Skip to main content
Log in

Local and global bifurcations in magnetic resonance force microscopy

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The focus of this paper is on the investigation of local and global bifurcations in a continuum mechanics-based resonator model proposed for measurement of electron spin via magnetic resonance force microscopy (MRFM). The resonator model, derived using the extended Hamilton’s principle incorporating the Bloch equations for magnetization, is investigated analytically and numerically. Analysis of both adiabatic and non-adiabatic equilibrium configurations enables formulation of the dynamical system bifurcation structure and identification of the parameter space required for stable MRFM operation. A multiple-scales analysis of the limiting adiabatic model enables estimation of the local bifurcation thresholds for bistable solutions and prediction of the frequency shift that enables spin detection. Orbital instabilities of the adiabatic model reveal a global bifurcation structure where lengthy chaotic transients occur below a homoclinic jump-to-contact threshold which is determined via a Melnikov–Holmes analysis. Both local and global bifurcations are verified numerically in the non-adiabatic model and reveal a dense power spectra for the magnetic moments. The computation of the parameter space governing the model orbital instabilities enables a consistent estimation of robust MRFM operation conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Kuehn, S., Hickman, S., Marohn, J.: Advances in mechanical detection of magnetic resonance. J. Chem. Phys. 128, 052208 (2008)

    Article  Google Scholar 

  2. Poggio, M., Degen, C.L.: Force-detected nuclear magnetic resonance: recent advances and future challenges. Nanotechnology 21, 342001 (2010)

    Article  Google Scholar 

  3. Sidles, J.: Noninductive detection of single-proton magnetic resonance. Appl. Phys. Lett. 58, 2854 (1991)

    Article  Google Scholar 

  4. Sidles, J.: Folded Stern–Gerlach experiment as a means for detecting nuclear magnetic resonance in individual nuclei. Phys. Rev. Lett. 68, 1124 (1992)

    Article  Google Scholar 

  5. Rugar, D., Yannoni, C.S., Sidles, J.: Mechanical detection of magnetic resonance. Nature 360, 563–566 (1992)

    Article  Google Scholar 

  6. Rugar, D., Budakian, R., Mamin, H.J., Chui, B.W.: Single spin detection by magnetic resonance force microscopy. Nature 430, 329–32 (2004)

    Article  Google Scholar 

  7. Degen, C.L., Poggio, M., Mamin, H.J., Rettner, C.T., Rugar, D.: Nanoscale magnetic resonance imaging. Proc. Natl. Acad. Sci. U.S.A. 106, 1313–7 (2009)

    Article  Google Scholar 

  8. Isaac, C.E., Gleave, C.M., Nasr, P.T., Nguyen, H.L., Curley, E.A., Yoder, J.L., Moore, E.W., Chen, L., Marohn, J.A.: Dynamic nuclear polarization in a magnetic resonance force microscope experiment. arXiv Prepr. arXiv:1601.07253 (2016)

  9. Berman, G.P., Borgonovi, F., Gorshkov, V.N., Tsifrinovich, V.I.: Magnetic Resonance Force Microscopy and a Single-Spin Measurement. World Scientific Publishing Co. Pte. Ltd., Singapore (2006)

    Book  Google Scholar 

  10. Stipe, B., Mamin, H., Yannoni, C., Stowe, T., Kenny, T., Rugar, D.: Electron spin relaxation near a micron-size ferromagnet. Phys. Rev. Lett. 87, 277602 (2001)

    Article  Google Scholar 

  11. Dougherty, W.M., Bruland, K.J., Chao, S.H., Garbini, J.L., Jensen, S.E., Sidles, J.: The Bloch equations in high-gradient magnetic resonance force microscopy: theory and experiment. J. Magn. Reson. 143, 106–19 (2000)

    Article  Google Scholar 

  12. Louis-Joseph, A., Lallemand, J.-Y., Abergel, D.: Nonlinear dynamics of a magnetization subject to RF feedback field: new experimental evidence. Comptes Rendus Chim. 7, 329–333 (2004)

    Article  Google Scholar 

  13. Abergel, D.: Chaotic solutions of the feedback driven Bloch equations. Phys. Lett. A 302, 17–22 (2002)

    Article  Google Scholar 

  14. Sidles, J., Garbini, J., Bruland, K.: Magnetic resonance force microscopy. Rev. Mod. Phys. 67, 249 (1995)

    Article  Google Scholar 

  15. Berman, G., Kamenev, D., Tsifrinovich, V.: Stationary cantilever vibrations in oscillating-cantilever-driven adiabatic reversals: magnetic-resonance-force-microscopy technique. Phys. Rev. A 66, 023405 (2002)

