Skip to main content
Log in

Coordinated motion of Lagrangian systems with auxiliary oscillators under cooperative and cooperative–competitive interactions

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The present paper investigates coordinated oscillatory motion of networked Lagrangian systems under diverse interactions. Based on two new auxiliary oscillator systems, we formulate two integral-sliding adaptive controllers to drive the systems to reach disparate coordination behaviors. Specially, in the case of cooperative network, where the correspondence between the agents is cooperating, the systems can achieve complete oscillatory synchronization if interactions network contains a spanning tree. In the case of weighted cooperative–competitive network, cluster oscillatory synchronization issue is solved for Lagrangian systems. Compared with the previous methods, three major advantages for introduction of auxiliary oscillator systems are that, firstly, Lagrangian systems reach the oscillatory synchronization with arbitrary amplitudes and initial phases instead of distributed stabilization or consensus; secondly, synchronization states are explicitly expressed under the integral-sliding controllers; thirdly, multi-partite synchronization is formed on the basis of the newly introduced cooperative–competitive interactions without the balanced couple condition. Finally, two numerical examples are provided to demonstrate effectiveness of the presented algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Knorn, S., Chen, Z., Middleton, R.H.: Overview: Collective control of multiagent systems. IEEE Trans. Control Netw. Syst. 3, 334–347 (2016)

    Article  MathSciNet  Google Scholar 

  2. Qin, J.H., Gao, H.J.: A sufficient condition for convergence of sampled-data consensus for double-integrator dynamics with nonuniform and time-varying communication delays. IEEE Trans. Autom. Control 57, 2417–2422 (2012)

    Article  MathSciNet  Google Scholar 

  3. Mei, J., Ren, W., Ma, G.F.: Distributed coordinated tracking with a dynamic leader for multiple Euler-Lagrange systems. IEEE Trans. Autom. Control 56, 1415–1421 (2011)

    Article  MathSciNet  Google Scholar 

  4. Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Dynamics and Control. Wiley, New York (2006)

    Google Scholar 

  5. Dong, Y., Chen, J.: Adaptive control for rendezvous problem of networked uncertain Euler–Lagrange systems. IEEE Trans. Cybern. (2018). https://doi.org/10.1109/TCYB.2018.2821700

    Article  Google Scholar 

  6. Meng, Z.Y., Dimarogonas, D.V., Johansson, H.K.: Leader–follower coordinated tracking of multiple heterogeneous Lagrange systems using continuous control. IEEE Trans. Rob. 30, 739–743 (2014)

    Article  Google Scholar 

  7. Rodriguez-Angeles, A., Nijmeijer, H.: Mutual synchronization of robots via estimated state feedback: a cooperative approach. IEEE Trans. Control Syst. Technol. 12, 542–554 (2004)

    Article  Google Scholar 

  8. Spong, M.W., Chopra, N.: Synchronization of networked Lagrangian systems. In: Lagrangian and Hamiltonian Methods for Nonlinear Control, Lecture Notes in Control and Information Sciences, vol. 366, pp. 47–59. Springer, Berlin (2007)

  9. Chung, S.J., Slotine, J.J.E.: Cooperative robot control and concurrent synchronization of Lagrangian systems. IEEE Trans. Rob. 25, 686–700 (2009)

    Article  Google Scholar 

  10. Montbrio, E., Kurths, J., Blasius, B.: Synchronization of two interacting populations of oscillators. Phys. Rev. E 70, 056125 (2004)

    Article  Google Scholar 

  11. Hwang, K., Tan, S., Chen, C.: Cooperative strategy based on adaptive Q-learning for robot soccer systems. IEEE Trans. Fuzzy Syst. 12, 569–576 (2004)

    Article  Google Scholar 

  12. Favaretto, C., Cenedese, A., Pasqualetti, F.: Cluster synchronization in networks of Kuramoto oscillators. IFAC World Congress 50, 2433–2438 (2017)

    Google Scholar 

  13. Menara, T., Baggio, G., Bassett, D.S., Pasqualetti, F.: Stability conditions for cluster synchronization in networks of heterogeneous Kuramoto oscillators. IEEE Trans. Control Netw. Syst. (2019). https://doi.org/10.1109/TCNS.2019.2903914

    Article  MATH  Google Scholar 

  14. Qin, J.H., Yu, C.B.: Cluster consensus control of generic linear multi-agent systems under directed topology with acyclic partition. Automatica 49, 2898–2905 (2013)

    Article  MathSciNet  Google Scholar 

  15. Hu, H.X., Wen, G.H., Yu, W.W., Xuan, Q., Chen, G.: Swarming behavior of multiple Euler–Lagrange systems with cooperation-competition interactions: an auxiliary system approach. IEEE Trans. Neural Netw. Learn. Syst. 20, 5726–5737 (2018)

    Article  MathSciNet  Google Scholar 

  16. Ren, W.: Synchronization of coupled harmonic oscillators with local interaction. Automatica 44, 3195–3200 (2008)

    Article  MathSciNet  Google Scholar 

  17. Zhan, J.Y., Li, X.: Cluster consensus in networks of agents with weighted cooperative-competitive interactions. IEEE Trans. Circuits Syst. II Express Briefs (2017). https://doi.org/10.1109/TCSII.2017.2713526

