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Abstract Vaccination is an effective method to pre-
vent the spread of infectious diseases. In this paper, we
develop an SIVS epidemic model with degree-related
transmission rates and imperfect vaccination on scale-
free networks. Firstly, we derive two threshold parame-
ters and existence conditions of multiple endemic equi-
libria. Secondly, not only the global asymptotical sta-
bility of disease-free equilibrium and the persistence
of the disease are derived, but also the global attractiv-
ity of the unique endemic equilibrium is proved using
the monotone iterative technique. Thirdly, the effects
of various immunization schemes including uniform
immunization, targeted immunization and acquain-
tance immunization are studied, and the optimal vacci-
nation strategy is analyzed by Pontryagin’s maximum
principle. Finally, we perform numerical simulations
to verify these theoretical results.
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1 Introduction

Thenewand reemerging infectious diseases have posed
considerable challenges to modern life [1–3]. Notable
viral emergence events include the 2009 pandemic of
H1N1 influenza, the emergence of Middle East Res-
piratory Syndrome-associated coronavirus (MERS-
CoV) in the Arabian peninsula, theWest African Ebola
outbreak, and ZIKV’s invasion of the Americas [4]. In
the largest recorded outbreak of Ebola virus in humans,
28625 cases were confirmed and 11325 died [5]. As of
February 28, 2018, 2182 cases of MERS-CoV infec-
tion (with 779 deaths) in 27 countries were reported to
WHO worldwide, with most being reported in Saudi
Arabia (1807 cases with 705 deaths) [6]. Therefore, it
is very important to prevent and control the occurrence
and spread of infectious diseases.

Vaccination is one of the most effective public
policies to prevent the transmission of infectious dis-
eases [7,8]. Since Kermack and Mckendrick estab-
lished the Susceptible Infected Removed (SIR) model
of plague in 1927 [9] and Susceptible Infected Sus-
ceptible (SIS) model in 1932 [10], respectively, more
and more epidemic models of infectious diseases with
vaccination have largely focused on the standard SIS
model. In 2000, Kribs-Zaleta and Velasco-Hernández
[11] put forward an SIVSmodel withmultiple endemic
states which exhibited a backward bifurcation for some
parameter values and presented a complete analysis of
its behavior. Thereafter, many researchers considered
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various cases based on this model, such as nonlinear
incidence rate [12], age of vaccination [13], spatial dis-
persal of individuals [14], and state-dependent pulse
vaccination [15].However, the basic assumption for the
above works is that individuals in each compartment
are homogeneously mixed. There are a few develop-
ments on the case of heterogeneously mixed. In 2013,
Peng et al. extended the SIVSmodel toWatts–Strogatz
small world, Barabási–Albert scale-free, and random
scale-free networks and made numerical analysis in
detail [16]. In 2016, Peng et al. studied the combina-
tion of human behavior and demographics and put for-
ward adaptive SIVS models on networks [17]. But the
dynamic analysis and control strategy were excluded
from these works. Recently, Chen et al. added the quar-
antined compartment to the SIVS model on scale-free
networks and presented the global dynamics [18].

In this paper, we develop the SIVS epidemic model
[16] on BA network to general scale-free networks,
which includes two degree-related infectious contact
rates and a degree-related vaccination rate. Different
to Refs. [16–18], we derive two threshold parameters,
discuss the existence conditions of multiple endemic
equilibria, prove the global attractivity of the unique
endemic equilibrium, compare the effects of the uni-
form immunization, the targeted immunization and the
acquaintance immunization schemes, and present an
optimal control strategy of vaccination by Pontrya-
gin’s maximum principle. In particular, we provide the
numerical bounds for the weight ratios of densities of
infected individuals and control expenses in the opti-
mal control scheme. All the theoretical predictions are
verified by numerical simulations.

The remainder of the paper is organized as follows.
In Sect. 2, the new SIVS epidemic model on scale-free
networks is constructed. Section 3 presents the exis-
tence conditions of equilibria and dynamical analysis.
Three immunization schemes and the optimal control
strategy are carried out in Sect. 4. The numerical simu-
lations are performed to illustrate the theoretical results
in Sect. 5. Section 6 concludes the paper finally.

2 Model formulation

In this section, we will give the new network-based
model in the absence of demographic effects based
on Ref. [16]. Suppose a scale-free network with N
nodes is established and all individuals are spatially

distributed on this network, each node is occupied by
one individual. The connectivities of nodes in net-
work at each time are assumed to be uncorrelated. In
an epidemic spreading process, every node has three
optional states: susceptible, infected and vaccinated. In
order to account for the heterogeneity of contact pat-
terns, it is needed to consider the difference of node
degrees. Let Sk(t), Ik(t), and Vk(t) denote the densi-
ties of susceptible, infected, and vaccinated individuals
with degree k at time t , respectively. For any k and t ,
Sk(t) + Ik(t) + Vk(t) = 1. Therefore, the evolution
processes of Sk(t), Ik(t), and Vk(t) are governed by
the following differential equations:

⎧
⎪⎨

⎪⎩

S′
k(t)=γ Ik(t)−βS(k)Sk(t)�(t)+φVk(t)−ϕk Sk(t),

I ′k(t)=[βS(k)Sk(t)+βV (k)Vk(t)]�(t)−γ Ik(t),

V ′
k(t)=ϕk Sk(t)−βV (k)Vk(t)�(t)−φVk(t),

(1)

with initial conditions
{
(Sk(0), Ik(0), Vk(0))|0
≤ Sk(0), Ik(0), Vk(0) ≤ 1, k = 1, 2, . . . , n

}
.

Themeanings of the parameters and variables in system
(1) are as follows:

• βS(k) represents the transmission rate that each sus-
ceptible individual with degree k can be infected
through contact if it is connected to k infected
nodes, βV (k) is the reduced transmission rate that
each vaccinated individual with degree k directly
gets infected. For any k, 0 < βV (k) < βS(k).

• �(t) = 1
〈k〉
∑n

k=1 kP(k)Ik(t) describes the proba-
bility of a link pointing to an infected individual,
〈k〉 is the average degree of the network, P(k) is
the probability of a node with degree k, n is the
maximal degree.

• ϕk is the vaccination rate that each susceptible indi-
vidual with degree k can be vaccinated,ϕk ≥ 0. φ is
the rate that each vaccinated individual with degree
k can return to the susceptible class as the vaccine
wears off, γ is the recovery rate, φ, γ > 0.

• Let S(t) = ∑n
k=1 P(k)Sk(t), I (t) = ∑n

k=1
P(k)Ik(t), V (t) = ∑n

k=1 P(k)Vk(t) be the aver-
age densities of susceptible, infected, and vacci-
nated individuals, respectively.

Remark 1 In system (1), the transmission rates βS(k)
and βV (k) are more general than those of Ref. [16].
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βV (k)
βS(k)

measures the efficiency of the vaccine. Two spe-
cial cases βV (k) = 0 and βV (k) = βS(k) indicate
that the vaccination is completely effective and utterly
useless, respectively.Moreover, we extend the constant
vaccination rate to be degree-related ϕk , which is more
realistic than that of Ref. [16]. If we take βS(k) = βk,
βV (k) = σβk and ϕk = ϕ, then system (1) is turned
into model (10) of Ref. [16], where σ shows the effi-
ciency of the vaccine as a multiplier to the infection
rate, σ = 0 and σ = 1 represent completely effective
and utterly ineffective vaccination.

