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Abstract The aim of this comment is to show that
discovery of hyperchaos in three systems investigated
in Li et al. (Nonlinear Dyn 94(3):1703–1720, 2018)
is not correct. It is justified both theoretically and
numerically. Corrected calculations of Lyapunov expo-
nents and corresponding bifurcation diagram are given.
Examples of hyperchaotic Hamiltonian multiple pen-
dulum systems are presented.

Keywords Chaotic and hyperchaotic Hamiltonian
systems · Lyapunov exponents · Bifurcation diagrams

1 Introduction

Chaos and hyperchaos in nonlinear dynamical systems
are well-known but still fascinating phenomena. We
can find many interesting applications of chaotic and
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hyperchaotic systems in various fields of science. How-
ever, it seems that the hyperchaos in Hamiltonian sys-
tems still does not attract sufficient attention. The aim
of the authors in [1] was to propose a Hamiltonian sys-
tem with two degrees of freedom and its restricted ver-
sions with a holonomic or a non-holonomic constraint
exhibiting hyperchaotic phenomena.

We show in this comment that hyperchaos can-
not appear neither in Hamiltonian systems with two
degrees of freedom nor in its restricted versions with
a holonomic or a non-holonomic constraint. This fact
follows from the well-known properties of Lyapunov
exponents for Hamiltonian systems. Incorrect conclu-
sions of [1] were caused probably by insufficient accu-
racy of numerical calculations, or by too small number
of iterations. Moreover, the initial conditions chosen
in [1] for restricted Hamiltonian systems do not satisfy
equations of constraints.

Having in mind the importance of the subject and
in order to be constructive, we show hyperchaotic phe-
nomena in Hamiltonian systems with more than two
degrees of freedom through examples with triple and
quartic pendula.

This comment is organized as follows. In Sect. 2,
we recall basic properties of Lyapunov exponents that
will be used in explanations of results of our correc-
tions made for numerical calculations in [1]. In Sect. 3
will be presented the basic Hamiltonian system consid-
ered in this article and with preliminary explanations
and description of its dynamics on the base of Poincaré
sections. Section 4 contains corrected Lyapunov expo-
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nents spectra with the corresponding bifurcations dia-
grams. Section 5 concerns the restricted version of the
considered Hamiltonian system with a holonomic or
a non-holonomic constraint. It starts from the general
explanations concerning the applied restriction proce-
dure. Then in two subsections is considered the anal-
ysed Hamiltonian system with a holonomic or a non-
holonomic constraint, respectively. Finally, in Sect. 6
we show the true hyperchaotic dynamics in Hamilto-
nian multiple pendulum systems.

2 Properties of Lyapunov exponents

Let us consider the general autonomous system of ordi-
nary differential equations

ẋ = v(x), x ∈ R
n . (1)

Let y = R(x)will be an invertible transformation. The
transformed system takes the form

ẏ = R′(R−1(y))v
(
R−1( y)

)
, (2)

where R′ denotes the Jacobi matrix of the transforma-
tion with respect to its argument. If the vector field v

has the property

R′(R−1(y))v
(
R−1( y)

)
= −v( y) (3)

or equivalently

R′(x)v(x) = −v (R(x)) , (4)

then we say that system is time reversal because trans-
formation (x, t) → (R(x),−t) preserves the form of
system (1). For time-reversal systems, if λ is a Lya-
punov exponent, then also −λ is a Lyapunov exponent
[2–4].

Themost known symmetry of this type is R(q, p) =
(q,− p) for classical Hamiltonian systems. Benettin
et al. in [5] proved that for a Hamiltonian system the
Lyapunov exponents obey the pairing rule

λi = −λN+i , i = 1, 2, . . . N , (5)

where N denotes the number of degrees of freedom.

Symmetries and conservation laws have also influ-
ence on a spectrum of Lyapunov’s exponents. Namely,
their presence manifests itself by vanishing of expo-
nents, see Sec. 2.5.6 in [6]. For an autonomous dynam-
ical system, its invariance with respect to time shift,
which gives one zero Lyapunov exponent, is the exam-
ple of such symmetry. Preservation of volume in the
phase space implies that sum of all Lyapunov expo-
nents must be equal zero, see, for example, Sec. 2.3 in
[7]. Finally, zero exponents may also (non-generically)
occur at bifurcation points, where some direction is
(linearly) marginally stable and for periodic or quasi-
periodic orbits [6,7]. For dissipative systems the sumof
all Lyapunov’s exponents must be negative. Moreover,
the Lyapunov exponents characterize the attractor, see
e.g., Sec. 5.3 in [8].