    Article  Google Scholar 

  16. Berman, G., Gorshkov, V., Tsifrinovich, V.: Reduction of magnetic noise in magnetic resonance force microscopy. Phys. Rev. B 69, 212408 (2004)

    Article  Google Scholar 

  17. Berman, G., Borgonovi, F., Tsifrinovich, V.: Theory of frequency shifts in the oscillating cantilever-driven adiabatic reversals technique as a function of the spin location. Phys. Rev. B 72, 224406 (2005)

    Article  Google Scholar 

  18. Hornstein, S., Gottlieb, O.: Nonlinear multimode dynamics and internal resonances of the scan process in noncontacting atomic force microscopy. J. Appl. Phys. 112, 074314 (2012)

    Article  Google Scholar 

  19. Ashhab, M., Salapaka, M.V., Dahleh, M., Mezić, I.: Melnikov-based dynamical analysis of microcantilevers in scanning probe microscopy. Nonlinear Dyn. 20, 197–220 (1999)

    Article  MathSciNet  Google Scholar 

  20. Yagasaki, K.: Nonlinear dynamics of vibrating microcantilevers in tapping-mode atomic force microscopy. Phys. Rev. B 70, 245419 (2004)

    Article  Google Scholar 

  21. Settimi, V., Rega, G., Lenci, S.: Analytical control of homoclinic bifurcation of the hilltop saddle in a noncontact atomic force microcantilever. Proc. IUTAM 19, 19–26 (2016)

    Article  Google Scholar 

  22. da Silva, M.R.M.C., Glynn, C.C.: Nonlinear flexural-flexural-torsional dynamics of inextensional beams. I. Equations of motion. J. Struct. Mech. 6, 437–448 (1978)

    Article  Google Scholar 

  23. Meirovitch, L.: Methods of Analytical Dynamics. Courier Dover Publications, New York (2012)

    MATH  Google Scholar 

  24. Shabana, A.: Vibration of Discrete and Continuous Systems, vol. 2. Springer, Berlin (1997)

    Google Scholar 

  25. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, Hoboken (2008)

    MATH  Google Scholar 

  26. Gear, C.: Numerical Initial Value Problems in Ordinary Differential Equations. Prentice Hall PTR, Upper Saddle River (1971)

    MATH  Google Scholar 

  27. Guckenheimer, J., Holmes, P.: Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. J. Appl. Mech. 51, 947 (1984)

    Article  Google Scholar 

  28. Lenci, S., Orlando, D., Rega, G., Goncalves, P.B.: Controlling practical stability and safety of mechanical systems by exploiting chaos properties. Chaos 22, 047502 (2012)

    Article  MathSciNet  Google Scholar 

  29. Rega, G., Settimi, V.: Bifurcation response scenarios and dynamic integrity in a single-mode model of noncontact atomic force microscopy. Nonlinear Dyn. 73, 101–123 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is supported in part by the Israel Science Foundation (1475/09) founded by the Israel Academy of Science and the Technion the Russell Berrie Nanotechnology Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Gottlieb.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The integral expressions in Eq. (24) are:

$$\begin{aligned} I_1= & {} \int \limits _0^1 {\phi ^{2}\mathrm{d}s} =1 \\ I_2= & {} \int \limits _0^1 {\phi \phi _{ssss} \mathrm{d}s} \\ I_3= & {} \int \limits _0^1 {\phi \left( {\phi _s \left( {\phi _{ss} \phi _s } \right) _s } \right) _s \mathrm{d}s} \\ I_4= & {} \int \limits _0^1 {\phi \left( {\phi _s \int \limits _1^s {\int \limits _0^{{s}'} {\phi _{{s}''}^2 \mathrm{d}{s}''} \mathrm{d}{s}'} } \right) _s \mathrm{d}s} \\ I_5= & {} \int \limits _0^1 {\phi \mathrm{d}s} \end{aligned}$$

Appendix B

The coefficients of the sixteenth-order equilibrium equation are:

