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Abstract Quantization, sampling and delay may
cause undesired oscillations in digitally controlled sys-
tems. These vibrations are often neglected or replaced
by random noise (Widrow and Kollár in Quantization
noise: roundoff error in digital computation, signal pro-
cessing, control, and communications, CambridgeUni-
versity Press, Cambridge, 2008); however, we have
shown that digital effects may lead to small amplitude
deterministic chaotic solutions—the so-called micro-
chaos (Csernák and Stépán in Int J Bifurc Chaos
5(20):1365–1378, 2010). Although the amplitude of
themicro-chaotic oscillations is small, multiple chaotic
attractors can appear in the state space of the digitally
controlled system—situated far away from the desired
state—causing significant control error (Csernák and
Stépán in Proceedings of the 19th mediterranean con-
ference on control and automation, 2011). In this paper,
we are interested in the analysis of a digitally controlled
inverted pendulum with both input and output quantiz-
ers along with sampling. We show that this twofold
quantization creates patterns in the state space corre-
sponding to different control effort (force or torque)
values for a simple PD control. We also highlight how
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these patterns lead to chaotic attractors or periodic
cycles with superimposed chaotic oscillations.
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1 Introduction

Nowadays, digitally controlled devices are becoming
more and more popular, as the field of automation,
smart devices, and the Internet of Things continuously
grows.

The three main digital effects: sampling, quantiza-
tion and processing delay are usually present in all
kinds of digitally controlled devices [13,18]. Because
of high-performance applications are featuring fast
CPUs, high resolution analog-to-digital (adc) and
digital-to-analog converters (dac), these effects were
often negligible—in the last years—thanks to the small
sampling time, fast computation and high resolution of
quantizers.

Currently, however, low- and medium-cost con-
trollers (from Atmel© AVRs in Arduinos to ARM
Cortex© ST microcontrollers) are becoming wide-
spread in several applications, which usually use 8–12
bit adcs/dacs and communicate in larger and wider
networks which often introduce noticeable lags. That
is, the corresponding digital effects: sampling, quanti-
zation and delay are becoming more significant.
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We have shown in our previous works [2,4] that in
case of rounding and sampling, digitally controlled sys-
tems can exhibit small amplitude chaotic oscillations—
the so-called micro-chaos. Rounding partitions the
state space into bands corresponding to different con-
trol effort values, and sampling adds irregularity to
switching events. Trajectories are allowed to cross
switching lines unnoticed for a random amount of
time—until the next sampling occurs. It can happen
that multiple chaotic attractors appear in the state
space of these systems and—depending on the ini-
tial conditions—the system may arrive to an attrac-
tor far away from the desired state. Thus, the control
errors becomes large. Usually, the size of the chaotic
attractor is so small that the solution is practically sta-
ble [14]. Depending on the nature of the instability of
the uncontrolled system, periodic orbits with superim-
posed chaotic oscillations can also appear [6,7,12].

Note that the explicit control of chaos itself is not
our goal with the PD-control. However, an elegant
feedback control approach was introduced in [17] and
applied to a simple system in [1].

The single quantization cases—where either only
the measured state or only the outgoing control effort is
quantized—are well known [3,5]. In some cases, when
both quantizations are present, the less significant can
be neglected, and one can return to a single quantization
case.

Our current aim is to create a model for twofold
quantization from which the single quantization cases
can be inherited, and to discover the range of quantiza-
tion resolutions for which the effect of the less impor-
tant quantizer is negligible.

In this paper, the effects of twofold quantization
are presented on an inverted pendulum with a sim-
ple PD-control. Two new types of bifurcations are also
introduced: deadzone crisis (Sect. 3.3) and collision of
switching lines (Sect. 4.1).