Remark 2 The condition φ > 0 means the vaccination
is imperfect; that is, the vaccination can only cover a
fraction of susceptible individuals.

3 Dynamic analysis

In this section, we will consider the dynamic behav-
ior of system (1). Firstly, we derive the two threshold
parameters and present the existence conditions of the
equilibria. Secondly, the global stability of the disease-
free equilibrium is proved. Finally, the uniform per-
sistence and global attractivity of the unique endemic
equilibrium are analyzed.

3.1 Equilibria and threshold parameters

The basic reproduction number R0 is the most com-
mon of threshold parameters [19]. Next, we will derive
two important threshold parameters containing R0 and
present the existence conditions of the equilibria.

It is easy to see that

� = {(Sk , Ik , Vk) ∈ R
3n+ |0≤Sk , Ik , Vk≤1, k = 1, . . . , n}

is a positively invariant set for system (1). To get the
equilibria, set
⎧
⎪⎨

⎪⎩

γ Ik − βS(k)Sk� + φVk − ϕk Sk = 0,
[
βS(k)Sk(t) + βV (k)Vk(t)

]
� − γ Ik = 0,

ϕk Sk − βV (k)Vk� − φVk = 0.

It is clear that system (1) admits a unique disease-free
equilibrium P0(S0k , I

0
k , V 0

k ) with

S0k = φ

ϕk + φ
, I 0k = 0,

V 0
k = ϕk

ϕk + φ
, k = 1, . . . , n.

The basic reproduction number of system (1) is calcu-
lated according to Ref. [19]:

R0 = 1

〈k〉
n∑

k=1

kP(k) [φβS(k) + ϕkβV (k)]

γ (ϕk + φ)
. (2)

Note that

R̃0 � R0|ϕk=0 =
n∑

k=1

kβS(k)P(k)

γ 〈k〉 . (3)

Remark 3 R0 and R̃0 are important threshold param-
eters for the following dynamic analysis. It is obvious
that R0 ≤ R̃0 for all ϕk ≥ 0(k = 1, 2, . . . , n), which
indicates the influence of vaccination on R0.

Any positive equilibrium satisfies that

Sk = γ [βV (k)�+φ]
[
βS(k)�+γ

][
βV (k)�+φ

]+ϕk
[
βV (k)�+γ

] ,

(4)

Ik = �
[
βS(k)(βV (k)�+φ)+ϕkβV (k)

]

[
βS(k)�+γ

][
βV (k)�+φ

]+ϕk
[
βV (k)�+γ

] ,

(5)

Vk = γ ϕk
[
βS(k)�+γ

][
βV (k)�+φ

]+ϕk
[
βV (k)�+γ

] ,

(6)

� = 1

〈k〉
n∑

k=1

kP(k)Ik . (7)

Substituting (5) into (7), we obtain the self-consistency
equation:

� = 1

〈k〉
n∑

k=1

kP(k)�
{
βS(k)
[
βV (k)�+φ

]+ϕkβV (k)
}

[
βS(k)�+γ

][
βV (k)�+φ

]+ϕk
[
βV (k)�+γ

] .

It is equivalent to � f (�) = 0(0 ≤ � ≤ 1), where

f (�) = 1

〈k〉
n∑

k=1

kP(k)
{
βS(k)
[
βV (k)�+φ

]+ϕkβV (k)
}

[
βS(k)�+γ

][
βV (k)�+φ]+ϕk

[
βV (k)�+γ

]−1.

It is obvious that

f (0) = R0−1,

f (1) = − γ

〈k〉
n∑

k=1

kP(k)
[
βV (k)+ϕk+φ

]

[
βS(k)�+γ

][
βV (k)�+φ

]+ϕk
[
βV (k)�+γ

] < 0.

For 0 < � < 1, we have

f ′(�) = 1

〈k〉
n∑

k=1

kP(k)h(�)
{[

βS(k)�+γ
][

βV (k)�+φ
]+ϕk
[
βV (k)�+γ

]}2 ,

where h(�) = −[βS(k)βV (k)]2�2 − 2βS(k)βV (k)
[φβS(k) + ϕkβV (k)]� + gk, gk = γβS(k)βV (k)(ϕk +
φ) − [φβS(k) + βV (k)(ϕk + γ )][φβS(k) + ϕkβV (k)].
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We consider the special cases to study the behavior
of f (�) = 0:
Case 1When gk ≤ 0, which is equivalent to

R1 � γ ϕkβV (k)[βS(k) − βV (k)]
[φβS(k) + ϕkβV (k)]2 ≤ 1. (8)

And f ′(�) ≤ 0 for � > 0. Obviously, the equation
f (�) = 0 has a unique positive solution only if R0 >

1.
Case 2When gk > 0, we can get that the discriminant
4β2

S(k)β
2
V (k){[φβS(k) + ϕkβV (k)]2 + gk} > 0. Thus,

the equation h(�) = 0 has two unequal solutions:

�1 = −√
γ ϕkβV (k)[βS(k)−βV (k)]−[φβS(k)+ϕkβV (k)]

βS(k)βV (k)
< 0,

�2 =
√

γ ϕkβV (k)[βS(k)−βV (k)]−[φβS(k)+ϕkβV (k)]
βS(k)βV (k)

> 0.

Then, we have h(�) > 0, f ′(�) > 0 for � ∈ (0,�2)

and h(�) < 0, f ′(�) < 0 for � ∈ (�2,+∞). Define

R2 �
γ ϕkβV (k)

[
βS(k) − βV (k)

]

[
φβS(k) + ϕkβV (k) + βS(k)βV (k)

]2 , (9)

R3 � f (�2) + 1. (10)

For R1 > 1 > R2, we get the following results:
If R0 > 1 or R0 = 1 or R0 < 1 = R3, the equation

f (�) = 0 has a positive solution in (0, 1) and system
(1) has a unique endemic equilibrium.

If R0 < 1 and R3 > 1, the equation f (�) = 0
has two positive solutions in (0, 1) and system (1) has
multiple endemic equilibria.

From the above analysis, we conclude these results:

Theorem 1 For system (1), there always exists the
disease-free equilibrium P0, and the following state-
ments are true:

(1) If R0 > 1, there exists a unique endemic equilib-
rium P∗(S∗

k , I
∗
k , V ∗

k ).

(2) If R0 = 1 and R1 > 1 > R2, there exists an
endemic equilibrium P∗

1 (S∗
1k, I

∗
1k, V

∗
1k).

(3) If R0 < 1 and R1 > 1 = R3 > R2, there exists
an endemic equilibrium P∗

2 (S∗
2k, I

∗
2k, V

∗
2k).

(4) If R0 < 1, R1 > 1 > R2 and R3 > 1, there
exist two endemic equilibria P∗

3 (S∗
3k, I

∗
3k, V

∗
3k)

and P∗
4 (S∗

4k, I
∗
4k, V

∗
4k).

(5) There is no endemic equilibrium except the above
four cases.

Where R0 and Ri (i = 1, 2, 3) are defined by (2),(8)–
(9), P∗ and P∗

j ( j = 1, 2, 3, 4) satisfy Eqs. (4)–(7).