$$\begin{aligned} a_0= & {} \left( {3\delta -\chi } \right) ^{2}+9\omega _M^2 \\ a_1= & {} 14\left( {\left( {3\delta -\chi } \right) ^{2}+9\omega _M^2 } \right) \\ a_2= & {} 91\left( {\left( {3\delta -\chi } \right) ^{2}+9\omega _M^2 } \right) \\ a_3= & {} 3276\delta ^{2}-2178\delta \chi +362\chi ^{2}+3276\omega _M^2 \\ a_4= & {} 9009\delta ^{2}-5940\delta \chi +979\chi ^{2}+9009\omega _M^2 \\ a_5= & {} 18018\delta ^{2}-11682\delta \chi +1892\chi ^{2}+18018\omega _M^2 \\ a_6= & {} 27027\delta ^{2}-17028\delta \chi +2674\chi ^{2}+27027\omega _M^2 \\ a_7= & {} 30888\delta ^{2}-18612\delta \chi +2780\chi ^{2}+30888\omega _M^2 \\ a_8= & {} 27027\delta ^{2}-15246\delta \chi +2107\chi ^{2}+27027\omega _M^2 \\ a_9= & {} 18018\delta ^{2}-9240\delta \chi +1134\chi ^{2}+18018\omega _M^2 \\ a_{10}= & {} 9009\delta ^{2}-4026\delta \chi +411\chi ^{2}\\&+\,9009\omega _M^2 -\Gamma ^{2}\left( {3\delta -\chi } \right) ^{2} \\ a_{11}= & {} 3276\delta ^{2}-1194\delta \chi +90\chi ^{2}\\&+\,3276\omega _M^2 -6\Gamma ^{2}\left( {3\delta -\chi } \right) ^{2} \\ a_{12}= & {} 819\delta ^{2}-216\delta \chi +9\chi ^{2}+819\omega _M^2 \\&-\,15\Gamma ^{2}\left( {3\delta -\chi } \right) ^{2} \\ a_{13}= & {} 126\delta ^{2}-18\delta \chi +126\omega _M^2 \\&-\,6\Gamma ^{2}\left( {30\delta ^{2}-19\delta \chi +3\chi ^{2}} \right) \\ a_{14}= & {} 9\left( {\delta ^{2}+\omega _M^2 -\Gamma ^{2}\left( {15\delta ^{2}-8\delta \chi +\chi ^{2}} \right) } \right) \\ a_{15}= & {} -18\Gamma ^{2}\delta \left( {3\delta -\chi } \right) \\ a_{16}= & {} -9\Gamma ^{2}\delta ^{2} \end{aligned}$$

The coefficients of the fourteenth-order equilibrium equation are:

$$\begin{aligned} b_0= & {} -9\Gamma ^{2}+\omega _B^2 \\ b_1= & {} -18\Gamma ^{2}+14\omega _B^2 \\ b_2= & {} -15\Gamma ^{2}+91\omega _B^2 +9 \\ b_3= & {} -6\Gamma ^{2}+364\omega _B^2 +90 \\ b_4= & {} -\Gamma ^{2}+1001\omega _B^2 +411 \\ b_5= & {} 2002\omega _B^2 +1134 \\ b_6= & {} 3003\omega _B^2 +2107\\ b_7= & {} 3432\omega _B^2 +2780 \\ b_8= & {} 3003\omega _B^2 +2674 \\ b_9= & {} 2002\omega _B^2 +1892 \\ b_{10}= & {} 1001\omega _B^2 +979 \\ b_{11}= & {} 364\omega _B^2 +362 \\ b_{12}= & {} 91\omega _B^2 +91 \\ b_{13}= & {} 14\omega _B^2 +14 \\ b_{14}= & {} \omega _B^2 +1 \end{aligned}$$

where \(\omega _B =\frac{3\omega _M }{\chi }=\frac{2\pi d^{3}B_1 }{\mu _0 m_f }\).

Appendix C

The discriminant of the 14-order polynomial is as follows:

$$\begin{aligned} DES= & {} c_{20} \Gamma ^{2}+c_{40} \Gamma ^{4}+c_{60} \Gamma ^{6}+\cdots +c_{16,0} \Gamma ^{16}+ \\&+\,c_{02} \omega _B^2 +c_{22} \Gamma ^{2}\omega _B^2 +c_{42} \Gamma ^{4}\omega _B^2 +\cdots \\&+\,c_{16,2} \Gamma ^{16}\omega _B^2 + \\&+\,c_{04} \omega _B^4 +c_{24} \Gamma ^{2}\omega _B^4 +c_{44} \Gamma ^{4}\omega _B^4 +\cdots \\&+\,c_{16,4} \Gamma ^{16}\omega _B^4 + \\&+\,c_{06} \omega _B^6 +c_{26} \Gamma ^{2}\omega _B^6 +c_{46} \Gamma ^{4}\omega _B^6 +\cdots \\&+\,c_{16,6} \Gamma ^{16}\omega _B^6 + \\&+\,c_{28} \Gamma ^{2}\omega _B^8 +c_{48} \Gamma ^{4}\omega _B^8 +\cdots +c_{16,8} \Gamma ^{16}\omega _B^8 + \\&+\,c_{4,10} \Gamma ^{4}\omega _B^{10} +\cdots \\&+\,c_{16,10} \Gamma ^{16}\omega _B^{10} + \\&+\,\cdots +c_{12,18} \Gamma ^{12}\omega _B^{18} +c_{14,18} \Gamma ^{14}\omega _B^{18} \\&+\,c_{16,18} \Gamma ^{16}\omega _B^{18} + \\&+\,c_{12,20} \Gamma ^{12}\omega _B^{20} +c_{14,20} \Gamma ^{14}\omega _B^{20} \\&+\,c_{12,22} \Gamma ^{12}\omega _B^{22} \end{aligned}$$