For autonomousHamiltonian flows, one pair of Lya-
punov’s exponents is always zero due to time shift con-
tinuous symmetry and conservation in time of Hamil-
tonian. Moreover, the presence of any additional first
integral, functionally independent with the Hamilto-
nian, leads to vanishing of another pair of Lyapunov’s
exponents. Thus, the determination of a full spectrum
of Lyapunov’s exponents can be used as an indicator
of a number of independent integrals of motion that a
considered dynamical system may possess. A detailed
explanation can be found in the classical books [6,9–
11], while for the rigorous proofs please consult [2,5].

According to the generally accepted terminology for
autonomous differential systems, chaos appears when
at least oneLyapunovexponent is positive,while hyper-
chaos is manifested by at least two positive Lyapunov
exponents. Thus, the minimal dimension for a dissipa-
tive non-time-reversal hyperchaotic system is 4 as, for
example, in the first hyperchaotic system due to Rösler
[12], and for time-reversal ones, the minimal dimen-
sion is 5 [13]. For Hamiltonian systems, hyperchaos
can appear when the number of degrees of freedom is
at least 3.

3 Description of the system its dynamics and
motivation

General three-parameter family of Hamiltonian system
analysed in [1] is given by the Hamiltonian function

H = T + V,

T = 1

2

(
p21 + p22

)
,
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Hyperchaos in constrained Hamiltonian system 641

V = − θ

2

(
q21 + q22

)
+ ηq1

(
q2 − η

2
q1

)
+ β

4

(
q41 + q42

)
,

(6)

where (q1, q2) are the generalized coordinates and
(p1, p2) their corresponding momenta, and θ, η, β ∈
R

+. Equations of motion generated by Hamiltonian (6)
are the following

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

q̇1 = p1,

q̇2 = p2,

ṗ1 = (θ + η2)q1 − ηq2 − βq31 ,

ṗ2 = −ηq1 + θq2 − βq32 .

(7)

Since evolution of system (7) takes place in a four-
dimensional phase space, we can get a quick insight
into its dynamics bymaking several Poincaré cross sec-
tions for fixed values of the parameters, for instance,
β = 1, θ = 1, η = 0.01. Points creating patterns pre-
sented in Fig. 1 were obtained as traces of intersec-
tions of orbits calculated numerically with a properly
generic surface of section q2 = 0 with p2 > 0, in a
three-dimensional hypersurface defined by a constant
energy level H = E . Figures are ordered according to
increasing energy of the system. They show that, for the
chosen values of the parameters, the system possesses
chaotic behaviour and it is in general not integrable. As
typical in Hamiltonian systems, we can observe a coex-
istence of three types of motion: periodic (finite num-
bers of points of orbit), quasi-periodic (closed loops)
and chaotic (scattered points). We do not observe an
appearance of strange attractors because Hamiltonian
systems are divergence-free, and thus, there are no con-
tractions of volume in the whole phase space (see Liou-
ville theorem). Thus, it is unclear why the authors of [1]
have used the notion of “hyperchaotic attractor” in the
captions of Poincaré maps visible in Figs. 10, 11, 16 of
paper [1], which is misleading.

Although the periodic, quasi-periodic and chaotic
behaviour of the system can be easily detected in the
Poincaré sections, its hyperchaotic behaviour can be
recognized only in their Lyapunov exponents spectrum.
Indeed, authors of the paper [1] have been searching for
hyperchaotic behaviour of system (7) by computing the
Lyapunov spectrum for certain values of the parame-
ters. Let us mention just three of them. Namely, for the
chosen initial condition

(q10, q20, p10, p20) = (1, 0.1, 0.01, 0.001), (8)

and for specified values of the parameters

θ = 1, η = 0.01, β ∈ [0.1, 10], (9)

β = 1, η = 0.01, θ ∈ [0.1, 10], (10)

θ = 1, β = 1, η ∈ [0.001, 10], (11)

they calculated Lyapunov’s exponents spectra using
MATLAB, without specifying by which method/
algorithm these exponents were calculated. The results
are depicted in Figs. 2, 4 and 5 in [1]. Surprisingly
enough, the obtained spectra show that system (7) is
hyperchaotic for a wide range values of the parame-
ters. Moreover, for θ = 1, η = 0.01 over the range
β ∈ [1.131, 1.735], the system has three positive Lya-
punov exponents.