Remark 4 Theorem 1 indicates the possibility of mul-
tiple endemic equilibria for R0 < 1 and the occur-
rence of a backward bifurcation in system (1). Under
R1 ≤ 1, there is no endemic equilibrium for R0 < 1
under which system (1) only exhibits forward bifurca-
tion.

3.2 Global stability of disease-free equilibrium

It is important to analyze the stability of the disease-
free equilibrium P0, as it indicates whether the disease
dies out eventually. Next, wewill show that the disease-
free equilibrium P0 is locally asymptotically stable by
analyzing the Jacobian matrix of system (1) at P0 for
R0 < 1. Moreover, the global stability of P0 will be
obtained for R̃0 < 1.

Theorem 2 If R0 < 1, then the disease-free equilib-
rium P0 is locally asymptotically stable in �, where
R0 is defined as Eq. (2).

Proof See “Appendix A”. ��
Theorem 3 If R̃0 < 1, then the disease-free equilib-
rium P0 is globally asymptotically stable in �, where
R̃0 is defined as Eq. (3).

Proof See “Appendix B”. ��
Remark 5 Theorem 3 does not include the stability of
endemic equilibria which may exist for R0 < 1. The-
orems 2 and 3 indicate that the vaccination extends
the local stability of the disease-free equilibrium. Since
there is no endemic equilibrium for R0 < 1and R1 ≤ 1,
the disease-free equilibrium of system (1) is globally
asymptotically stable under these conditions.

3.3 Global attractivity of endemic equilibrium

As mentioned in Theorem 1, there exists a unique
endemic equilibrium P∗ for R0 > 1. In this section, we
will analyze the uniform persistence and global attrac-
tivity of the endemic equilibrium P∗ of system (1).

Theorem 4 When R0 > 1, system (1) is permanent,
i.e., there exists a ξ > 0 which is independent on the
initial condition I (0) > 0, such that

lim
t→∞ inf I (t) = lim

t→∞ inf
n∑

k=1

P(k)Ik(t) ≥ ξ.
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where I (0) =
n∑

k=1
P(k)Ik(0).

Proof See “Appendix C”. ��
Theorem 5 Suppose that (Sk(t), Ik(t), Vk(t)) is a
solution of system (1) satisfying I (0) > 0. If R0 > 1
and R1 ≤ 1, then

lim
t→∞(Sk(t), Ik(t), Vk(t)) = (S∗

k , I
∗
k , V ∗

k ).

where P∗(S∗
k , I

∗
k , V ∗

k ) satisfies Eqs. (4)–(7) for k =
1, 2, . . . , n.

Proof See “Appendix D”. ��
Remark 6 According to Theorem 4, for R0 > 1, the
infection will always exist. Theorem 5 shows that the
unique equilibrium P∗ is globally attractive under its
conditions.

4 Control strategy

In this section, we will put forward three immuniza-
tion control schemes containing the uniform immu-
nization, the targeted immunization, the acquaintance
immunization, and an optimal control strategy to con-
trol the spread and diffusion of the disease. The effec-
tiveness of the first three immunization strategies will
be compared. The optimal control method will be pre-
sented.

4.1 Uniform immunization control

Uniform immunization control is to immunize the sus-
ceptible individuals with the same probability ran-
domly. Let δ̃ ∈ [0, 1) be the proportion of immune
nodes, then the density of the susceptible individuals
who are not immunized is (1− δ̃)Sk . Thus, we acquire
a uniform immunization system as follows:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S′
k(t) = γ Ik(t) − βS(k)(1 − δ̃)Sk(t)�(t)

+φVk(t) − ϕk Sk(t),

I ′
k(t) = [βS(k)(1 − δ̃)Sk(t) + βV (k)Vk(t)]

�(t) − γ Ik(t),

V ′
k(t) = ϕk Sk(t) − βV (k)Vk(t)�(t) − φVk(t).

(11)

With the same discussion in Sect. 3, we calculate the
basic reproduction number of system (11)

RU
0 = 1

〈k〉
n∑

k=1

kP(k)
[
φ(1 − δ̃)βS(k) + ϕkβV (k)

]

γ (ϕk + φ)
,

and

R̃U
0 =

n∑

k=1

kP(k)(1 − δ̃)βS(k)

γ 〈k〉 .

Remark 7 When δ̃ = 0, the immunization is not taken
into effect and RU

0 = R0, R̃U
0 = R̃0. When δ̃ ∈ (0, 1),

RU
0 < R0 and R̃U

0 < R̃0.This means that the harmwill
be decreased to some extent. When δ̃ → 1, R̃U

0 → 0,
that is, in the case of a full immunization, it would be
impossible for the epidemic to spread in the network.

4.2 Targeted immunization control

Targeted immunization control is to immunize the sus-
ceptible nodeswith large degree. Let kc denote an upper
threshold which is larger than the minimum degree,
then the nodes with degree k > kc are immunized. The
immunization rate μk can be defined by

μk =

⎧
⎪⎨

⎪⎩

1, k > kc,

μ, k = kc,

0, k < kc,

where 0 < μ ≤ 1. Then, we get a targeted immuniza-
tion system as follows:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S′
k(t) = γ Ik(t) − βS(k)(1 − μk)Sk(t)�(t)

+φVk(t) − ϕk Sk(t),

I ′
k(t) = [βS(k)(1 − μk)Sk(t) + βV (k)Vk(t)]

�(t) − γ Ik(t),

V ′
k(t) = ϕk Sk(t) − βV (k)Vk(t)�(t) − φVk(t).

(12)

The basic reproduction number of system (12) is

RT
0 = 1

〈k〉
n∑

k=1

kP(k) [φ(1 − μk)βS(k) + ϕkβV (k)]

γ (ϕk + φ)
,

and

R̃T
0 =

n∑

k=1

kP(k)(1 − μk)βS(k)

γ 〈k〉 .

Remark 8 For μ ∈ (0, 1], we have RT
0 < R0 and

R̃T
0 < R̃0, which indicates that the targeted immu-

nization scheme is effective. For 0 < 〈μk〉 = δ̃ < 1,
we can get that RT

0 < RU
0 and R̃T

0 < R̃U
0 ,whichmeans

that the targeted immunization control is more effec-
tive than the uniform scheme when adopting the same
average immunization proportion.
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Remark 9 From the expression of μk, the fewer kc
is, the higher the densities of the vaccinated individ-
uals and the consequential costs are, and the better the
control effects are, vice versa. The value of kc should
keep balance between control effects and control costs.
Moreover, we can take the upper threshold kc as con-
trol variable, kc ∈ [1, n] as main control constraints,
the control effects and costs as objective functions and
put forward a biobjective optimal control problem to
maximize control effects and minimize control costs.
It is a feasible method to obtain the optimal value of kc.

4.3 Acquaintance immunization control

It is difficult to provide the upper threshold kc for the
targeted immunization scheme [20]. To overcome this
problem, we consider the acquaintance immunization
control. We choose νN individuals from the total N
individuals by the proportion ν randomly. Thus, the
individuals with degree k are immunized by the prob-
ability νk = kνP(k)

〈k〉 . Then, we obtain an acquaintance
immunization system as follows:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S′
k(t) = γ Ik(t) − βS(k)(1 − νk)Sk(t)�(t)

+φVk(t) − ϕk Sk(t),

I ′
k(t) = [βS(k)(1 − νk)Sk(t) + βV (k)Vk(t)]

�(t) − γ Ik(t),

V ′
k(t) = ϕk Sk(t) − βV (k)Vk(t)�(t) − φVk(t).