2 Digitally controlled inverted pendulum

Consider a single degree-of-freedom (DoF) inverted
pendulum with digital control, i.e. the measured states
and the output control torque are sampled and quan-
tized. The processing delay is neglected and the con-
troller realizes zero-order-hold, see Fig. 1. The mea-
sured angle ϕ and angular velocity ϕ̇ are quantized

according to input resolution rI, and the calculated con-
trol effort M is quantized with output resolution rO.
After linearization, the equation of motion of the
inverted pendulum assumes the following form:

ϕ̈(t) + 2δαϕ̇(t) − α2ϕ(t) = −(Pϕi + Dϕ̇i ),

t ∈ [iτ, (i + 1)τ ),
(1)

where α is the reciprocal of the time constant character-
izing the instability of the upper equilibrium position,
δ is the relative damping, P and D are control gains,
τ is the sampling period and Eq. (1) is valid between
subsequent sampling instants.

Introducing the dimensionless time T = t/τ and
using the notation �′ = d�/dT , Eq. (1) can be rewrit-
ten as

ϕ′′(T ) + 2δα̂ϕ
′
(T ) − α̂2ϕ(T ) = −(P̂ϕi + D̂ϕ′

i ),

T ∈ [i, i + 1),
(2)

where

α̂ = ατ, P̂ = Pτ 2, D̂ = Dτ. (3)

Taking input and output quantization into account, and
temporarily returning to the original control parame-
ters (P and D) introduced in Eq. (1), we arrive at the
following:

ϕ′′(T ) + 2δα̂ϕ′(T ) − α̂2ϕ(T )

= −rO τ 2 Int

(
P rI
rO

Int

(
ϕi

rI

)
+ D rI

τ rO
Int

(
ϕ′
i

rI

))
,

T ∈ [i, i + 1).

In this paper, we use a mid-tread quantizer with double
deadzone, that is Int(x) yields the integer part of x (see
Fig. 2).

Note, that the resolution of the angular velocity ϕ̇i
is rI/τ . Thus, according to the definition of the dimen-
sionless time T , one can write ϕ̇i τ/rI = ϕ′

i/rI. This
results in the same dimension in displacement and
velocity with the same quantization resolutions, rI at
the input and rO at the output.

In some cases, one of the quantizations is domi-
nant over the other, and therefore, the quantization with
higher resolution can be neglected, and one of the sin-
gle quantization models can be used (where either the
input or the output is quantized) [3]. However, our goal
is to analyse the joint effect of twofold quantization
and examine the transition between the twofold and
single quantization cases. Doing so, we can also high-
light those ranges, where neglecting the less influential
quantizer is valid.
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Twofold quantization in digital control 1367

Fig. 1 The digitally controlled inverted pendulum with the
schematic representation of the zero-order-hold and quantiza-
tion at the input (measured angle, angular velocity) and output
(control torque)

In order to reduce the number of resolution param-
eters, we re-scale the space coordinate with a properly
chosen (see Sects. 2.1, 2.2) characteristic displacement
X . Introducing the notations x = ϕ/X , x ′ = ϕ′/X and
x ′′ = ϕ′′/X , the equation of motion can be rewritten
as

Fig. 2 Rounding towards zero (Int); mid-tread quantizationwith
double deadzone

x ′′(T ) + 2δα̂x ′(T )−α̂2x(T )

= −rO τ 2

X
Int

(
P rI
rO

Int

(
xi X

rI

)
+D rI

τ rO
Int

(
x ′
i X

rI

))
.

If we want to transform the output quantizer to a unit
resolution one, XO = rO τ 2 characteristic displace-
ment should be used. Similarly, using XI = rI results
in unit resolution input quantization.

2.1 Characteristic displacement for unit resolution
output quantization

Using XO, the equation of motion assumes the follow-
ing form:

x ′′(T ) + 2δα̂x ′(T ) − α̂2x(T )

= − Int

(
P rI
rO

Int

(
xi rO τ 2

rI

)
+D rI

τ rO
Int

(
x ′
i rO τ 2

rI

))
.