As it is explained in Sect. 2 for a two-degree-of-
freedom Hamiltonian system, such as system (7), the
Lyapunovexponents spectrum is symmetric about zero,
i.e. � = {λ, 0, 0,−λ}. Depending on chosen initial
conditions, periodic and quasi-periodic motions man-
ifest through all zero Lyapunov exponents, while for
chaotic orbit we have λ > 0. From the fundamental
reasons, these systems cannot possess a hyperchaotic
behaviour as the authors of [1] claimed. In fact, Figs. 2,
4 and 5 in [1] show that accuracy of numerical calcula-
tions is not sufficient because twoLyapunov exponents,
which should vanish, differ significantly from zero.

In the next section, we give properly calculated Lya-
punov exponents spectra of system (7) for the same
values of the parameters and initial conditions as the
authors of the work [1] have done.

4 Lyapunov exponents spectra and bifurcations
diagrams for system (7)

Algorithms for computing the numerical values of Lya-
punov’s spectra of continuous dynamical systems have
been well established over the years [5,14–20]. These
different methods are mainly focused on the so-called
standard algorithm introduced by Benettin et al. [5,14].
This method is based on the integration of variational
equations for n initial conditions with successive appli-
cations of the Gram–Schmidt orthonormalization pro-
cedure. This procedure can be easily implemented in
Mathematica [21]. In this work, we use the standard
algorithm with adopting a sufficient amount of k steps,
so that the convergence of Lyapunov exponents is
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(a) E = 0.2 (b) E = 1

(c) E = 100 (d) E = 10000

Fig. 1 Poincaré cross sections of system (7) made for the parameters β = 1, θ = 1, η = 0.01, with cross-plain q2 = 0 and p2 > 0

assured. We keep the relative and absolute error up to
10−11.

Figure 2 presents the Lyapunov exponent’s spectra
of system (7)made for parameters (9) under initial con-
dition (8). As we can notice, these plots are completely
different comparing to the ones calculated in [1]. In
contrary to [1], computed exponents obey the paring
rule (5), as it should be for Hamiltonian system. Of
course, there is no hyperchaotic behaviour. Instead of
that, we can observe the coexistence of regular and

chaotic behaviour depending on values of the control
parameter.

From the Lyapunov exponents spectrum, we can-
not deduce whether the regular pattern corresponds
to periodic or whether to quasi-periodic motion. In
order to detect periodic orbits, regular regions (win-
dows) between chaotic layers in chaos, etc., a bifurca-
tion diagram can be constructed. A bifurcation diagram
gives insight to the dynamics of a considered system
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(a)

(b)

(c)

Fig. 2 Lyapunov exponents spectra of system (7) versus the
control parameters with initial condition (8)

by plotting dependence a state variable with respect to
a change of a control parameter [22].

In Fig. 3 of paper [1], the authors present the bifur-
cation diagram, by plotting the time series of vari-
able p1(t) as a function of a certain control param-
eter. However, from this diagram we cannot deduce
any conclusions since chaotic, quasi-periodic and peri-
odic motions are not distinguishable. In order to get
more useful information, we make the following. For
given values of constant parameters β = 1, θ = 1, and
for initial condition (8), we effectively constituted the
bifurcation diagram by sampling points periodically in
the same way as the Poincaré sections with surface of
sections chosen by q2 = −1, with gradually increas-
ing the control parameter η ∈ (0, 001, 10). Figure 3a
presents the comparison of the largest Lyapunov expo-
nent with the bifurcation diagram. As the first sight, we
can observe their very good agreement. From the bifur-
cation diagram, we are able to select these values of the
control parameter for which system possesses chaotic,
quasi-periodic and periodic behaviours. For instance,
Fig. 3b shows the enlargement of Fig. 3a, which is
depicted in colours values of the control parameter
η for which system possesses three different types of
motions. For better understanding, particular orbits cor-
responding to these types ofmotionwithmarked points
of intersections with Poincaré cross-sectional plane are
presented in Fig. 4.

It isworthmentioning that in the case ofHamiltonian
systems results for bifurcation diagrams and Lyapunov
exponents depend strongly on the chosen initial con-
dition. To show that, we present in Fig. 5 the largest
Lyapunov exponent with its corresponding bifurcation
diagram, computed for the same values of the param-
eters as Fig. 3 but for different initial conditions. As
we can notice, this bifurcation diagram presents com-
pletely different structure. First of all, it is symmetric
about zero and, moreover, in this diagram can observe
the periodic “windows” between completely chaotic
layers.