(13)

The basic reproduction number of system (13) is

RA
0 = 1

〈k〉
n∑

k=1

kP(k) [φ(1 − νk)βS(k) + ϕkβV (k)]

γ (ϕk + φ)

= 〈Xk + Y k〉 − 〈νk Xk〉
〈Xk + Y k〉 − 〈μk Xk〉

RT
0 ,

and

R̃ A
0 = 1

〈k〉
n∑

k=1

kP(k) [φ(1 − νk)βS(k) + ϕkβV (k)]

γ (ϕk + φ)

= 〈kβS(k)〉 − 〈νkkβS(k)〉
〈kβS(k)〉 − 〈μkkβS(k)〉 R̃

T
0 .

where Xk = kφβS(k)
ϕk+φ

and Y k = kϕkβV (k)
ϕk+φ

. It is obvious

to get that 〈kβS(k)〉−〈νkkβS(k)〉 > 0 and 〈Xk +Y k〉−
〈νk Xk〉 > 0 for ν <

〈k〉
2m(m+1) .

Remark 10 When ν <
〈k〉

2m(m+1) , RA
0 = ART

0 and

R̃ A
0 = B R̃T

0 , where A = 〈Xk+Y k 〉−〈νk Xk 〉
〈Xk+Y k 〉−〈μk Xk 〉 and B =

〈kβS(k)〉−〈νkkβS(k)〉〈kβS(k)〉−〈μkkβS(k)〉 are positive constants. This means
the acquaintance immunization scheme is comparable
in effectiveness to the targeted immunization scheme.

4.4 Optimal control

Adopting immunization strategies to control diseases
may bring inevitable expenses in the actual situation
[21]. Apparently, vaccinating a node can generate a
cost, such as economic costs of vaccines, transporta-
tion charges, and so on. Therefore, we have to take the
controlling costs into consideration. In this section, we
will perform an optimal control strategy.

To choose the control variables, we perform sensi-
tivity analysis of the basic reproduction number R0 by
calculating

ϒp = ∂R0

∂p
× p

R0
,

where p is the parameter determining R0. After calcu-
lations, we can get that the vaccinated rate ϕk and the
recovery rate γ have negative impact on the basic repro-
ductive number R0. Among parameters which have
negative effects on disease, the most practicable one
is vaccination. By introducing time-dependent control
functions to measure the effectiveness of vaccination
strategies, system (1) can be extended to
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

S′
k(t) = γ Ik(t) − βS(k)Sk(t)�(t)

+φVk(t) − ϕk(t)Sk(t),

I ′
k(t) = [βS(k)Sk(t) + βV (k)Vk(t)]�(t) − γ Ik(t),

V ′
k(t) = ϕk(t)Sk(t) − βV (k)Vk(t)�(t) − φVk(t).

To minimize the density of infected individuals and
the cost of control measures, an objective functional J
over a finite time interval [0, T ] is given by

J (ϕk(t)) =
∫ T

0

n∑

k=1

[

Dk Ik(t) + Wk

2
ϕ2
k (t)

]

dt, (14)

where Dk and Wk are weighted constants for infected
population and relative costs of intervention, respec-
tively. The optimal control problem is to find optimal
functions ϕ∗

k (t) for k = 1, . . . , n such that

J (ϕ∗
k (t)) = min

ϕk (t)∈�
J (ϕk(t))

with � = {ϕk(t) ∈ L1[0, T ]|0 ≤ ϕk(t) ≤ 1, k =
1, . . . , n}.
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To achieve that, we construct the Hamilton function

H =
n∑

k=1

[

Dk Ik(t) + Wk

2
ϕ2
k (t) + λk(t)S

′
k(t)

+ λk+n(t)I
′
k(t) + λk+2n(t)V

′
k(t)

]

=
n∑

k=1

{

Dk Ik(t) + Wk

2
ϕ2
k (t)

}

+
n∑

k=1

λk(t)
[
γ Ik(t) − βS(k)Sk(t)�(t)

+φVk(t) − ϕk(t)Sk(t)]

+
n∑

k=1

λk+n(t) {[βS(k)Sk(t)

+βV (k)Vk(t)]�(t) − γ Ik(t)}

+
n∑

k=1

λk+2n(t) [ϕk(t)Sk(t)

−βV (k)Vk(t)�(t) − φVk(t)] .

ApplyingPontryagin’smaximumprinciple, oneobtains
the following theorem.

Theorem 6 There exist optimal controls

ϕ∗
k (t) = min

{

max

{

0,
Sk(t)

Wk
[λk(t)

−λk+2n(t)]
}

, 1

}

, (15)

that minimizeJ (ϕk(t)) over�. And it is necessary that
there exist continuous functions λk(t)(k = 1, . . . , n)

such that
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ′
k(t) = [λk(t) − λk+n(t)]βS(k)�(t)

+ [λk(t) − λk+2n(t)]ϕk(t),

λ′
k+n(t) = −Dk + γ [λk+n(t) − λk(t)]

+ [λk(t) − λk+n(t)]kβS(k)Sk(t)
P(k)
〈k〉

+ [λk+2n(t) − λk+n(t)]kβV (k)Vk(t)
P(k)
〈k〉 ,

λ′
k+2n(t) = φ[λk+2n(t) − λk(t)]

+ [λk+2n(t) − λk+n(t)]βV (k)�(t),

with transversality conditions

λk(T ) = λk+n(T ) = λk+2n(T ) = 0, k = 1, . . . , n.

Proof See “Appendix E”. ��
Remark 11 Theorem 6 focuses on the necessary con-
ditions of the optimal control problem. In the objective

Table 1 Values of parameters and initial conditions of system (1)

γ = 0.0125 φ = 0.03 ϕ = 0.04 σ = 0.001 T = 2000
β = 0.015 β = 0.0007

Sk(0) = 0.8 Vk(0) = 0.1 Ik(0) = 0.1

Sk(0) = 0.9 Vk(0) = 0.05 Ik(0) = 0.05

functional (14), it is difficult to evaluate the weights Dk

and Wk for k = 1, . . . , n. In the next section, we will
discuss the numerical bounds for these weight ratios.

5 Numerical simulations

In this section, we will perform numerical simulations
to illustrate the theoretical results in Sects. 3 and 4.

All the simulations are based on BA networks with
size N = 5000, which evolves from the initial net-
work with m0 = 4 and adds new node with m = 3
new edges. The average degree of the generated net-
work is 〈k〉 = 5.9976, the minimum degree is 3 and
the maximum is n = 198. We set the infection rates as
βS(k) = βk and βV (k) = σβk, and the vaccinated rate
as ϕk = ϕ. We set the time interval as [0, T ], where
T (> 0) is the terminal time; the time t can be taken
as different unit if system (1) is applied to different
epidemic based on different actual situations, includ-
ing day, week, and so on. In Table 1, all parameters of
system (1) are fixed except the infected rate β and the
initial values Sk(0), Vk(0), Ik(0). To observe the influ-
ence of different infected rates and initial values on the
infected individuals, we take two values for β and the
initial values shown in Table 1.