Introducing ρI = rI/(rO τ 2) = rI/XO one can write:

x ′′(T ) + 2δα̂x ′(T ) − α̂2x(T )

= − Int

(
P τ 2 ρI Int

(
xi
ρI

)
+ D τ ρI Int

(
x ′
i

ρI

))
,

where P̂ and D̂ can be recognized [see Eq. (3)] and
it can be seen that ρI acts as a resolution for the input
quantization and the output quantizer has unit resolu-
tion:

x ′′(T ) + 2δα̂x ′(T ) − α̂2x(T ) (4I)

= − Int
(
P̂ ρI Int (xi/ρI) + D̂ ρI Int

(
x ′
i/ρI

))
.
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2.2 Characteristic displacement for unit resolution
input quantization

Using XI and ρO = rO τ 2/rI = 1/ρI, a similar deriva-
tion leads to:

x ′′(T ) + 2δα̂x ′(T ) − α̂2x(T )

= −ρO Int

(
P rI
rO

Int (xi ) + D rI
τ rO

Int
(
x ′
i

))
.

Exploiting the definition of P̂ , D̂ and ρO we arrive at
the following equation:

x ′′(T ) + 2δα̂x ′(T ) − α̂2x(T ) (4O)

= −ρO Int

(
P̂

ρO
Int (xi ) + D̂

ρO
Int

(
x ′
i

))
,

where the input quantizer has unit resolution and ρO
acts as a resolution for the output quantization.

In Equations (4I–4O), a single quantization ratio (ρ)
characterizes the ratio of input and output quantization
resolutions. For large ρI or small ρO values, the input
quantization dominates, and the outer quantization can
be practically neglected. Similarly, for largeρO or small
ρI values, the output quantization is more significant.
Lastly, when the characteristic displacements XI and
XO are equal, ρO = ρI = 1, therefore both quantiza-
tions have the same unit resolution.

Itmay seem that one could continue by choosing one
of the characteristic displacements XI (and the corre-
sponding resolution ρ = ρO) or XO (with ρ = ρI) and
examine the ρ → 0 and ρ → ∞ limits to express the
single quantization cases. However, neither of the two
choices are perfect, as the upper limit of quantization
is

lim
ρ→∞ ρ Int(x/ρ) = 0, (5)

consequently the control effort turns to zero in Equa-
tions (4I–4O); thus, thismodel does not reflect the phys-
ical properties of the single quantization controller.
Taking the lower limit, we obtain

lim
ρ→0

ρ Int(x/ρ) = x, (6)

which means that the twofold quantization turns to sin-
gle quantization because the infinitely fine resolution
quantizer yields the original signal itself (see Fig. 3).

Consequently, it can be firmly stated that none of the
single-parameter twofold quantization equations (4I) or

(4O) can be solely used to analyse the transition to both
single quantization cases.

Therefore, we use Eq. (4I) to examine the transition
from twofold quantization to single quantization at the
output (ρI → 0), and similarly Eq. (4O) to inspect
the transition to the single quantization at the input (as
ρO → 0):

Int
(
P̂ ρI Int (xi/ρI) + D̂ ρI Int

(
x ′
i/ρI

)) −−−→
ρI→0

Int
(
P̂ xi + D̂ x ′

i

)
,

ρO Int

(
P̂

ρO
Int (xi ) + D̂

ρO
Int

(
x ′
i

)) −−−→
ρO→0

P̂ Int(xi ) + D̂ Int(x ′
i ).

It is worth noting that one can trivially switch bet-
ween (4I) and (4O) at ρI = ρO = 1 or also can use one
of the representations to examine the effect of rather
large values of ρ, without switching to the other repre-
sentation.

3 Numerical analysis of the micro-chaos map

3.1 Micro-chaos map

Equations (4I–4O) characterize the behaviour of the
inverted pendulum with sampling, PD-control and
quantization at both input and output. Rewriting it as
a system of first-order differential equations, one can
formulate its solution as:

y(T ) = U(T )y(0) + b(T ) F(T ), T ∈ [0, 1), (7)

where y = [x(T ) x ′(T )]T , Γ = √
1 + δ2, F is the

control effort,

U(T ) = e−α̂δT

Γ
·

[
Γ ch

(
α̂Γ T

) + δ sh
(
α̂Γ T

)
sh

(
α̂Γ T

)
/α̂

α̂ sh
(
α̂Γ T

)
Γ ch

(
α̂Γ T

) − δ sh
(
α̂Γ T

)
]

,

and

b(T ) = 1

α̂2Γ

[
Γ − e−α̂δT (

Γ ch
(
α̂Γ T

) + δ sh
(
α̂Γ T

))
−α̂e−α̂δT sh

(
α̂Γ T

)
]

.