5 Dynamics of restricted systems

In Section 3 of [1], authors consider Hamiltonian
system (7) subjected to constraints. There are many
approaches to describe such systems depending on
types of constraints and other conditions. Authors of
[1] have chosen approach described in [23]. Here, we
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(a) (b)

Fig. 3 The largest Lyapunov exponent and the bifurcation diagram versus η. The remaining parameters were chosen by β = 1, θ = 1
with initial condition (8). Cross-sectional plain was defined by q2 = −1 with p2 > 0

present its simplified version when constrains are given
just by one equation.

The dynamics of a natural Hamiltonian

q̇ = ∂H

∂p
, ṗ = −∂H

∂q
, q, p ∈ R

n (12)

is restricted by a single constraint ϕ(q, p) = 0 sat-
isfying ∇pϕ(q, p) �= 0. The constrained Hamilton’s
equations have the form

q̇ = ∂H

∂p
, ṗ = −∂H

∂q
+ Q(q, p), (13)

where term Q(q, p) describes additional ‘forces’
caused by the constraint. Its explicit form derived in
[23] is

Q(q, p, t) = H−1
pp ATp (ApHpp A

T
p )−1

(
Ap · ∂H

∂q
+ bp

)
,

(14)

where

Ap = ∇pϕ, bp = −∇qϕ · ∂H

∂p
, Hpp = ∂2H

∂p2
.

(15)
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(a)

(b)

(c)

Fig. 4 Chaotic, quasi-periodic and periodic phase curves of sys-
tem (7) for parameters: β = 1, θ = 1, with varying η. Points
of intersections with Poincaré cross-sectional plane are depicted
by small bullets. Cross-plain was specified as q2 = −1 with
direction p2 > 0, and initial condition was chosen by (8)

Fig. 5 The largest Lyapunov exponent and the bifurcation dia-
gram versus η. The remaining parameters were chosen as:
β = 1, θ = 1, with the initial condition: (q10, q20, p10, p20) =
(0, 0, 2, 0.5). Cross-plain was specified by q2 = 0 with p2 > 0

In the above formula, the gradient of a function is con-
sidered as a row vector, while the partial derivative as
a column vector. For details, see [23], where also the
more general cases with several constraints were con-
sidered.

As it is explicitly stated in [23], the constrained
dynamics of the system takes place on the manifold

Σ =
{
(q, p) ∈ R

2n | ϕ(q, p) = 0
}

. (16)

Thus, to study properties of the restricted system
we have to consider only those solutions (q(t), p(t))
of constrained Hamilton’s equations (13) which lie
on Σ . To ensure this, it is enough to require that
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(q(t0), p(t0) ∈ Σ for a certain t0. This is because we
have the following.

Lemma 1 Function ϕ(q, p) is a first integral of
restricted system (13).

Proof We have

d

dt
ϕ(q, p) = ∇qϕ · q̇ + ∇pϕ · ṗ

= ∇qϕ · ∂H

∂p
+ ∇pϕ ·

(
−∂H

∂q
+ Q

)

= −bp − Ap · ∂H

∂q
+ Ap · Q.

But using definition Q given by (14), we easily obtain
that

Ap · Q = bp + Ap · ∂H

∂q
.

The above shows that the total time derivative of
ϕ(q, p) vanishes identically, so ϕ(q, p) is a first inte-
gral. ��
Without an additional justification, a study of solutions
of constrained Hamilton’s equations (13) with initial
conditions (q(t0), p(t0) /∈ Σ , as it was made in [1],
does not make big sense because these solutions are
related to neither the constrained nor unconstrained
dynamics of the system.

For Hamiltonian system (12) restricted by a holo-
nomic constraint ϕ0(q) = 0, we define

ϕ(q, p) := ∇qϕ0(q) · q̇ = ∇qϕ0(q) · ∂H

∂p
. (17)

Then, by Lemma 1, we know that ϕ(q, p) is a first
integral of constrained system (13). Moreover, the total
time derivative of ϕ0(q) is

d

dt
ϕ0(q) = ∇qϕ0(q) · ∂H

∂p
= ϕ(q, p).