5.1 Uniformity of two simulations

We will show the comparisons of the mean-field
approach and Monte Carlo simulations for the predic-
tion of the average densities of the susceptible, the
infected, and the vaccinated individuals at the time
interval [0, T ]. To minimize the random fluctuation,
we make 100 time average. Given two kinds of dif-
ferent initial conditions and infected rates (as shown
in Table 1), we plot the average densities S(t), V (t)
and I (t) for the mean-field approach and Monte Carlo
simulations in Fig. 1, where the red circles denote the
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1514 W. Lv et al.

(a) (b)

(c) (d)

Fig. 1 Comparison of Monte Carlo stochastic simulation (red circle) and the mean-field approach (black curve) of system (1), where
R0 = 8.8508 in (a, b) and R̃0 = 0.9625 in (c, d), ϕk = 0.04, k = 3, 4, . . . , 198

Monte Carlo stochastic simulation and the black curves
denote the mean-field approach simulation. β is taken
as 0.015 for Fig. 1a, b and 0.0007 for Fig. 1c, d; I (0) is
taken as 0.1 for Fig. 1a, c and 0.05 for Fig. 1b, d. The
threshold parameters R0 = 8.8508 > 1 for Fig. 1a, b
and R̃0 = 0.9625 < 1 for Fig. 1c, d. From Fig. 1,
we can observe that the numerical results for the two
approaches are in agreement, which implies that the
analysis based on the mean-field approach is effective.

In all figures below, the numerical results are
obtained from the mean-field approach.

5.2 Dynamical properties of equilibria

We will verify Theorems 2–5. In Fig. 1c, d, the basic
reproduction number R0 = 0.4310 < 1. Based on
Theorem 2, the disease-free equilibrium P0 is locally

asymptotically stable, which is shown in Fig. 1c, d.
Furthermore, we calculate the threshold number R̃0 =
0.9625 < 1. It depicts that the disease-free equilib-
rium P0 is globally asymptotically stable, which cor-
responds to the results of Theorem 3.

The condition R1
.= 4.9867 × 10−6 < 1 of The-

orem 5 is satisfied. From the above, the basic repro-
duction number R0 = 8.8508 > 1. We discover that
the densities of the susceptible, the infected and the
vaccinated individuals converge to a positive constant,
respectively. It is clear that the endemic equilibrium
P∗ is uniformly persistent and globally attractive in
Fig. 1a, b, which coincides with Theorems 4 and 5.

In addition, from Fig. 1, we can observe that the
initial conditions have almost no influence on the sta-
tionary fraction of infected individuals for R0 > 1 or
R̃0 < 1.
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(a) (b)

(c) (d)

Fig. 2 Comparison of the uniform immunization, the targeted immunization and the acquaintance immunization schemes, where
δ̃ = 0.1, μ = 0.185, kc = 10, ν = 0.18

5.3 Effects of three immunization schemes on disease
diffusion

We present the numerical results investigating the
effectiveness of the uniform, targeted and acquain-
tance immunization schemes. We set δ̃ = 0.1, μ =
0.185, kc = 10. The average rate 〈μk〉 for the targeted
immunization control is the same with the immuniza-
tion rate δ̃ for the uniform one. The numerical results
are summarized in Fig. 2. We can see that the three
immunization methods reduce the final densities of the
infected individuals and make the size of any epidemic
smaller. Two threshold parameters of three immuniza-
tionmethods are shown for β = 0.015 and β = 0.0007
in Table 2.

From Table 2, we can conclude that R0 > RA
0 >

RU
0 > RT

0 > 1 for Fig. 2a, b and R̃T
0 < R̃U

0 <

R̃ A
0 < R̃0 < 1 for Fig. 2c, d. It is obvious that

Table 2 Values of R0 and R̃0 corresponding to different β

R0 RA
0 RU

0 RT
0

β = 0.015 8.8508 8.8121 7.9669 1.6965

R̃0 R̃ A
0 R̃U

0 R̃T
0

β = 0.0007 0.9625 0.9583 0.8662 0.1834

the targeted immunization control has the absolute
advantage to control the disease over the uniform and
acquaintance immunization schemes. However, the tar-
geted immunization control requires global informa-
tion about the degrees of the nodes on the network, i.e.,
the upper threshold kc. For the acquaintance immu-
nization scheme, we choose ν = 0.18 <

〈k〉
2m(m+1) =

0.2499; then, it is comparable to the targeted immu-
nization scheme in effectiveness. It can also be seen
fromFig. 2 that the acquaintance immunizationmethod
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(a) (b)

(a1) (b1)

Fig. 3 Optimal control ϕ∗
k (t) for different k and comparison of the average infected density I (t) for ϕk(t) = ϕ∗

k (t), 0.04, 0 with R0 > 1,
where β = 0.015

shows a higher average density of the infected individ-
uals than the targeted immunization method. Clearly,
the targeted immunization scheme is the most effective
among the three schemes.

5.4 Effects of optimal control on disease diffusion

For the optimal control scheme, we solve system (1)
by the fourth-order Runge–Kutta scheme and employ
forward–backward sweep method [22] to find opti-
mal solutions. The stop condition is relative error ε =
0.001. Besides parameter values and initial conditions
set in Table 1, Dk = 10 and Wk = 0.01 are adopted,
k = 3, 4, . . . , 198.

Figures 3a, b and 4c, d show the optimal control
ϕ∗
k (t) for different degrees k in the cases of R0 > 1 and
R̃0 < 1, where k is taken as 3, 20, 35, 50, 75, 97, 118,

146, 163, 198. From the four subfigures, it can be
observed that the optimal control ϕ∗

k (t) increases with
the degree k increasing in most of the interval. Fig-
ures 3a1, b1 and 4c1, d1 indicate the comparison of
the average infected density I (t) with optimal con-
trols (ϕk(t) = ϕ∗

k (t)), with ϕk(t) = 0.04, and with-
out optimal controls (ϕk(t) = 0), where β = 0.015
for Fig. 3 and β = 0.0007 for Fig. 4. In Fig. 3a1, b1,
R0 = 20.6244 and 8.8508 correspond to ϕk(t) = 0
and 0.04; hence, the infection persists. Nevertheless,
once effective vaccination is applied, the diseasewill be
controlled and die out ultimately. In the face of global
prevalence, great efforts must be made to control prop-
agation during a given period. To minimize both the
infected density and control cost, the optimal controls
ϕ∗
k (t) decrease with fixed degree k during almost entire

evolution and increase with the degree k increasing at
fixed time. It is well understood that if a large fraction
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(c) (d)

(c1) (d1)

Fig. 4 Optimal control ϕ∗
k (t) for different k and comparison of the average infected density I (t) for ϕk(t) = ϕ∗

k (t), 0.04, 0 with R̃0 < 1,
where β = 0.0007

of susceptible are vaccinated, the possibility of the out-
break of an infectious disease will be reduced appar-
ently. On the other hand, the infection will fade out
gradually without any containment, as demonstrated in
Fig. 4c1, d1, where R̃0 = 0.9625 < 1. So long as the
vaccination is performed, the survival of the disease
will be greatly reduced.