Substituting T = 1, the so-called micro-chaos map
[10] is obtained, which is valid at sampling instants:

yi+1=U(1) yi + b(1) Fi , where

Fi=Int
(
ρI (P̂ Int(xi/ρI)+D̂ Int(x ′

i/ρI))
)
if X=XI,
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Twofold quantization in digital control 1369

Fig. 3 Visualization of lim
ρ→0

ρ Int(x/ρ) = x (for x = 1)

and lim
ρ→∞ ρ Int(x/ρ). The values of the non-smooth function

ρ Int(x/ρ) are between the bounds x and x − ρ

or

Fi=ρO Int

(
1

ρO
(P̂ Int(xi )+D̂ Int(x ′

i ))

)
if X=XO.

(8)

Here Fi is the control effort between the dimensionless
sampling instants T = i and T = i + 1.

Note, that the Lyapunov exponents of the micro-
chaosmapare knownanalytically, as they are the eigen-
values of U(1):

λ1,2 = eα̂(−δ±Γ ) = eα̂(−δ±√
1+δ2). (9)

As Γ > δ, the Lyapunov exponents are always real
numbers with opposite signs.

It is clear that the quantization causes the control
effort Fi to be a piecewise constant function over the
state space, which consists of domains, each corre-
sponding to a specific Fi value. When the output quan-

tization is dominant, Fi = Int
(
P̂ xi + D̂ x ′

i

)
. Thus,

the aforementioned domains are parallel bands sepa-
rated by parallel switching lines that can be given as

x ′ = m − Px

D
, m ∈ Z, (10)

(see Figs. 4 and 6).
For the input quantization case, however, these

domains are rectangular areas since Fi = P̂ Int(xi ) +
D̂ Int(x ′

i ). Consequently, the quantization results in a
grid of horizontal and vertical switching lines (see Figs.
5 and 6).

Based on former research [3,8], in the case of single
quantization at the output, multiple chaotic attractors
can be found in the state space, at the intersections of
switching lines and the x-axis, as it is illustrated in Fig.
4. Depending on system and control parameters, attrac-
tors may appear or disappear due to border collision
bifurcation, or some of them may become repellers,
and form one or more bigger attractors, by pushing the
trajectory towards each other [2].

In case of input quantization, our general observa-
tion is that a periodic orbit (with superimposed chaotic
oscillations) appears around the internal structure of
repellers. Depending on the parameters, one or more
chaotic attractors spanning over multiple control effort
bands can be found, see Fig. 5.

3.2 Cell mapping results

In order to explore the effect of varying the quanti-
zation ratio and examine the transitions from twofold
to single quantization cases, Cell Mapping Methods
[11] were utilized. Simple CellMapping (SCM) is suit-
able to obtain a global picture of a certain state space
region, i.e. to find periodic orbits, fixed points and their
domains of attraction. Chaotic attractors are usually
covered by one or more high-period cell groups [11].

Utilizing Clustered Simple Cell Mapping [9], it is
possible to automatically extend the analysed state
space region and also execute cell mapping in a par-
allel computing environment.

Our primary goal is to express the control error;
therefore, we extract the location (centre of mass; xattr,
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Fig. 4 Output quantization. State space of the micro-chaos map
at α̂ = 0.07, δ = 0.03, P̂ = 0.007, D̂ = 0.02, rI → 0 and
rO = 1. Three example trajectories are shown starting from
x = 0 and �: x ′ = 10, �: x ′ = 13, �: x ′ = 15. The first tra-
jectory (�) ends up in an attractor on the switching line between

control effort bands F = 2 and F = 3, the second one (�) ends
up in an attractor between bands F = 0 and 1, while the third
(�) ends up in an attractor between bands F = 1 and 2. Close-up
images of the attractors are also provided in the balloons with
the corresponding colour. (Color figure online)

