this state would

not be infectious or be infected again.

• Death state: the deaths due to COVID-19

To be noticed that, our model is different from the

traditional SEIR model (susceptible, exposed, infec-

tious, and recovered). The people in the unconfirmed

infectious state contain the exposed state in the

conventional SEIR model. While in our model, we

assume that the infected cases are infectious

immediately.

Mathematically, the model is defined by the

following equations [see Supplementary Information

(SI) Section 1 for the derivation]:

osn
ot

¼ �R0

TL
snin þ x

X
m 6¼n

Pmn sm � snð Þ

oin
ot

¼ R0

TL
snin �

a
TL

in �
1 � a
TL

in þ x
X
m 6¼n

Pmn im � inð Þ

ocn
ot

¼ a
TL

in �
1

TR
cn

odn
ot

¼ b 1 � að Þ
TL

in þ
b
TR

cn

orn
ot

¼ 1 � bð Þ 1 � að Þ
TL

in þ
1 � b
TR

cn þ x
X
m6¼n

Pmn rm � rnð Þ

ð1Þ

where sn ¼ Sn=Nn; in ¼ In=Nn; cn ¼ Cn=Nn; rn ¼
Rn=Nn; dn ¼ Dn=Nn are the fractions of susceptible,

unconfirmed infectious, confirmed, recovered, and

dead individuals in city n, respectively, and Nn is the

population size of city n. P is the mobility matrix

calculated based on the migration data (see Sect. 2),

and 0�Pmn � 1 denotes the proportion of migration

from city n to the city m, to the total population who

left city n. Infectious people could move to other cities

to induce epidemic outbreaks in other cities. The

initial states are listed in Fig. 2a.

Detailed descriptions and estimation of parameters

R0, TL, TR, a, b, x, and Iwuhan 0ð Þ are shown in Table 1

and SI Section 2. TL, TR, and b can be estimated from

patient clinical records, and x can be estimated based

on the Baidu migration dataset, which is calculated

based on the movement of mobile phone users (see

Sect. 2). The remaining three free parameters R0, a,

and Iwuhan 0ð Þ need to be estimated with reported city-

level case data by fitting the number of confirmed

cases for all Chinese cities before February 7, 2020, in

order to minimize the loss function: min
R0;Iwuhan 0ð Þ;a

L ¼
P

n

P
t log10 cn tð ÞNnð Þ � log10 C�

n tð Þ
� �� �2

seeð
Methods and SI section 2Þ:

To solve this optimization problem, we use the

differentiable ODE solver implemented by the frame-

work of PyTorch [41]. The model and the estimated

parameters are robust to changes in other parameters

(SI Section 2). All the following results and the

Fig. 3 The functional form of the intervention and relaxation

term when t�\1. The two terms in Eq. (2) are symmetric along

the axis t ¼ t�. That is, we assume that the relaxation process

reverses the intervention process. When t\t�, n decays as an S-

shaped function of t because any policy needs time to

implement, while n grows in an S-shaped curve when t[ t�,

and this simulates the slow relaxation of intervention. The

detailed illustration of Eq. (2) can be read in SI Section 3

Fig. 4 Model validation. The x-axis is the time starting from

January 1, 2020, in days. The confirmed cases (lines with dots)

predicted by the model fit the reported case data (circles) well,

indicating the effectiveness of our model and parameters
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confidence intervals (CIs) are obtained after 360

repeated experiments (Table 1).

2.2.2 Intervention and relaxation

Further, we introduce an intervention term to simulate

the intervention strategy that the Chinese government

implemented to reduce contact or interaction among

the population. By leaving all the equations and

parameters unchanged in Eq. (1), we altered the model

by multiplying n to the infectious term, i.e., snin in the

first and the second lines of Eq. (1), such that:

n t; t0; t
�; kð Þ ¼ 1= 1 þ ek t�t0ð Þ�ln 1=��1ð Þ�

h

þ1=½1 þ ek 2t��t�t0ð Þ�ln 1=��1ð Þ
i
:

ð2Þ

There are three key parameters to describe the

intervention term n: (1) The initiating time t0 captures

the time when the government started to apply

intervention policies (e.g., traffic control, social dis-

tancing, and quarantine patients). (2) k models the rate

at which the intervention can take effect to reduce the

reproduction number from R0 to �R0; a larger value

means the spread can be reduced in a shorter time. � is

the ratio of an acceptable reproduction number that

can control the spread of the virus. (3) The timing t�

when we can relax the intervention. Overall, the term n
models the temporal and effective dimensions of an

intervention that governments use to prevent the

epidemic spreading. The functional form of Eq. (2)

is shown in Fig. 3. The values of t0, k, t�, and � are

presented in Table 2.