At last, we will discuss how the value Dk : Wk has
effect on the average densities of the infected individ-
uals with optimal control. Here, we only consider the
value of Dk : Wk does not change with the degree
k. Figure 5 provides the effect of the value change
of Dk : Wk on I (t) with ϕ∗

k (t). In Fig. 5a, b, the
infected rate β = 0.015 and the basic production num-
ber R0 > 1. The pink and red lines are demarcations.
In Fig. 5a, for Dk : Wk ≥ 1 : 0.011, the average
density I (t) of the infected individuals decreases pro-
gressively in the interval [0, T ]; that is, the disease can

be controlled effectively; for 1 : 0.011 < Dk : Wk <

1 : 2.65, the disease can be controlled in a period of
time first and become increasingly prevalent finally; for
Dk : Wk ≤ 1 : 2.65, the average density I (t) always
increases in [0, T ]; that is, the disease is out of control.
In Fig. 5b, the analysis is analogous with Fig. 5a. Fig-
ure 5c, d shows the effect of the value Dk : Wk on the
average density I (t) for R̃0 < 1, where β = 0.0007.
We present the ratios of Dk : Wk to control the disease
till 0.2T, 0.25T, 0.4T, 0.5T . In Fig. 5c, those ratios
are 1 : 0.02, 1 : 0.45, 1 : 3.7, 1 : 9.6 corresponding
to 0.2T, 0.25T, 0.4T, 0.5T, respectively. In Fig. 5d,
those ratios are 1 : 0.01, 1 : 0.24, 1 : 1.8, 1 : 4.7 cor-
responding to 0.2T, 0.25T, 0.4T, 0.5T, respectively.
We can conclude that the fewer the ratios are, the
longer the spent time to control the disease is for
R̃0 < 1.
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(a) (b)

(c) (d)

Fig. 5 Effect of Dk : Wk on the average densities of the infected individuals with optimal control, k = 3, 4, . . . , 198

6 Conclusions

The purpose of this paper is to study the global dynam-
ics and control strategies of a newly proposed SIVS
epidemic model on scale-free networks. We analyti-
cally derive the expressions of the epidemic thresh-
old parameters R0 and R̃0. And we show that when
R̃0 < 1, the disease-free equilibrium of system (1)
is globally asymptotically stable, i.e., the disease will
die out; when R0 > 1, there is a unique endemic
equilibrium and the disease will persist on networks.
For the four control schemes, we conclude that the
targeted immunization method is the most effective
among the first three schemes under some condition
and present the numerical bounds of Dk : Wk for dif-
ferent cases.

In the current work, we only discuss the global
dynamics of the endemic equilibrium P∗ for R0 > 1.
However, there exist other endemic equilibria P∗

i (i =

1, 2, 3, 4) for R0 ≤ 1. In addition, we only con-
sider the density of infected individuals and the con-
trol expenses in the optimal control strategy. The spent
time to control the spread of the disease is not taken
into account. These limitations will be overcome in the
further work.
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Appendix A: Proof of Theorem 2

Since Sk + Ik + Vk = 1 for any k, we can reduce the
size of system (1) by Sk = 1 − Ik − Vk . Now system
(1) is turned to
{
I ′
k = {βS(k)(1 − Ik) − [βS(k) − βV (k)]Vk}� − γ Ik ,

V ′
k = ϕk(1 − Ik) − βV (k)Vk� − (ϕk + φ)Vk .

(16)

The Jacobian matrix of system (16) at P0 is

J(P0) =
(
J 0
K M

)

2n×2n
,

where

J =

⎛

⎜
⎜
⎜
⎝

P(1){βS(1)−[βS(1)−βV (1)]V 0
1 }

〈k〉 − γ . . .
nP(n){βS(1)−[βS(1)−βV (1)]V 0

1 }
〈k〉

...
...

...
P(1){βS(n)−[βS(n)−βV (n)]V 0

n }
〈k〉 · · · nP(n){βS(n)−[βS(n)−βV (n)]V 0

n }
〈k〉 − γ

⎞

⎟
⎟
⎟
⎠

,

K =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−βV (1)V 0
1 P(1)

〈k〉 − ϕ1 − 2βV (1)V 0
1 P(2)

〈k〉 · · · − nβV (1)V 0
1 P(n)

〈k〉
−βV (2)V 0

2 P(1)
〈k〉 − 2βV (2)V 0

2 P(2)
〈k〉 − ϕ2 · · · − nβV (2)V 0

2 P(n)

〈k〉
...

...
...

...

−βV (n)V 0
n P(1)

〈k〉 − 2βV (n)V 0
n P(2)

〈k〉 · · · − nβV (n)V 0
n P(n)

〈k〉 − ϕn

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

M =

⎛

⎜
⎜
⎜
⎝

− (ϕ1 + φ) 0 · · · 0
0 − (ϕ2 + φ) · · · 0
...

...
...

...

0 0 · · · −(ϕn + φ)

⎞

⎟
⎟
⎟
⎠

.

A direct calculation leads to the characteristic polyno-
mial of the disease-free equilibrium in the following
form:

(λ + γ )n−1 [λ − γ (R0 − 1)
]

n∏

k=1

(λ + ϕk + φ) = 0.

Since R0 < 1, all eigenvalues of J(P0) are all negative,
which completes the proof.

Appendix B: Proof of Theorem 3

First, we will show limt→+∞ Ik(t) = 0 for any k =
1, . . . , n. The derivative of �(t) is

d�

dt
= 1

〈k〉
n∑

k=1

kP(k)I ′
k

= 1

〈k〉
n∑

k=1

kP(k){[βS(k)(1 − Ik)

− (βS(k) − βV (k))Vk]� − γ Ik}

≤ 1

〈k〉
n∑

k=1

kβS(k)P(k)� − γ�,

then

�(t) ≤ �(0) exp{γ (R̃0 − 1)t}.
Since R̃0 < 1, we have limt→+∞ �(t) = 0 and
limt→+∞ Ik(t) = 0 for any k.Moreover, for any ε > 0,
there exists a tε > 0; we have 0 ≤ Ik(t) ≤ ε for t > tε.
Next, we will claim that limt→+∞ Vk(t) = V 0

k for any
k. For the third equation of system (1), we get

V ′
k = ϕk Sk − βV (k)Vk� − φVk

≤ ϕk − (ϕk + φ)Vk;
thus,

lim
t→+∞ sup Vk(t) ≤ ϕk

ϕk + φ
= V 0

k .

On the other hand, considering 0 ≤ Ik(t) ≤ ε, we have

V ′
k ≥ ϕk − [βV (k) + ϕk]ε − (ϕk + φ)Vk .

Setting ε → 0, we get that

lim
t→+∞ inf Vk(t) ≥ ϕk

ϕk + φ
= V 0

k .

Therefore, limt→+∞ Vk(t) = V 0
k for any k =

1, 2, . . . , n. Because Sk(t) = 1− Ik(t) − Vk(t), it fol-
lows that limt→+∞ Sk(t) = S0k for any k. These prove
that P0 is globally attractive for R̃0 < 1. Combining
with Theorem 2, P0 is globally asymptotically stable
in �.
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Appendix C: Proof of Theorem 4

The result follows from an application of Theorem 4.6
in Ref. [23]. Define

X1 = {(Sk(t), Ik(t), Vk(t)) ∈ �|I (t)
=

n∑

k=1

P(k)Ik(t) > 0}, X2 = � \ X1.

First, we will show X1 is positive invariant with respect
to system (1). For (Sk(0), Ik(0), Vk(0)) ∈ X1, I (0) >

0, which is equivalent to �(0) > 0. Then, we have

d�

dt
= 1

〈k〉
n∑

k=1

kP(k){βS(k)(1 − Ik)

−[βS(k) − βV (k)]Vk}� − γ�.