Fig. 5 Input quantization. Switching lines and example periodic
orbits with superimposed chaotic oscillations at α̂ = 0.007, δ =
0., P̂ = 0.027, D̂ = 0.02 andρI = 0.8. Two example trajectories
are shown starting from x ′ = 0 and �: x = 8 and �: x =
15. They end up in separated periodic orbits with superimposed
chaotic oscillations. (Color figure online)

yattr) and size (Sx , Sy) of chaotic attractors (see Fig. 7).
In the output quantization case, the attractors reside on
the x-axis (yattr = 0). Since the desired control state is
the origin, any solution arriving to a specific attractor
will yield a mean control error of xattr.

We have generated a series of SCM solutions by
sweeping the parameter ρI for some fixed α, β, P̂ and
D̂ values. Figure 8 shows the transition from ρI = 0
to ρI = 16 at P̂ = 0.007, D̂ = 0.02, α = 0.074 and
δ = 0, which correspond to the parameters of a realis-
tic experimental device. Here the output quantization
case has eight separated chaotic attractors (four-four on
both sides, see Fig. 9 top) and as the quantization ratio
increases, these attractors eventually become repellers.
At ρI = 1.28 (see Fig. 9 bottom), the outermost attrac-
tors disappear resulting in amore favourable state space
configuration in terms of control error.

We trace back the aforementioned results to twophe-
nomena: as it can be seen in Fig. 7, the switching lines
become jagged, and consequently regions appear in the
state space corresponding to only-P and only-D con-
trol (so-called input deadzones, see Fig. 6), due to the
quantization of measured values. In the next section,
we examine the effect of these new deadzones.
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Twofold quantization in digital control 1371

Fig. 6 Top switching lines and control effort bands in case of
output quantization.Bottom switching line grid and control effort
tiles in case of input quantization

3.3 Deadzone crisis

For output quantization, the deadzone of the output
quantizer creates an unstable band between switch-
ing lines sw−1 and sw1 (see Figs. 4 and 6). On the
other hand, in case of input quantization the two dead-
zones (corresponding to the measured values’ quantiz-
ers) around the x and x ′ axes will cause the PD-control
to work as only-P control for small velocities and only-
D control for small displacements (see Fig. 6).

Fig. 7 Top example attractor obtainedbySCMand illustration of
extracted properties, location of attractor’s centre of mass (xattr ,
yattr) and the extent along x and x ′ axes: (Sx , Sy). Bottom the
same attractor obtained by numerical simulation

In the case of twofold quantization, during the vari-
ation of the quantization ratio, the borders of the out-
put deadzone (uncontrolled region between the sw±1

switching lines, where the control effort is F = 0)
and input deadzones (deadzones around x and x ′ axes,
where either part of the PD-control is offline) move,
thus state space objects (e.g. attractors or periodic
orbits) can disappear or qualitatively change. This is
called deadzone crisis.

To illustrate a possible scenario, consider Fig. 10.
As the quantization ratio ρI increases, the steps on
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Fig. 8 Transition from output quantization to twofold quanti-
zation. At ρI ≈ 1.3, the outermost chaotic attractors, while at
ρI ≈ 2.4, the innermost attractors disappear due to deadzone
crisis (denoted by X). At ρI ≈ 4.7 the chaotic attractors merge

(denoted by arrows) on both sides, and lastly at ρI ≈ 12, they
merge again resulting in a single recurring orbit with superim-
posed chaotic vibrations

the switching lines grow. At the intersection of the
x-axis and the switching line, the switching line
becomes locally vertical in the range of the input
quantizer’s deadzone and the attractor adapts to this
by expanding proportionally. At a certain point—as
the switching line gets close to the stable manifold
of the nearby saddle point—a deadzone crisis hap-
pens, and the solution will be able to escape from the
chaotic attractor, leaving a transient chaotic repeller
behind.

During the transition from the output quantiza-
tion to twofold quantization, a series of deadzone
crises occur and eventually all chaotic attractors turn
to repellers. The interactions of the repellers lead
to a newly formed recurring orbit with superim-
posed chaotic oscillations (see Sect. 3.2 and Fig.
8).