3 Results

3.1 Model validation

We validated the model by comparing the results

estimated from the model under the actual scenario

(the definition of different scenarios is detailed below)

with the observed cases reported in China. Figure 4

compares the model-predicted confirmed cases with

the reported confirmed cases at the national level. The

Table 1 Parameters of the SICRD model. We report the median values of R0, a, and Iwuhan 0ð Þ and mean values of TL, TR, and x with

95% CIs

Parameter Definition Value [95% Cl] Description

R0 Basic reproductive number 2.22

[2.15–2.33]

The average number of cases directly infected by

one infectious case in a meta-population. It is

estimated by fitting the number of confirmed cases

(SI Section 2)

TL Time spent in days from being infectious

(when the case can infect other people) to be

confirmed, recovered, or dead

8.3 [7.5–9.1] This is estimated based on patient medical records

(Fig. S3) [37]

TR Time span from confirmation to recovery or

death (no longer infectious, i.e., immune)

9.2 [7.4–11.0] By assuming the death and recovery events as

independent events, we can estimate TR based on

patient medical records [37]

a The proportion of confirmed cases among all

cases transferred from the unconfirmed

infectious state

0.93

[0.65–0.99]

This is the probability of an unconfirmed case being

confirmed after TL days. It is estimated by fitting

the confirmed case data

b The fatality rate 0.023 The average ratio of deaths to the total number of

infectious people for a certain period of time. The

value is from Ref [40]

x The average migration rate 0.03

[0.014–0.046]

The total traffic flux (based on the migration

dataset) between cities divided by the total

population in China, see SI Section 2

Iwuhan 0ð Þ The number of unconfirmed infectious cases in

Wuhan on January 1, 2020

414 [277–497] The initial condition for unconfirmed infected

people in Wuhan. It is estimated by fitting the

confirmed case data, see SI Section 2
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model predicted well beyond the time period for

parameter estimation, which demonstrates the validity

of our model. However, we notice that since February

7, the model and actual data have deviated in

individual cities (Table S4). This is likely to be due

to the fact that Wuhan has changed the diagnosis

criteria to include all clinical confirmed cases, while

the rest of the cities still used the same diagnoses tool

as before. The details of error analysis can be referred

to SI Section 3.3.

Our model can also predict the number of ‘‘real’’

infected people (confirmed ? unconfirmed infec-

tious), as shown by the straight lines in Fig. 4. The

results show that the real situation was likely to be

much more serious than the reported data for all cities,

especially those in Hubei Province. For example, our

model predicted that the total number of infectious

(confirmed ? unconfirmed infectious) cases in

Wuhan was more than three times than the confirmed

number at most time points, and seven times higher at

the beginning of the epidemic [155 reported cases and

1140 (95% CI 760–1680) model-predicted cases, as of

January 7, 2020]. The large gap between the numbers

of confirmed and infected cases in Wuhan was

documented in a recent study [42]. This reflects the

fact that a large number of infectious people could not

obtain any appropriate treatment due to the limited

medical resources in Wuhan, and/or they had only

mild symptoms or were even asymptomatic.

3.2 Scenario analysis

We ran the model for 200 days (from January 1, 2020,

to July 18, 2020). We will discuss the simulation

results under five scenarios: (1) base case scenario:

without intervention; (2) actual scenario: with inter-

vention started from January 23, 2020, and reduced the

reproduction number to �R0 ¼ 0:002 within five

weeks; (3) early action scenario: same as the actual

scenario but the intervention was implemented ten

days earlier; (4) less effective scenario: same as the

actual scenario but weaker intervention strength; and

(5) early action but less effective scenario: same as the

early action scenario but weaker intervention strength.

3.3 Base case scenario (without intervention)

According to our estimation, 1640 (95% CI

1220–1910) infectious cases were exported from

Wuhan to all over the country before January 23,

2020, when the city-wide quarantine intervention

policy was implemented.

The dynamics of some representative cities are

shown in Fig. 5. There are two key findings. First,

there would be two peaks in the spread of the disease

(Fig. 5). The first peak would be the cities in Hubei

Province, e.g., Wuhan, Xiaogan, and Huanggang. The

second peak would be large cities such as Guangzhou.