Thus,

�(t) = �(0) exp

⎧
⎨

⎩

1

〈k〉
∫ t

0

n∑

k=1

kP(k)[βS(k)(1 − Ik(τ ))

− (βS(k) − βV (k))Vk(τ )]dτ − γ t

⎫
⎬

⎭
,

which implies that �(t) > 0 for t > 0. Therefore, we
can obtain

I ′(t) =
n∑

k=1

P(k)I ′
k(t)

=
n∑

k=1

P(k){βS(k)(1 − Ik(t))

−[βS(k) − βV (k)]Vk(t)}�(t) − γ I (t)

> − γ I (t);
then, I (t) > I (0) exp{−γ t} > 0 for t > 0. Thus,
X1 is positive invariant. Furthermore, the compactness
condition (C4.2) of Theorem 4.6 in Ref. [23] is easily
verified.

Denote

Y1 =
⋃

x0∈Y2
{ω(x0)},

Y2 = {x0 = (Sk(0), Ik(0), Vk(0))

∈ X2|x(t, x0) ∈ X2, t ≥ 0},
where x(t, x0) is the solution of system (1) with the
initial value x0. ω(x0) is the omega limit set of the
solution of system (1) starting in x0 ∈ �. Restricting
system (1) on M1 = {x0|I (t) = 0, t ≥ 0} gives
⎧
⎪⎨

⎪⎩

S′
k = φVk − ϕk Sk,

I ′
k = −γ Ik,

V ′
k = ϕk Sk − φVk .

(17)

It is easy to verify that system (17) has a unique equilib-
rium P0(S0k , 0, V

0
k ) in M1. We can also get that P0 is

locally asymptotically stable in M1, and it is also glob-
ally asymptotically stable since system (17) is a linear
system. Therefore, Y1 = {P0}. And P0 is a covering
of Y1, which is isolated and acyclic.

Finally, the proof will be done if we show P0 is a
weak repeller for X1, i.e.,

lim
t→∞ sup d(x(t, x0), P

0) > 0 for any x0 ∈ X1.

We only prove

Ws(P0) ∩ X1 = ∅, (18)

where Ws(P0) denotes the stable manifold of P0.

Suppose (18) is not valid, that is for the initial value
(Sk(0), I k(0), V k(0)) ∈ X1, such that

Sk(t) → S0k , I k(t) → I 0k , V k(t)

→ V 0
k , as t → ∞, k = 1, . . . , n.

Since R0 > 1, we can choose a δ > 0 small enough
such that

mδ � 1

γ 〈k〉
n∑

k=1

kP(k)

{
φβS(k) + ϕkβV (k)

ϕk + φ

−[βS(k) + βV (k)]δ
}

> 1.

On the other side, for the above δ > 0, there exists a
tδ > 0 such that

S0k − δ ≤ Sk(t) ≤ S0k + δ, 0 ≤ Ik(t) ≤ δ, V 0
k

−δ ≤ Vk(t) ≤ V 0
k + δ,

for t ≥ tδ, k = 1, . . . , n. (19)

Denoting �(t) = 1
γ
�(t), then for t ≥ tδ we have

d�(t)

dt
= 1

γ
�′(t)

= 1

γ 〈k〉
n∑

k=1

kP(k) {φβS(k)

+ϕkβV (k)�(t) − γ Ik}

≥ 1

γ 〈k〉
n∑

k=1

kP(k)
{
[βS(k)S

0
k + βV (k)V 0

k ]

− [βS(k) + βV (k)]δ}�(t) − �(t)

= γ (mδ − 1)�(t).

Hence �(t) ≥ �(tδ) exp{γ (mδ − 1)t}, we have
limt→∞ �(t) = ∞, which contradicts to (19). Thus,
(18) holds, which completes the proof.
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Appendix D: Proof of Theorem 5

From Theorem 4, there exist a constant 0 < ξ < 1
3 and

a large enough constant t̄ > 0 such that I (t) ≥ ξ 〈k〉
for t > t̄ . For the second equation of system (1), we
can get that

I ′
k ≤ βS(k)(1 − Ik) − γ Ik, t > t̄ .

Hence, for 0 < ξ1 < min{ξ,
γ

2[βS(k)+γ ] }, there exists a
t1 > t̄ , such that Ik(t) ≤ X (1)

k − ξ1 for t > t1, where

X (1)
k = βS(k)

βS(k) + γ
+ 2ξ1 < 1.

From the third equation of system (1), we can get

V ′
k ≤ ϕk − βV (k)Vkξ − (ϕk + φ)Vk, t > t1.

Then, for 0 < ξ2 < min
{
1
2 , ξ1,

βV (k)ξ+φ
2[βV (k)ξ+ϕk+φ]

}
, there

exists a t2 > t1, such that Vk(t) ≤ Y (1)
k − ξ2 for t > t2,

where

Y (1)
k = ϕk

βV (k)ξ + ϕk + φ
+ 2ξ2 < 1.

On the other hand, substituting �(t) ≥ ξ into the sec-
ond equation of system (1), we get

I ′
k ≥ ξ
[
βS(k)(1 − Ik) − (βS(k) − βV (k))Y (1)

k

]

− γ Ik, t > t2.

Hence, for 0 < ξ3 < min
{ 1
3 , ξ2,

ξ
{
βS(k)−[βS(k)−βV (k)]Y (1)

k

}

2[βS(k)ξ+γ ]

}

, there exists a t3 > t2, such

that Ik(t) ≥ x (1)
k + ξ3 for t > t3, where

x (1)
k =

ξ
{
βS(k) − [βS(k) − βV (k)]Y (1)

k

}

βS(k)ξ + γ
− 2ξ3 > 0.

And

V ′
k ≥ ϕk

(
1 − X (1)

k

)
− βV (k)ξVk

− (ϕk + φ)Vk, t > t3.

Then for 0 < ξ4 < min

{

1
4 , ξ3,

ϕk

(
1−X (1)

k

)

2[βV (k)ξ+ϕk+φ]

}

, there

exists a t4 > t3, such that Vk(t) ≥ y(1)
k + ξ4 for t > t4,

where

y(1)
k =

ϕk

(
1 − X (1)

k

)

βV (k)ξ + ϕk + φ
− 2ξ4 > 0.

Since ξ is a small constant, it holds that 0 < x (1)
k <

X (1)
k < 1 and 0 < y(1)

k < Y (1)
k < 1 .

Denote

H ( j) = 1

〈k〉
n∑

k=1

kP(k)X ( j)
k , (20)

h( j) = 1

〈k〉
n∑

k=1

kP(k)x ( j)
k , j = 1, 2, . . . . (21)

It is easy to get that 0 < h(1) ≤ �(t) ≤ H (1), t > t4.
Once again, we have

I ′
k ≤ H (1)

{
βS(k)(1 − Ik) − [βS(k) − βV (k)]y(1)

k

}

− γ Ik, t > t4.

Thus, for 0 < ξ5 < min
{ 1
5 , ξ4
}
, there exists a t5 > t4,

such that

Ik(t) ≤ X (2)
k � min

{
X (1)
k

− ξ1,
H (1)
{
βS(k) − [βS(k) − βV (k)]y(1)

k

}

βS(k)H (1) + γ

+ ξ5

}
, t > t5.

And

V ′
k ≤ ϕk

(
1 − x (1)

k

)

−βV (k)Vkh
(1) − (ϕk + φ)Vk, t > t5.