    Article  Google Scholar 

  18. Zhao, L.Y., Wang, R., Li, W., Wu, Q.J.: Cluster oscillatory synchronization of networked Lagrangian systems with the distributed adaptive observers. Nonlinear Dyn. 93, 1219–1230 (2018)

    Article  Google Scholar 

  19. Zhao, L.Y., Wang, J., Lv, J.F., Wang, R.: Coordination motion of Lagrangian systems with multiple oscillatory leaders under diverse interaction topologies. Int. J. Syst. Sci. 50, 1464–5319 (2019)

    MathSciNet  Google Scholar 

  20. Jin, X.Z., Yang, G.H., Che, W.W.: Adaptive pinning control of deteriorated nonlinear coupling networks with circuit realization. IEEE Trans. Neural Netw. Learn. Syst. 23, 1345–1355 (2012)

    Article  Google Scholar 

  21. Jin, X.Z., Jiang, C.C., Qin, J.H., Zheng, W.X.: Robust pinning constrained control and adaptive regulation of coupled chua’s circuit networks. IEEE Trans. Circuits Syst. I Regul. Pap. 66, 3928–3940 (2019)

    Article  MathSciNet  Google Scholar 

  22. Slotine, J.J.E., Li, W.P.: Applied Nonlinear Control. Prentice-Hall, Upper Saddle River (1991)

    MATH  Google Scholar 

  23. Godsil, C., Royle, G.: Algebraic Graph Theory. Springer, New York (2001)

    Book  Google Scholar 

  24. Horn, R.A., Johnson, C.A.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

    Book  Google Scholar 

  25. Altafini, C.: Consensus problems on networks with antagonistic interactions. IEEE Trans. Autom. Control 58, 935–946 (2013)

    Article  MathSciNet  Google Scholar 

  26. Valcher, M.E., Misra, P.: On the consensus and bipartite consensus in high-order multi-agent dynamical systems with antagonistic interactions. Syst. Control Lett. 66, 94–103 (2014)

    Article  MathSciNet  Google Scholar 

  27. Altafini, C., Lini, G.: Predictable dynamics of opinion forming for networks with antagonistic interactions. IEEE Trans. Autom. Control 60, 342–357 (2015)

    Article  MathSciNet  Google Scholar 

  28. Wu, W., Zhou, W., Chen, T.P.: Cluster synchronization of linearly coupled complex networks under pinning control. IEEE Trans. Circuits Syst. I Regul. Pap. 56, 819–839 (2009)

    MathSciNet  Google Scholar 

  29. Cheah, C.C., Liu, C., Slotine, J.J.E.: Adaptive tracking control for robots with unknown kinematic and dynamic properties. Int. J. Robot. Res. 3, 283–296 (2006)

    Article  Google Scholar 

  30. Cheah, C.C., Liu, C., Slotine, J.J.E.: Adaptive Jacobian tracking control of robots with uncertainties in kinematic, dynamic and actuator models. IEEE Robot. Autom. Mag. 6, 1024–1029 (2006)

    MathSciNet  MATH  Google Scholar 

  31. Ren, W., Cao, Y.C.: Distributed Coordination of Multi-agent Networks. Springer, London (2011)

    Book  Google Scholar 

  32. Desoer, C., Vidyasagar, M.: Feedback Systems: Input–Output Properties. Academic, New York (1975)

    MATH  Google Scholar 

  33. Hu, H.X., Yu, W.W., Wen, H.G., Xuan, Q., Cao, D.J.: Reverse group consensus of multi-agent systems in the cooperation-competition network. IEEE Trans. Circuits Syst. I Regul. Pap. 63, 2036–2047 (2016)

    Article  Google Scholar 

  34. Hu, H.X., Liu, A.D., Xuan, Q., Xie, G.M.: Second-order consensus of multi-agent systems in the cooperation-competition network with switching topologies: a time-delayed impulsive control approach. Syst. Control Lett. 62, 1125–1135 (2013)

    Article  MathSciNet  Google Scholar 

  35. Wang, H.L., Xie, Y.C.: Flocking of networked mechanical systems on directed topologies: a new perspective. Int. J. Control 88, 872–884 (2015)

    Article  MathSciNet  Google Scholar 

  36. Song, Q., Liu, F., Cao, J.D., Vasilakos, A.V., Tang, Y.: Leader-following synchronization of coupled homogeneous and heterogeneous harmonic oscillators based on relative position measurements. IEEE Trans. Control Netw. Syst. 6, 13–23 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Foundation of China (Grant No. 61663035), the Natural Science Foundation of Inner Mongolia Autonomous Region of China (Grant Nos. 2019MS01001, 2019MS07002, 2018MS06017), and the Foundation of China Scholarship Council (Grant No. 201808155059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liyun Zhao.

Ethics declarations

Conflict of interest

All authors have declared that no conflict of interest exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Li, W., Wei, F. et al. Coordinated motion of Lagrangian systems with auxiliary oscillators under cooperative and cooperative–competitive interactions. Nonlinear Dyn 100, 2415–2426 (2020). https://doi.org/10.1007/s11071-020-05609-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05609-3

Keywords

Navigation