Based on these results, it is obvious that the non-
smooth, stair-like shape of the switching lines play
an important role in manipulating state space objects
by opening up escape possibilities from the previously
closed domains of chaotic attractors.

To gain a deeper insight in this phenomenon, the
following section examines the topology of switching
lines.

4 Analysis of switching lines

4.1 Switching line collision

For the single quantization cases, the switching lines
corresponding to different efforts of the PD-control
are simple to express: parallel lines ( P̂ x + D̂ x ′ =
m,m ∈ Z) for the output quantization, and a grid
of lines (x = i ρI, x ′ = j ρI, i, j ∈ Z) for the
input quantization. In the twofold quantization case,
however, their explicit expression is not straightfor-
ward.

For this section of the paper, we use Eq. (4I) and ρI.
Starting with the implicit equation of the control effort:

Int
(
P̂ ρI Int (x/ρI)+D̂ ρI Int

(
x ′/ρI

)) = m, m ∈ Z.

The domain of control effort band Fi = m is bounded
by two switching lines: swm and swm+1, see Fig. 4.
The equation of the lower bounding switching line is

swm : P̂ ρI Int (x/ρI) +D̂ ρI Int
(
x ′/ρI

)=m, m ∈ Z,

(11)

while the upper bounding switching line can be
expressed implicitly as
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Twofold quantization in digital control 1373

Fig. 9 SCM results illustrating deadzone crisis. Top 4–4 sepa-
rated attractors and their domains of attraction are highlighted
at ρI = 1.247. Bottom outermost attractors disappear via dead-

zone crisis at ρI = 1.287. Coloured regions indicate domains of
attractions, pink circles highlight chaotic attractors,white crosses
denote unstable fixed points. (Color figure online)

swm+1: P̂ ρI Int (x/ρI) + D̂ ρI Int
(
x ′/ρI

) = m + 1,

m ∈ Z.

(12)

Expressing the quantized velocity (ρI Int(x ′/ρI)) from
Eq. (11):

ρI Int
(
x ′/ρI

) = m − P̂ ρI Int (x/ρI)

D̂
, m ∈ Z,

and applying the conjugated version (Int∗) of the
rounding function used in quantizers, i.e. rounding
towards infinity without deadzone (see Fig. 11), yields
the explicit formula of the switching lines:

x ′ = ρI Int
∗
(
m − P̂ ρI Int (x/ρI)

D̂ ρI

)
, m ∈ Z. (13)

One can similarly derive the inverse expression:

x = ρI Int
∗
(
m − D̂ ρI Int

(
x ′/ρI

)
P̂ ρI

)
, m ∈ Z. (14)

As the quantization ratio increases further, the stairs
on the switching lines become larger, and at some
point, the jagged switching lines will touch each other
(see Fig. 12). This event—which will be referred to
as Switching Line Collision (slc)—changes the topol-
ogy of control effort bands in the state space, regard-
less of the dynamics of the system under control as
the switching lines depend only on the control strat-
egy.

When switching line collision occurs, trajectories
gain the ability to bypass certain control bands by
passing through a switching line intersection point. In
the case of PD-control—if there is no switching line
collision—bands corresponding to the same control
effort are connected domains. However, if the switch-
ing lines swm and swm+1 collide, the band Fi = m
becomes disconnected (see Fig. 12).
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1374 G. Gyebrószki, G. Csernák

Fig. 10 Deadzone crisis increasing the quantization ratio
changes the switching line and the chaotic attractor around it.
As the step around the x-axis becomes larger, the switching line
becomes locally vertical. Top row ρI = 0.1 and ρI = 0.5.Bottom
row ρI = 1, ρI = 2.5. The last subfigure illustrates the crisis,
when transient chaotic solution escapes by jumping over the sta-
ble manifold (indicate by blue arrow) of the neighbouring fixed
point. (Color figure online)

Fig. 11 Conjugated integer part function Int∗(), i.e. rounding
towards infinity

Observing the collision of swm and swm+1 at x =
i ρI, x ′ = j ρI, one can write the following condition:

lim
ε→0

ρI Int
∗
(
m − P̂ ρI Int(i − ε)

D̂ ρI

)

= lim
ε→0

ρI Int
∗
(

(m + 1) − P̂ ρI Int(i + ε)

D̂ ρI

)
.