Then, for 0 < ξ6 < min
{ 1
6 , ξ5
}
, there exists a t6 > t5,

such that

Vk(t) ≤ Y (2)
k � min

⎧
⎨

⎩
Y (1)
k

− ξ2,
ϕk

(
1 − x (1)

k

)

βV (k)h(1) + ϕk + φ
+ ξ6

⎫
⎬

⎭
, t > t6.

On the other side, one has

I ′
k ≥ h(1)

{
βS(k)(1 − Ik) − [βS(k) − βV (k)]Y (2)

k

}

− γ Ik, t > t6.

Then, for 0 < ξ7 < min
{ 1
7 , ξ6,

h(1)
{
βS(k)−[βS(k)−βV (k)]Y (2)

k

}

2[βS(k)h(1)+γ ]

}

, there exists a t7 > t6,

such that Ik(t) ≥ x (2)
k + ξ7 for t > t7, where

x (2)
k = max

⎧
⎨

⎩
x (1)
k

+ ξ3,
h(1)
{
βS(k) − [βS(k) − βV (k)]Y (2)

k

}

βS(k)h(1)+γ
−2ξ7

⎫
⎬

⎭
.
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And

V ′
k ≥ ϕk

(
1 − X (2)

k

)

−βV (k)VkH
(2) − (ϕk + φ)Vk, t > t7.

Then, for 0 < ξ8 < min

{

1
8 , ξ7,

ϕk

(
1−X (2)

k

)

2[βV (k)H (2)+ϕk+φ]

}

,

there exists a t8 > t7, such that Vk(t) ≥ y(2)
k + ξ8 for

t > t8, where

y(2)
k =max

⎧
⎨

⎩
y(1)
k +ξ5,

ϕk

(
1 − X (2)

k

)

βV (k)H (2)+ϕk+φ
− 2ξ8

⎫
⎬

⎭
.

Similarly, the l-th step can be performed and four
sequences are obtained: {X (l)

k }, {Y (l)
k }, {x (l)

k } and {y(l)
k }.

Since the first two are monotone increasing and the last
two are strictly decreasing, there exists a large positive
integer K such that for l ≥ K :

X (l)
k =

H (l−1)
{
βS(k) − [βS(k) − βV (k)]y(l−1)

k

}

βS(k)H (l−1) + γ

+ ξ4l−3, (22)

x (l)
k =

h(l−1)
{
βS(k) − [βS(k) − βV (k)]Y (l)

k

}

βS(k)h(l−1) + γ

− 2ξ4l−1, (23)

Y (l)
k =

ϕk

(
1 − x (l−1)

k

)

βV (k)h(l−1) + ϕk + φ
+ ξ4l−2, (24)

y(l)
k =

ϕk

(
1 − X (l)

k

)

βV (k)H (l) + ϕk + φ
− 2ξ4l . (25)

It is clear that

x (l)
k ≤ Ik(t) ≤ X (l)

k , y(l)
k ≤ Vk(t) ≤ Y (l)

k , t > t4l . (26)

Noting that 0 < ξl < 1
l , one has ξl → 0 as l → ∞. For

the six sequences of (20)–(25), direct computations as
j → ∞ and l → ∞ lead to

lim
j→∞ H ( j) = 1

〈k〉
n∑

k=1

kP(k)Xk � H, (27)

lim
j→∞ h( j) = 1

〈k〉
n∑

k=1

kP(k)xk � h, (28)

lim
l→∞ X (l)

k

= H {βS(k)[βV (k)H + φ] + ϕkβV (k)}
[βV (k)H + φ][βS(k)H + γ ] + ϕk [βV (k)H + γ ] � Xk ,

(29)
lim
l→∞ x (l)

k

= h {βS(k)[βV (k)h + φ] + ϕkβV (k)}
[βV (k)h + φ][βS(k)h + γ ] + ϕk [βV (k)h + γ ] � xk ,

(30)
lim
l→∞ Y (l)

k

= γ ϕk

[βV (k)h + φ][βS(k)h + γ ] + ϕk [βV (k)h + γ ] � Yk ,

(31)
lim
l→∞ y(l)

k

= γ ϕk

[βV (k)H + φ][βS(k)H + γ ] + ϕk [βV (k)H + γ ] � yk .

(32)

Substituting (29) into (27) and (30) into (28), respec-
tively, one obtains
1

〈k〉
n∑

k=1

kP(k){βS(k)[βV (k)H + φ] + ϕkβV (k)}
[βV (k)H + φ][βS(k)H + γ ] + ϕk [βV (k)H + γ ] = 1,

1

〈k〉
n∑

k=1

kP(k){βS(k)[βV (k)h + φ] + ϕkβV (k)}
[βV (k)h + φ][βS(k)h + γ ] + ϕk [βV (k)h + γ ] = 1.

Subtracting the above two equations, we can get

1

〈k〉
n∑

k=1

kP(k)F(k)(h − H)

G(k)
= 0,

where

F(k) = β2
S(k)[βV (k)h + φ][βV (k)H + φ]

+ϕkβS(k)βV (k)(φ − γ )

+ϕkβV (k){βS(k)βV (k)(H + h)

+[φβS(k) + γβV (k)] + ϕkβV (k)},
G(k) = {[βV (k)h + φ][βS(k)h + γ ]

+ϕk[βV (k)h + γ ]}
·{[βV (k)H + φ][βS(k)H + γ ]
+ϕk[βV (k)H + γ ]}.

The condition R1 ≤ 1 implies that H = h, which is
equivalent to Xk = xk and Yk = yk for k = 1, . . . , n.

Therefore, from (26), it follows that

lim
t→∞ Ik(t) = Xk = xk,

lim
t→∞ Vk(t) = Yk = yk, k = 1, . . . , n.

In view of (4)–(7) and (27)–(32), it is found that Xk =
I ∗
k ,Yk = V ∗

k , and H = h = �∗.Since Sk = 1− Ik−Vk
for any k, limt→∞ Sk = 1 − I ∗

k − V ∗
k = S∗

k . This
completes the proof.

Appendix E: Proof of Theorem 6

The existence of optimal controls is easy to be proved
according to Ref. [24]. Applying Pontryagin’s maxi-
mum principle, one obtains
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λ′
k(t) = − ∂H

∂Sk
= [λk(t) − λk+n(t)]βS(k)�(t)

+[λk(t) − λk+2n(t)]ϕk(t),

λ′
k+n(t) = −∂H

∂ Ik
= −Dk + γ [λk+n(t) − λk(t)]

+ [λk(t) − λk+n(t)]βS(k)Sk(t)
kP(k)

〈k〉
+ [λk+2n(t) − λk+n(t)]βV (k)Vk(t)

kP(k)

〈k〉 ,

λ′
k+2n(t) = − ∂H

∂Vk
= φ[λk+2n(t) − λk(t)]

+ [λk+2n(t) − λk+n(t)]βV (k)�(t),

and
∂H
∂ϕk

= ϕk(t)Wk − λk(t)Sk(t) + λk+2n(t)Sk(t).

Solving for ϕk(t) yields

ϕk(t) = Sk(t)

Wk
[λk(t) − λk+2n(t)].

Using standard argument for bounds 0 ≤ ϕk(t) ≤ 1 for
k = 1, . . . , n, one gets (15).
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