The respective coefficients \({c}_{{i,j}}\) are as follows:

$$\begin{aligned} c_{20}= & {} -2^{16}\cdot 3^{8} \\ c_{40}= & {} 3^{8}\cdot \left( {9634553} \right) \\ c_{60}= & {} 2\cdot 3^{7}\cdot 5\cdot \left( {403} \right) \cdot \left( {56569} \right) \\ c_{80}= & {} 3^{5}\cdot 5\cdot \left( {8863} \right) \cdot \left( {9887} \right) \\ c_{10,0}= & {} 2^{2}\cdot 3^{9}\cdot 5\cdot 37\cdot \left( {3253} \right) \\ c_{12,0}= & {} 3^{4}\cdot \left( {2039} \right) \cdot \left( {71777} \right) \\ c_{14,0}= & {} 2\cdot 3^{2}\cdot \left( {87857857} \right) \\ c_{16,0}= & {} 3^{2}\cdot 5^{10} \\ c_{02}= & {} 2^{16}\cdot 3^{6} \\ c_{22}= & {} -3^{6}\cdot \left( {163} \right) \cdot \left( {80819} \right) \\ c_{42}= & {} 2^{2}\cdot 3^{5}\cdot \left( {29} \right) \cdot \left( {10699387} \right) \\ c_{62}= & {} -3^{3}\cdot \left( {59} \right) \cdot \left( {269500697} \right) \\ c_{82}= & {} 2\cdot 3^{5}\cdot 5\cdot \left( {5249639} \right) \\ c_{10,2}= & {} 2\cdot 3^{2}\cdot 7\cdot \left( {103} \right) \cdot \left( {211} \right) \cdot \left( {158419} \right) \\ c_{12,2}= & {} \left( {167} \right) \cdot \left( {1255182899} \right) \\ c_{14,2}= & {} 2^{2}\cdot 5\cdot 7^{2}\cdot \left( {83} \right) \cdot \left( {389189} \right) \\ c_{16,2}= & {} 3^{4}\cdot 5^{10} \end{aligned}$$
$$\begin{aligned} c_{04}= & {} 2^{17}\cdot 3^{6} \\ c_{24}= & {} -2\cdot 3^{6}\cdot \left( {19} \right) ^{2}\cdot \left( {27409} \right) \\ c_{44}= & {} 3^{5}\cdot \left( {13} \right) \cdot \left( {236262581} \right) \\ c_{64}= & {} -2^{2}\cdot 3^{5}\cdot 7\cdot \left( {572365993} \right) \\ c_{84}= & {} 3^{6}\cdot 5\cdot \left( {241} \right) \cdot \left( {4337717} \right) \\ c_{10,4}= & {} -2\cdot 3^{2}\cdot \left( {89} \right) \cdot \left( {471} \right) \cdot \left( {1156751} \right) \\ c_{12,4}= & {} \left( {29} \right) \cdot \left( {77255361353} \right) \\ c_{14,4}= & {} 2^{2}\cdot 3^{2}\cdot 5\cdot \left( {107} \right) \cdot \left( {10715717} \right) \\ c_{16,4}= & {} 2^{2}\cdot 3^{4}\cdot 5^{10} \\ c_{06}= & {} 2^{16}3^{6} \\ c_{26}= & {} -3^{6}\cdot 7\cdot \left( {41} \right) \cdot \left( {8423} \right) \\ c_{46}= & {} 2\cdot 3^{5}\cdot 5\cdot \left( {1051} \right) \cdot \left( {328667} \right) \\ c_{66}= & {} 2^{4}\cdot 3^{5}\cdot \left( {21227} \right) \cdot \left( {116989} \right) \\ c_{86}= & {} 2^{2}\cdot 3^{3}\cdot 7^{2}\cdot \left( {37} \right) \cdot \left( {2273} \right) \cdot \left( {51941} \right) \\ c_{10,6}= & {} -3^{2}\cdot 7\cdot \left( {557} \right) \cdot \left( {14221} \right) \cdot \left( {45737} \right) \\ c_{12,6}= & {} 2^{3}\cdot 3^{2}\cdot \left( {17} \right) \cdot \left( {139} \right) \cdot \left( {72728059} \right) \\ c_{14,6}= & {} 2\cdot 3^{2}\cdot 5\cdot \left( {8032392593} \right) \\ c_{16,6}= & {} 2^{2}\cdot 3^{3}\cdot 5^{10}\cdot 7 \\ c_{28}= & {} 2^{12}\cdot 3^{6}\cdot 7\cdot \left( {167} \right) \\ c_{48}= & {} 2\cdot 3^{7}\cdot \left( {79} \right) \cdot \left( {955127} \right) \\ c_{68}= & {} -3^{6}\cdot \left( {11} \right) \cdot \left( {7949} \right) \cdot \left( {169079} \right) \\ c_{88}= & {} 2\cdot 3^{5}\cdot 5\cdot \left( {53} \right) \cdot \left( {157} \right) \cdot \left( {2533291} \right) \\ c_{10,8}= & {} -3^{2}\cdot \left( {31} \right) \cdot \left( {457} \right) \cdot \left( {574110233} \right) \\ c_{12,8}= & {} 2^{2}\cdot 3\cdot \left( {3307245364807} \right) \\ c_{14,8}= & {} 2\cdot 3\cdot 5\cdot 7\cdot \left( {11} \right) \cdot \left( {675106291} \right) \\ c_{16,8}= & {} 2\cdot 3^{4}\cdot 5^{10}\cdot 7 \\ c_{4,10}= & {} -2^{6}\cdot 3^{5}\cdot 7\left( {11} \right) \cdot \left( {1153} \right) \\ c_{6,10}= & {} -3^{5}\cdot \left( {11} \right) \cdot \left( {13} \right) \cdot \left( {79} \right) \cdot \left( {1918811} \right) \\ c_{8,10}= & {} 3^{4}\cdot \left( {686002603513} \right) \\ c_{10,10}= & {} -2^{2}\cdot 3^{2}\cdot \left( {1511} \right) \cdot \left( {6959} \right) \cdot \left( {327553} \right) \\ c_{12,10}= & {} 3\cdot \left( {419} \right) \cdot \left( {39233} \right) \cdot \left( {1642279} \right) \end{aligned}$$
$$\begin{aligned} c_{14,10}= & {} 2\cdot 3^{2}\cdot 7\cdot \left( {53} \right) \cdot \left( {173} \right) \cdot \left( {661} \right) \cdot \left( {2903} \right) \\ c_{16,10}= & {} 2\cdot 3^{4}\cdot 5^{10}\cdot 7 \\ c_{6,12}= & {} -3^{4}\cdot 7\cdot \left( {11863} \right) \cdot \left( {121727} \right) \\ c_{8,12}= & {} 2\cdot 3^{3}\cdot 7\cdot \left( {4241} \right) \cdot \left( {19107149} \right) \\ c_{10,12}= & {} -2\cdot 3^{2}\cdot \left( {83} \right) \cdot \left( {264127} \right) \cdot \left( {314693} \right) \\ c_{12,12}= & {} 2\cdot 3^{2}\cdot \left( {101} \right) \cdot \left( {30829} \right) \cdot \left( {1971521} \right) \\ c_{14,12}= & {} 2\cdot 3^{2}\cdot 5\cdot 7\cdot \left( {1901} \right) \cdot \left( {1778417} \right) \\ c_{16,12}= & {} 2^{2}\cdot 3^{3}\cdot 5^{10}\cdot 7 \\ c_{6,14}= & {} -2^{9}\cdot 3^{3}\cdot 7^{7} \\ c_{8,14}= & {} 3^{3}\cdot 5^{2}\cdot 7\cdot \left( {11} \right) \cdot \left( {144217123} \right) \\ c_{10,14}= & {} -2\cdot 3^{2}\cdot \left( {2857} \right) \cdot \left( {1443655937} \right) \\ c_{12,14}= & {} 3\cdot \left( {73} \right) \cdot \left( {89003} \right) \cdot \left( {5269151} \right) \\ c_{14,14}= & {} 2\cdot 3\cdot 5\cdot \left( {11} \right) \cdot \left( {13} \right) \cdot \left( {937} \right) \cdot \left( {342319} \right) \\ c_{16,14}= & {} 2^{2}\cdot 3^{4}\cdot 5^{10} \\ c_{8,16}= & {} 2^{4}\cdot 3^{3}\cdot 7^{8}\cdot \left( {13} \right) ^{2} \\ c_{10,16}= & {} -3^{2}\cdot 7\cdot \left( {11} \right) ^{2}\cdot \left( {3259} \right) \cdot \left( {991031} \right) \\ c_{12,16}= & {} 3\cdot \left( {43} \right) \cdot \left( {1801} \right) \cdot \left( {3169} \right) \cdot \left( {87649} \right) \\ c_{14,16}= & {} 2^{2}\cdot 3^{2}\cdot 5\cdot 7^{2}\cdot \left( {2657} \right) \left( {24533} \right) \\ c_{16,16}= & {} 3^{4}\cdot 5^{10} \\ c_{10,18}= & {} -3^{2}\cdot 7^{8}\cdot \left( {67447} \right) \\ c_{12,18}= & {} 2^{2}\cdot 3^{2}\cdot 7\cdot \left( {419} \right) \cdot \left( {709} \right) \cdot \left( {351707} \right) \\ c_{14,18}= & {} 2\cdot 3^{2}\cdot 5\cdot \left( {1871} \right) \cdot \left( {835859} \right) \\ c_{16,18}= & {} 3^{2}\cdot 5^{10} \\ c_{12,20}= & {} 7^{8}\cdot \left( {1095781} \right) \\ c_{14,20}= & {} 2\cdot \left( {19} \right) \cdot \left( {37} \right) \cdot \left( {619} \right) \cdot \left( {17659} \right) \\ c_{12,22}= & {} 7^{14} \\ \end{aligned}$$