In those cities, this peak would be delayed by

approximately three to four weeks compared with

Wuhan. Second, the city with the most infections

would be Chongqing (not Wuhan) because Chongqing

has the largest population in China. Several other large

cities (e.g., Beijing, Shanghai, and Guangzhou) would

have more infections than Wuhan. The cumulative

number of infectious cases for mainland China would

be 1.18 billion (95% CI 1.16–1.22), accounting for

85% of the population of China.

Table 2 Parameters of the intervention and relaxation terms in SICRD model

Parameter Definition Value

[95%

Cl]

Description

t0 The time span from January 1, 2020, to the

implementation of the intervention policy

22 or 12 Wuhan reduced the inter-city traffic on January 23, 22 days

after January 1, the initial reports of COVID-19 cases [15]

k The speed of the intervention

implementation

[ 0 How fast the intervention can take effect to reduce the spread

of the virus, i.e., to reduce R0 to �R0

� The ratio of an acceptable reproduction

number to R0 that can control the spread

0.001 If the reproduction number is reduced to �R0, then intervention

could stop

t� The date when the intervention begins to

relax

[ t0 The critical value of t� such that the number of infectious

cases will never rise again
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3.4 Actual scenario (t0 ¼ 22; k ¼ 0:4; t� ! 1)

The Chinese government implemented strong inter-

vention policies to prevent the spread of the epidemic.

For example, most cities in Hubei Province closed

their inter-city transportation and implemented strict

control over intra-city traffic. Schools and factories

were closed, and only few daily necessities stores were

allowed to open. Therefore, to derive better simulation

results, we incorporated these interventions into the

model as shown in Eq. (2).

Our model shows that if interventions could

significantly reduce the reproduction number to �R0 ¼
0:002 in a short time window (* 35 days, k ¼ 0:4)

after the outbreak, which was close to the real situation

in China, the peaks of the infected individuals of

Wuhan, Huanggang, Chongqing, and Shanghai would

reach 48,000 (95% CI 22,300–176,100), 12,600

(10,600–14,800), 1770 (1430–220), and 1770

(1430–2250), respectively (Fig. 6a, b) and the cumu-

lative infected population for the whole simulation

period would be approximately 284,000

(178,000–604,000) for the entire country, approxi-

mately 0.02% of the base case scenario.

The predicted trend of the epidemic fits well with

the latest data, with the predicted curves peaking in

mid-February (Fig. 6a, b). However, cities may have

different behaviors due to the variation in intervention

strength, which cannot be reflected in our model

because all the modeled parameters were shared

among all cities.

The model predicted that a total of 6500 (95% CI

4100–13,900) people would die as a result of COVID-

19 in China out of 284,000 infected cases. In fact, as

treatment levels continue to improve, the fatality rate

may decrease, and the corresponding total number of

deaths may also fall below this predicted value.

3.5 Early action scenario

(t0 ¼ 12; k ¼ 0:4; t� ! 1)

In this scenario, we assumed that the government

implemented a strict intervention policy ten days

before the actual date, i.e., January 13, 2020 (t0 ¼ 12),

while the control intensity is the same as in the

previous scenario (k ¼ 0:4). The simulation shows

that the infected population would still reach a large

number of people (14,000, 95% CI 7100–40,400) in

Wuhan, while the number would be less than one-third

of the number in the actual scenario and the peaks

would arrive ten days earlier (Fig. 6c). The early

action scenario would have a larger reduction in the

size of the affected population across the entire

country, and the cumulative infected population would

be 65,200 (95% CI 42,000–120,900) and the total

number of deaths would have been 1500 (95% CI

970–2780) or only a quarter of the predicted actual

scenario. This shows the importance of early inter-

vention. According to our simulation, the infected

population and the number of deaths would decay

exponentially with the advance of intervention time, at

a rate of 0.212 (95% CI 0.208–0.219) in a log2 base,

indicating that if the intervention time was advanced

by 5 days, the total number of infected people would

be reduced to half of the present total. This conclusion

is similar as in [32].

3.6 Less effective scenario

(t0 ¼ 22; k ¼ 0:2; t� ! 1).

We also consider a less effective scenario in which the

intervention strength is weaker than the actual situa-

tion which means the reproduction number would be

reduced to �R0 ¼ 0:002 in about 70 days (k ¼ 0:2),

the infected individuals in Wuhan would peak at 0.27

million (95% CI 0.12–1.15) in early March (Fig. 6e).

The total number of deaths in mainland China would

increase to 63,000 (95% CI 38,700–149,800).