The above facts show that 2(n − 1)-dimensional man-
ifold

Π :=
{
(q, p) ∈ R

2n | ϕ0(q) = 0 and ϕ(q, p) = 0
}

⊂ R
2n

(18)

is invariant with respect to the phase flow gener-
ated by system (13). That is, if an initial condition

(q(t0), p(t0)) belongs to Π , then the whole solu-
tion (q(t), p(t)) of the constrained Hamilton’s equa-
tions (13) belongs to Π . Moreover, only these solu-
tions describe the dynamics of constrained system. If
we introduce local parameterization ofΠ , then the con-
strained Hamilton’s equations are canonically mapped
into Hamilton’s equations in R

2n−2 with respect to a
certain symplectic structure; for details, see Proposi-
tion 2.1 in [24].

5.1 Holonomic constraint

Following [1],wefirst considerHamiltonian system (7)
with the following holonomic constraint

ϕ0(q1, q2) = q21 + q22 − L2 = 0, (19)

for which, according to (17), we have

ϕ(q, p) = 2q1 p1 + 2q2 p2. (20)

Then, taking into account formulae (15), we obtain

Hpp = I2, Ap = (q1, q2), bp = −(p21+ p22), (21)

and the constrained Hamilton’s equations (13) take the
form

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

q̇1 = p1,

q̇2 = p2,

ṗ1 = −βq31 − ηq2 + η2q1 − q1P(q1, q2, p1, p2)

q21 + q22
,

ṗ2 = −βq32 − ηq1 − q2P(q1, q2, p1, p2)

q21 + q22
,

(22)

where

P = p21 + p22 − β(q41 + q42 ) − 2ηq1q2 + η2q21 .

The constrained dynamics takes place on the two-
dimensional manifold Π , which is given by

Π = {
(q1, q2, p1, p2) ∈ R

4 | q21 + q22 = L2, q1 p1 + q2 p2 = 0
}
.

On this manifold, the dynamics is described by solu-
tions of an autonomous Hamiltonian system with one
degree of freedom so it is integrable and this precludes
any chaotic behaviour.
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Hyperchaos in constrained Hamiltonian system 647

One can askwhetherwe can find a chaotic behaviour
in the whole phase space of the constrained Hamilton’s
equations (13) investigating its solutions with arbitrary
initial conditions (q1, q2, p1, p2) ∈ R

4. Numerical
experiments show that for arbitrary solution of sys-
tem (22) all Lyapunov exponents vanish. To understand
why it is so, we introduce polar coordinates (r, ϑ) and
the corresponding momenta (pr , pϑ) in the standard
way

q1 = r cosϑ, q2 = r sin ϑ,

p1 = cosϑpr − sin ϑ
pϑ

r
, p2 = sin ϑpr + cosϑ

pϑ

r
.

In these coordinates, the restricted system (22) takes
the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ṙ = pr ,

ϑ̇ = pϑ

r2
,

ṗr = − p2r
r

,

ṗϑ = r2

4

[
βr2 sin(4ϑ) − 2η(2 cos(2ϑ) + η sin(2ϑ))

]
.

(23)

Equations for r and pr form the closed subsystem and
constraints take the forms

ϕ0 = r2 − L2, ϕ = 2rpr . (24)

Thus, the invariant manifold Π is given by

Π = {(r, ϑ, pr , pϑ) | pr = 0, r = L}. (25)

On this manifold, system (23) reduces to the system
with one degree of freedom

ϑ̇ = pϑ

L2 ,

ṗϑ = L2

4

[
βL2 sin(4ϑ) − 2η(2 cos(2ϑ) + η sin(2ϑ))

]
,

(26)

which always has the energy first integral. In this case,
all Lyapunov exponents therefore must be equal zero,
so the motion is periodic or quasi-periodic but cannot
be chaotic.

System (26) is Hamiltonian with the following
Hamiltonian function

H̃ = p2ϑ
2L2

− ηL2

4
[η cos(2ϑ) − 2 sin(2ϑ)]+ L4β

16
cos(4ϑ).

(27)

We can obtain the same result using the standard proce-
dure. In fact, first we take the Lagrange function corre-
sponding to the Hamiltonian (6). Then, as local coordi-
nates on the constraint, we can choose the polar angle
ϑ by setting q1 = L cosϑ and q2 = L sin ϑ . As a
result, we obtain the Lagrange function corresponding
to system (6), which is

L = L2

2
ϑ̇2 + ηL2

4
[η cos(2ϑ) − 2 sin(2ϑ)]

− L4β

16
cos(4ϑ) + C0,

where C0 = L2

16 (4η2 + 8θ − 3βL2) is irrelevant con-
stant. The canonical momentum conjugated with ϑ is
pϑ = ∂L/∂ϑ̇ = L2ϑ̇ . Neglecting C0 the correspond-
ing Hamiltonian is exactly (27).