Appendix D

The substitution of Eqs. (52), (54)–(56) in (51) yields the following:

$$\begin{aligned}&D_0^2 Z_3 +\bar{{\omega }}_1^2 Z_3 \\&\quad =-2i\bar{{\omega }}_1 \left( {D_2 A} \right) e^{i\bar{{\omega }}_1 T_0 } \\&\quad \quad +\,2i\bar{{\omega }}_1 \left( {D_2 \bar{{A}}} \right) e^{-i\bar{{\omega }}_1 T_0 }-i\bar{{\omega }}_1 \bar{{\beta }}Ae^{i\bar{{\omega }}_1 T_0 }\\&\qquad +\,i\bar{{\omega }}_1 \bar{{\beta }}\bar{{A}}e^{-i\bar{{\omega }}_1 T_0 } \\&\qquad -\,2\alpha _2 \left( {Ae^{i\bar{{\omega }}_1 T_0 }+\bar{{A}}e^{-i\bar{{\omega }}_1 T_0 }} \right) \\&\qquad \times \,\left( {\frac{\alpha _2 A^{2}}{3\bar{{\omega }}_1^2 }e^{2i\bar{{\omega }}_1 T_0 }-\frac{2\alpha _2 A\bar{{A}}}{\bar{{\omega }}_1^2 }+\frac{\alpha _2 \bar{{A}}^{2}}{3\bar{{\omega }}_1^2 }e^{-2i\bar{{\omega }}_1 T_0 }} \right) \\&\qquad -\,\alpha _3 \left( A^{3}e^{3i\bar{{\omega }}_1 T_0 }+3A^{2}\bar{{A}}e^{i\bar{{\omega }}_1 T_0 }\right. \\&\left. \qquad +\,3A\bar{{A}}^{2}e^{-i\bar{{\omega }}_1 T_0 }+\bar{{A}}^{3}e^{-3i\bar{{\omega }}_1 T_0 } \right) \\&\quad \quad +\,\frac{\bar{{\alpha }}F_0 \left( \Omega \right) }{2}\left( {e^{i\left( {\sigma T_2 +\psi _0 +\bar{{\omega }}_1 T_0 } \right) }+e^{-i\left( {\sigma T_2 +\psi _0 +\bar{{\omega }}_1 T_0 } \right) }} \right) \end{aligned}$$

Appendix E

The coefficients of the fourth-order polynomial are as follows:

$$\begin{aligned} \bar{{A}}= & {} \left( {\frac{\alpha \eta _1 }{2\bar{{\omega }}_1 \varepsilon b}} \right) \\ \bar{{C}}= & {} \left( {\beta ^{2}+2\eta _1 } \right) \left[ {\left( {\frac{\alpha }{2\bar{{\omega }}_1 \varepsilon b}} \right) ^{2}+1} \right] \\ \bar{{D}}= & {} -2\left( {p\left( {\varepsilon b} \right) ^{2}-\bar{{\omega }}_1 } \right) \\ \bar{{E}}= & {} \left( {\frac{\alpha }{2\bar{{\omega }}_1 \varepsilon b}} \right) ^{2}-\left( {\frac{\beta }{2}} \right) ^{2}-\left( {p\left( {\varepsilon b} \right) ^{2}-\bar{{\omega }}_1 } \right) ^{2} \end{aligned}$$

where \(p=\left( {10\alpha _2^2 -9\alpha _3 \bar{{\omega }}_1^2 } \right) /24\bar{{\omega }}_1^3 \).