Fig. 5 Basic case scenario without any intervention. The y-axis

is the existing confirmed and infected populations
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3.7 Early action but less effective scenario

(t0 ¼ 12; k ¼ 0:2; t� ! 1).

This scenario corresponds to the policy that most of

European countries have implemented, that is imple-

menting the intervention earlier (t0 ¼ 12) but with less

strict enforcement (k ¼ 0:2). The predicted number of

cumulative infectious cases and death cases would be

652,000 (95% CI 403,000–1,490,000) and 15,000

(9270–34,200).

We summarize the predicted cumulative infected

and confirmed cases after the epidemic in different

scenarios in Fig. 6.

3.8 Intervention relaxation

(t0 ¼ 22; k ¼ 0:4; 0\t�\1)

Under the actual scenario (k ¼ 0:4; t0 ¼ 22), the

earliest date t� across all cities to relax the intervention

to avoid resurgence is around the 81st day (i.e., March

Fig. 6 Epidemic predictions under different scenarios of policy

intervention. The actual (a, b), early action (c, d), less effective

(e, f), and early but less effective scenarios (g, h) for four cities

in Hubei Province and five main cities of China. The y-axis is the

existing median confirmed or infected populations. i, j The

phase diagram of the cumulative number of confirmed (i) and

death (j) cases under different intervention starting dates t0 and

strengths k
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22, 2020), that means the tough intervention should be

maintained for about eight weeks. In the early action

but less effective scenario, the measure would have to

be maintained for about 12 weeks, see SI Section 3 for

details.

4 Discussion

In this study, we proposed a five-state model and

estimated the spreading dynamics of COVID-19

within China by analyzing the latest national popula-

tion mobility data. The model can capture the early

exponential growth of the outbreak at the city level, as

well as perform scenario analyses based on different

strengths of prevention interventions and time of start

and relaxation.

Both the time of starting an intervention and its

strength play important roles in controlling the

outbreak size. Without any population intervention,

the virus would have spread extensively through the

population with over one billion cases (* 85% of

population) in China and with nearly 27 million

deaths. The current Chinese city policy has reduced

the impact substantially but would have been even

more effective had it started earlier.

Our model shows that the intervention needs to be

sustained for about eight weeks to prevent a recurrent

epidemic. Moreover, if it had been less effective in

preventing population mixing, which may be the case

in many other countries, then the number of cases and

deaths would increase significantly, and by tenfold

under the assumptions of our less effective scenario.

Our estimation of the basic reproduction number R0

is slightly lower than some previous literature: 2.47–

2.86 [23], 2.28–3.68 [22], and 2.39–4.13 [26], as we

estimated this using the actual data to February 7,

which includes two weeks after effective measures to

reduce population mixing began in China. Comparing

our findings with others then for the number of

infected cases, our prediction for Wuhan is smaller

than some recent works: 37,304–130,330 as of January

25 [24] and 11,090–33,490 as of January 22 [31]

because they may have overestimated R0 or did not

take the strong intervention into account. In other

major cities, our result is broadly consistent with

others [24].

Our work demonstrates the value of data sharing

and information disclosure [43]. All the data used in

this article came from public sources, including data

released by large companies (migration data), as well

as by start-ups such as DXY.cn, a Chinese physician’s

platform [44]. We notice that many volunteers are also

working on collecting data via crowdsourcing, and

several applications have been developed immediately

[45].

However, despite adopting a state-of-the-art mod-

eling framework, we must acknowledge that our

model has several major limitations. First, we assume

that different cities share the same model parameters.

However, the geographical location, demographic

structure, and level of city governance of different

cities are different, and thus, the actual disease

transmission parameters are likely to be different.

Second, the case data and mobile phone data used in

training the model are as of February 7, 2020, and the

fatality data are also based on the results of early

patient studies [40]. If updated and more recent data

were added, the model’s predictive performance could

be improved (SI Section 3). Third, our model did not

consider imported or exported cases between China

and other countries. Given global mobility network

data and reported case data, further analysis can be

extended to simulate infection in different countries,

which could be of crucial importance for public health

planning, transportation intervention, and logistics

support at the current stage, when large-scale out-

breaks of COVID-19 are happening in Europe, Iran,

and other regions.

The intense social distancing intervention in China

has been effective in limiting the scale of the epidemic

but needs to be sustained. The model suggests that

delay in start and a less effective intervention would

increase the number of cases and deaths substantially

and prolong the period of social distancing and other

control measures.
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