Fact that we obtained completely different results
than those in [1] needs an explanation. First of all in
the cited paper, the authors do not investigate the con-
strained Hamilton’s equations (22) but their modifica-
tion

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

q̇1 = p1,

q̇2 = p2,

ṗ1 = −βq31 − ηq2 + η2q1 − q1PL(q1, q2, p1, p2)

L2 ,

ṗ2 = −βq32 − ηq1 − q2PL(q1, q2, p1, p2)

L2 ,

(28)

where

PL = p21 + p22 − β(L4 − 2q21q
2
2 ) − 2ηq1q2 + η2q21 ,

and L is considered as a parameter. Although this sys-
tem coincides with (22) on manifold Π , it has com-
pletely different global properties. For instance, func-
tion (17) is a first integral of equations (22), but it is not
a first integral of (28).

As system (28) has time-reversal symmetry
R(q, p) = (q,− p), the Lyapunov exponents obey the
paring rule (5), and Lyapunov’s exponents spectrum
is symmetric about zero: {λ, 0, 0 − λ} with λ > 0.
Thus, in system (28) the hyperchaotic behaviours are
precluded. To confirm this, we present in Fig. 6 the Lya-
punov exponents spectrum of system (28) made for the
parameters η = 0.01, L = 1, β ∈ [0, 10] and initial
condition (8),which clearly not lie onΠ . This spectrum
wasmade for the same values of the parameters and the
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648 W. Szumiński et al.

Fig. 6 Lyapunov exponents spectrum of system (28) versus the
control parameter β with initial condition (8). The remaining
parameters were specifies as: η = 0.01, and L = 1

initial condition as the spectrum depicted in Fig. 7 in
[1], where the authors have found hyperchaos for the
entire range of parameter β. As we can notice, Fig. 6
is symmetric about zero, and the Lyapunov exponents
obey the parting rule, as it should be.

5.2 Non-holonomic constraint

As the second example, we follow [1], where the
authors considered Hamiltonian system (7) subjected
to a non-holonomic constraint of the form

ϕ(q, p) = p21 + p22 − l2 = 0. (29)

For this constraint, formulae (15) give

Hpp = I2, Ap = (p1, p2), bp = 0, (30)

where I2 is two-dimensional identitymatrix. Thus, con-
strained system (13) looks as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

q̇1 = p1,

q̇2 = p2,

ṗ1 = −βq31 − ηq2 + (η2 + θ)q1 + p1S(q1, q2, p1, p2)

p21 + p22
,

ṗ2 = −βq32 − ηq1 + θq2 + p2S(q1, q2, p1, p2)

p21 + p22
,

(31)

Fig. 7 Lyapunov exponents spectrum and the bifurcation dia-
gram of system (33) versus the control parameter β with cross-
plain p2 = 0. The remaining parameters were specified as:
θ = 1, η = 1, l = 10, and the initial condition was chosen
by (8)

where

S =
(
βq31 + ηq2 − (η2 + θ)q1

)
p1 +

(
βq32 + ηq1 − θq2

)
p2.

This system has a quadratic first integral of the form

ϕ(q, p) = p21 + p22 . (32)

Moreover, the divergence of system (31) is

div(w) = S

p21 + p22
.

In [1], the authors did not investigate the truly con-
strained Hamiltonian system (31) under constraint (29)
but its modification
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

q̇1 = p1,

q̇2 = p2,

ṗ1 = −βq31 − ηq2 + (η2 + θ)q1 + p1S(q1, q2, p1, p2)

l2
,

ṗ2 = −βq32 − ηq1 + θq2 + p2S(q1, q2, p1, p2)

l2
,

(33)

where l was fixed and considered as a control param-
eter. Again, although this system agrees with the one
given in Eq. (31) on constraint p21 + p22 = l2, it has
very different global properties. For instance, the Lie
derivative of function (32) along the vector field (33)
is given by

d

dt
ϕ(q, p) = 2

(
p21 + p22 − l2

) S

l2
, (34)