Appendix F

We approximate the homoclinic orbit by expanding the force in the second equation of Eq. (64) up to quadratic order:

$$\begin{aligned} R(x_1 )= & {} -x_1 \mp \frac{\Gamma }{\left( {1+x_1 } \right) ^{4}\left( {1+\left[ {\omega _M /f(x_1 )} \right] ^{2}} \right) ^{0.5}}\nonumber \\&\cong c_1 +c_2 x_1 +c_3 x_1 ^{2}=\tilde{R}(x_1 ) \end{aligned}$$
(71)

We integrate Eq. (71) to yield the potential energy function:

$$\begin{aligned} \tilde{V}(x_1 )=c_1 x_1 +\frac{c_2 x_1 ^{2}}{2}+\frac{c_3 x_1 ^{3}}{3} \end{aligned}$$
(72)

In order to find the constants \({c}_{{1}}\), \({c}_{{2}}\), \({c}_{{3}}\), we demand that the saddle point \({x}_{{{s}}}\) is an equilibrium point, therefore:

$$\begin{aligned} \tilde{R}(x_s )=c_1 +c_2 x_s +c_3 x_s ^{2}=0 \end{aligned}$$
(73)

Moreover, the points \({x}_{{{s}}}\) and \({x}_{{{E}}}\) pass through the same homoclinic orbit whose Hamiltonian is the same. Therefore, their potential energy is equal.

$$\begin{aligned} c_1 x_s +\frac{c_2 x_s ^{2}}{2}+\frac{c_3 x_s ^{3}}{3}=c_1 x_E +\frac{c_2 x_E ^{2}}{2}+\frac{c_3 x_E ^{3}}{3} \end{aligned}$$
(74)

We also choose an arbitrary point on the exact homoclinic orbit (\({x}_{{A}}\), \({y}_{A})\).

$$\begin{aligned} c_1 x_s +\frac{c_2 x_s ^{2}}{2}+\frac{c_3 x_s ^{3}}{3}=c_1 x_A +\frac{c_2 x_A ^{2}}{2}+\frac{c_3 x_A ^{3}}{3}+\frac{y_A ^{2}}{2}\nonumber \\ \end{aligned}$$
(75)

Equations (73)–(75) can be represented in a matrix form:

$$\begin{aligned} \left( {{\begin{array}{lll} 1&{} {x_s }&{} {x_s ^{2}} \\ {x_s -x_E }&{} {\frac{x_s ^{2}-x_E ^{2}}{2}}&{} {\frac{x_s ^{3}-x_E ^{3}}{3}} \\ {x_s -x_A }&{} {\frac{x_s ^{2}-x_A ^{2}}{2}}&{} {\frac{x_s ^{3}-x_A ^{3}}{3}} \\ \end{array} }} \right) \left( {{\begin{array}{l} {c_1 } \\ {c_2 } \\ {c_3 } \\ \end{array} }} \right) =\left( {{\begin{array}{l} 0 \\ 0 \\ {\frac{y_A ^{2}}{2}} \\ \end{array} }} \right) \end{aligned}$$
(76)

The solution of (76) yields:

$$\begin{aligned} \left( {{\begin{array}{l} {c_1 } \\ {c_2 } \\ {c_3 } \\ \end{array} }} \right) =\frac{y_A ^{2}}{2\left( {x_A -x_s } \right) ^{2}\left( {x_A -x_E } \right) }\left( {{\begin{array}{l} {-x_s \left( {2x_E +x_s } \right) } \\ {2\left( {x_E +2x_s } \right) } \\ {-3} \\ \end{array} }} \right) \nonumber \\ \end{aligned}$$
(77)

The approximated potential energy has the following form:

$$\begin{aligned} \tilde{V}\left( {x_1 } \right)= & {} \frac{y_A ^{2}}{2\left( {x_A -x_s } \right) ^{2}\left( {x_A -x_E } \right) }\left( -x_s x_1 \left( {2x_E +x_s } \right) \nonumber \right. \\&\left. +\,\left( {x_E +2x_s } \right) x_1 ^{2}-x_1 ^{3} \right) \end{aligned}$$
(78)

and the approximated Hamiltonian has the following form:

$$\begin{aligned} \tilde{H}\left( {x_1 ,x_2 } \right) =\frac{x_2 ^{2}}{2}+\tilde{V}(x_1 ) \end{aligned}$$
(79)

where \(\tilde{V}( {x_1 })\) is defined in Eq. (72). Throughout the entire homoclinic orbit, its value is constant is equal to its value in the saddle point:

$$\begin{aligned} h_s =\tilde{H}\left( {x_s ,0} \right) =-\frac{y_A ^{2}x_s ^{2}x_E }{\left( {x_A -x_s } \right) ^{2}\left( {x_A -x_E } \right) } \end{aligned}$$
(80)