so it vanishes only on constraint. In Figs. 12–17, of
the work [1] the authors have performed the numer-
ical analysis of their “constrained” system (33) with
initial conditions not satisfying the constrained condi-
tion p21(t0) + p22(t0) − l2 = 0. They have found cer-
tain values of the parameters for which system (33)
is hyperchaotic and, moreover, it has three posi-
tive Lyapunov exponents. Of course, it is not true
and their wrong conclusion was probably caused
by not sufficient accuracy of numerical calculations.
Since system (33) possesses time-reversal symmetry
R(q, p) = (q,− p), the Lyapunov exponents again
obey the paring rule. Thus, in system (33) the hyper-
chaotic behaviours are precluded because only one
Lyapunov exponent can be positive. To confirm this,
we present in Fig. 7 the Lyapunov exponents spec-
trum and its corresponding bifurcation diagram of sys-
tem (33). They were made for the same values of
the parameters and the initial condition as Fig. 12 of
in [1]. Since system (31) possesses first integral (32),
we can reduce its dimension by one. For this pur-
pose, we introduce new variables in the following
way

q1 = q1, q2 = q2, p1 = p cosϑ, p2 = p sin ϑ.

(35)

In these variables, constrained system (31) reads

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

q̇1 = p cosϑ,

q̇2 = p sin ϑ,

ϑ̇ = 1

p

[(
ηq2 − (η2 + θ)q1 + βq31

)
sin ϑ

− (
ηq1 − θq2 + βq32

)
cosϑ

]
,

ṗ = 0.

(36)

As we can see p = const, and thus, we may consider
it as a parameter p = l. Hence, the final form of the
reduced, constrained system (31) is given by

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

q̇1 = l cosϑ,

q̇2 = l sin ϑ,

ϑ̇ = 1

l

[(
ηq2 − (η2 + θ)q1 + βq31

)
sin ϑ

− (
ηq1 − θq2 + βq32

)
cosϑ

]
.

(37)

It has time-reversal symmetry given by R(q1, q2, ϑ) =
(−q1,−q2, ϑ). In Figs. 8 and 9, the Poincaré cross sec-
tion, the bifurcationdiagramand its correspondingLya-
punov spectrum are visible. As we can notice, for the
chosen values of the parameters reduced system (37)
still possesses very rich and complex dynamics. How-
ever, only one Lyapunov exponent λ > 0, the second
by time-reversibility symmetry is−λ and the third van-
ishes.

6 Hyperchaos in pendulums systems

As we have already mentioned, the hyperchaotic
behaviours in Hamiltonian systems can appear only in
systems with at least three degrees of freedom. Multi-
ple pendulums seem to be natural candidates for such
systems with many degrees of freedom. In this short
section, we will search for the hyperchaotic behaviours
of triple and quartic pendulums, which move under the
influence of the constant gravity field. For this purpose,
wewill compute full Lyapunov’s exponents spectra and
the bifurcations diagrams corresponding to them.
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Fig. 8 Poincaré cross section of system (37) with cross-plain
ϑ = 0. The parameters were specified as: β = 1, θ = −1, η =
1/100, l = 1

6.1 Simple triple pendulum

Simple triple pendulum is composed of three simple
pendulums attached to each other. The system has three
degrees of freedom, and it is fully described by three
angles ϕ1, ϕ2, ϕ3. Using the notations given in Fig. 10,
we can write the corresponding Lagrange function in
the form

L = 1

2

3∑
i=1

μi3li (li φ̇
2
i + 2g cosφi )

+
3∑

j=2,
j �=i

2∑
i=1

μ j3li l j φ̇i φ̇ j cos(φ j − φi ), (38)

where for simplicity we have introduced

μnk :=
(

k∑
i=n

mi

)
.

Figure 11 presents the Lyapunov exponents spec-
trum and the bifurcation diagram for the simple triple
pendulum system defined by Lagrange function (38).
This diagram plots extremal values (amplitudes) of the
system variable φ3(t) = φ3,extr, when φ̇3 = p3 = 0.
For values of the parameters mi = li = g = 1 with
the initial condition: (φi = φ0, pi = 0) for i = 1, 2, 3,
we show how the change of initial angle of the pen-

Fig. 9 Lyapunov exponents spectrum and the bifurcation dia-
gram of system (37) versus the control parameter θ with cross-
plain ϑ = 0. The remaining parameters and the initial condition
were specified as: β = 1, η = 1/100, l = 1, (q10, q20, ϑ0) =
(0, 2, 0)

dulums deviation φ0 ∈ [0, π ] affects the dynamics
of the system. As one would expect, for small angles
the pendulums oscillate near the equilibrium.However,
when the angular displacement amplitude of the pen-
dulums is large enough, the regular pattern diverges
and the motion finally becomes highly complex. The
corresponding Lyapunov exponents spectrum indicates
that motion is, in fact, hyperchaotic with two positive
exponents.

6.2 Flail triple pendulum

Let us now look for the hyperchaotic nature of the flail
triple pendulummovingunder the influence of the grav-
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Fig. 10 Geometry of simple triple pendulum

itational force. The geometry of the system is presented
in Fig. 12. It consists of three simple pendulums with
masses m1,m2,m3 and lengths l1, l2, l3. The first pen-
dulum is attached to a fixed point, and to its end mass,
the other two pendulums are joined. This system,which
was in the absence of the gravity field intensively stud-
ied in [25], has the following Lagrange function:

L =
3∑

i=1, j=2,
i+ j∈Zeven

μi j li
(
li φ̇

2
i + 2g cosφi

)

+ l1φ̇1

3∑
i=2

mili φ̇i cos(φ1 − φi ). (39)

Figure 13 presents the Lyapunov exponents spectrum
and its corresponding bifurcation diagram versus the
initial angle of deviation φ0 ∈ [0, π ]. These plots
were made for fixed values of the parameters mi =
li = g = 1 with the initial condition:(φi (0), pi (0)) =
(0, φ0,−φ0, 0, 0, 0) for i = 1, 2, 3. As in the case
of the simple triple pendulum, φ3,extr states for the
extremal values of the system variable φ3, when φ̇3 =
p3 = 0.

As expected, for small values of φ0, the pendulums
oscillate near the equilibrium, andwe can conclude that
for such small values of φ0 the motion is almost inte-
grable. Nonetheless, for φ0 ≈ π/2 the motion starts
to be more complex and finally becomes chaotic and
later hyperchaotic, which is evidenced in Fig. 13. Sur-
prisingly enough, over the range φ0 ∈ [2.246, 2.293],
we can still detect stable solutions localized in the
gap between completely hyperchaotic regions. This
corresponds to the case when the first pendulum is

Fig. 11 Lyapunov exponents spectrum and the bifurcation dia-
gram versus the initial amplitude φ0, for the simple triple pen-
dulum. The parameters were chosen as: mi = li = g = 1 with
the initial condition: (φi (0) = φ0, pi (0) = 0) for i = 1, 2, 3.
Here φ3,extr denotes the extremal values of the system variable
φ3, when φ̇3 = p3 = 0

at the rest, and other two pendulums oscillate in the
opposite directions, as shown in Fig. 14 presenting
the time series of the angular positions of each mass
of flail triple pendulum (39) with initial condition:
(φi (0), pi (0)) = (0, 2.25,−2.25, 0, 0, 0).

6.3 Quartic simple pendulum

Let us finally consider the simple quartic pendulum.
This system is composed of four simple pendula of
masses mi and lengths li which are connected to each
other and move under the influence of the gravity, as
shown in Fig. 15. The Lagrange function of this model
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Fig. 12 Geometry of flail-like triple pendulum

Fig. 13 Lyapunov exponents spectrum and the bifurcation dia-
gram versus the initial amplitude φ0 for the flail pendulum. The
parameters: mi = li = g = 1 with i.c.: (φi (0), pi (0)) =
(0, φ0,−φ0, 0, 0, 0). Here, φ3,extr denotes the extremal values
of φ3, when φ̇3 = p3 = 0

Fig. 14 Time series with i.c.: (φi (0), pi (0)) =
(0, 2.25,−2.25, 0, 0, 0)

Fig. 15 Geometry of simple quartic pendulum

is as follows:

L = 1

2

4∑
i=1

μi4li (li φ̇
2
i + 2g cosφi )

+
4∑

j=2,
j �=i

3∑
i=1

μ j4li l j φ̇i φ̇ j cos(φ j − φi ). (40)

This system is hyperchaotic with three positive Lya-
punov exponents, provided the common initial ampli-
tude φ0 is large enough. For instance, for mi = li =
g = 1 with the initial condition: (φi (0) = φ0, pi (0) =
0), the motion starts to be hyperchaotic for φ0 > π/3,
as shown in Fig. 16.
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Fig. 16 Lyapunov exponents spectrum and the bifurcation dia-
gram versus the initial amplitude φ0 for the simple quartic pen-
dulum. The parameters were chosen as: mi = li = g = 1 with
the initial condition: (φi (0) = φ0, pi (0) = 0) for i = 1, 2, 3, 4.
The cross-sectional plane was specified as: φ1 = 0 with p1 > 0
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