Substituting Eqs. (78) and (80) into (79) yields:

$$\begin{aligned} x_2 \left( {t_N } \right)= & {} \frac{\mathrm{d}x_1 }{\mathrm{d}t_N }=\pm \sqrt{2\left( {h_s -\tilde{V}\left( {x_1 } \right) } \right) }\nonumber \\= & {} \frac{y_A \left( {x_1 -x_s } \right) \sqrt{\left( {x_1 -x_E } \right) }}{\left( {x_A -x_s } \right) \sqrt{\left( {x_A -x_E } \right) }} \end{aligned}$$
(81)

We solve Eq. (81) using separation of variables:

$$\begin{aligned}&\pm \frac{y_A }{\left( {x_A -x_s } \right) \sqrt{\left( {x_A -x_E } \right) }}dt_N \nonumber \\&\quad =\frac{dx_1 }{\left( {x_1 -x_s } \right) \sqrt{\left( {x_1 -x_E } \right) }} \end{aligned}$$
(82)

We define the following transformation:

$$\begin{aligned} z=x_1 -x_s ; \mathrm{d}z=\mathrm{d}x_1 \end{aligned}$$
(83)

Substitution of Eqs. (83) into (82) yields:

$$\begin{aligned}&\pm \frac{y_A \left( {t_N -t_0 } \right) }{\left( {x_A -x_s } \right) \sqrt{\left( {x_A -x_E } \right) }}\nonumber \\&\quad =\int _{z\left( {t_0 } \right) }^z {\frac{\mathrm{d}z}{z\sqrt{z+x_s -x_E }}} = \nonumber \\&\quad =\frac{1}{\sqrt{x_s -x_E }}\cdot \ln \left( {\frac{\sqrt{z+x_s -x_E }-\sqrt{x_s -x_E }}{\sqrt{z+x_s -x_E }+\sqrt{x_s -x_E }}} \right) \left| {_{_{_{_{z\left( {t_0 } \right) } } } }^{^{^{^{z}}}} } \right. \nonumber \\ \end{aligned}$$
(84)

We note that \(z\left( {t_0 } \right) =x_1 \left( {t_0 } \right) -x_s =x_E -x_s\) and therefore we get :

$$\begin{aligned} \pm \hat{{p}}\hat{{t}}_N +\pi i=\ln \left( {\frac{\sqrt{z+x_s -x_E }-\sqrt{x_s -x_E }}{\sqrt{z+x_s -x_E }+\sqrt{x_s -x_E }}} \right) \nonumber \\ \end{aligned}$$
(85)

where \(t_N^*=t_N -t_0\) and:

$$\begin{aligned} \hat{{p}}=\frac{y_A \sqrt{x_s -x_E }}{\left( {x_A -x_s } \right) \sqrt{x_A -x_E }} \end{aligned}$$
(86)

We define:

$$\begin{aligned} \phi =x_s -x_E \end{aligned}$$
(87)

Taking an exponent from both sides of Eq. (85) yields:

$$\begin{aligned} \frac{\sqrt{z+\phi }-\sqrt{\phi }}{\sqrt{z+\phi }+\sqrt{\phi }}=-e^{\pm \hat{{p}}t_N^*} \end{aligned}$$
(88)

Or equivalently:

$$\begin{aligned} z=-\phi +\phi \tanh ^{2}\left( {\pm \frac{\hat{{p}}t_N^*}{2}} \right) \end{aligned}$$
(89)

Finally, we substitute Eqs. (83) and (87) in (89) to yield:

$$\begin{aligned} x_1 \left( {t_N^*} \right) =x_E -\left( {x_E -x_s } \right) \tanh ^{2}\left( {\pm \frac{\hat{{p}}t_N^*}{2}} \right) \end{aligned}$$
(90)

The derivation of Eq. (90) with respect to \(t_N^*\) yields:

$$\begin{aligned} x_2 \left( {t_N^*} \right) =\pm \hat{{p}}\left( {x_E -x_s } \right) \tanh \left( {\pm \frac{\hat{{p}}t_N^*}{2}} \right) \hbox {sech}^{2}\left( {\pm \frac{pt_N^*}{2}} \right) \nonumber \\ \end{aligned}$$
(91)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hacker, E., Gottlieb, O. Local and global bifurcations in magnetic resonance force microscopy. Nonlinear Dyn 99, 201–225 (2020). https://doi.org/10.1007/s11071-019-05401-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05401-y

Keywords

Navigation