Here the left and right hand sides correspond to
switching lines swm and swm+1, respectively (see Eq.

(11–12)), both sides equal to x ′ = j ρI and {i, j,m} ∈
Z.

Since the quantization Int(i) has a discontinuity (see
Fig. 14), we analyse a small neighbourhood ε around
x = i ρI and express the collision between the upper
corner of the lower switching line (swm) and the lower
corner of the upper switching line (swm+1).

Expressing the limits,we can substitute lim ε→0 Int(i−
ε) = i − 1 for swm and use lim ε→0 Int(i + ε) = i for
swm+1, resulting in the following equation:

Int∗
(
m − P̂ ρI (i − 1)

D̂ ρI

)
= j

= Int∗
(

(m + 1) − P̂ ρI i

D̂ ρI

)
, {i, j,m} ∈ Z.

(15)

Resolving the quantization to infinity (Int∗) in Eq. (15),
the following inequalities can be written:

( j − 1) <
m − P̂ ρI (i − 1)

D̂ ρI
< j,

( j − 1) <
(m + 1) − P̂ ρI i

D̂ ρI
< j.

(16)

The inequalities in Eq. (16) can be reformulated as

1

D̂ + P̂
< ρI ≤ 1

P̂
∧

(m + 1) − P̂ ρI i

D̂ ρI
≤ j<

m − P̂ ρI (i − 1) + D̂ ρI

D̂ ρI
,

(17)

1

P̂
<

if P̂>D̂>0︷ ︸︸ ︷
ρI <

1

P̂ − D̂
∧

m − P̂ ρI (i − 1)

D̂ρI
≤ j<

(m + 1) − P̂ ρI i + D̂ ρI

D̂ρI
.

(18)

For a given m and i , Eq. (17–18) can be solved for
j ∈ Z to find switching line collisions between swm

and swm+1 at [x, x ′] = ρI [i, j].
These kind of slcs will be referred to as first-order

switching line collisions (while in general, the kth order
slc means the collision of swm and swm+k).

It can be observed that there is a lowest quantization
ratio for first-order switching line collisions to appear
at a certain value of i in the state space:

ρ
L ,i
I = 1/(P̂ + D̂), (19)
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Fig. 12 Switching lines at P̂ = 2/5, D̂ = 2/9 and ρI = 0.33
(left) ρI = 1.0 (centre), ρI = 1.65 (right). The latter value is
slightly above ρ

L ,i
I = 1/(P̂ + D̂) ≈ 1.61. Black lines indi-

cate the switching lines for the output quantization case, gray
gridlines indicate the ρI-spaced grid corresponding to the input

quantization. Red point highlights switching line collision, pink
and blue points highlight upper corners of sw2 and lower cor-
ners of sw3, respectively. Green region indicates control effort
band F = 2 which becomes disconnected due to slc. (Color
figure online)

Fig. 13 Switching lines at P̂ = 2/5, D̂ = 2/9 and critical
quantization ratios ρI = 2.0 (left), ρI = ρ

1,i
I = 1/P̂ (cen-

tre), ρI = ρ
2,i
I = 2/P̂ (right). Trajectories going through inter-

section points may bypass certain control effort bands. Orange
points highlight 2nd order switching line collisions. (Color figure
online)

When ρI ≥ ρ
L ,i
I , first-order slcs are present in the

state space and by increasing ρI, they become more
and more frequent (see Fig. 13). Equation (17) reveals
the value of the critical quantization ratio for which
there is a solution for every i :

ρ
1,i
I = 1/P̂ . (20)

When ρI = ρ
1,i
I , every switching line collides with its

neighbour at coordinates x = i ρI, for all i . To prove
this statement, one can substitute ρ

1,i
I into Eq. (17), and

the four inequalities are reduced to two relations:

( j − 1) <
m + 1 − i

D̂ ρI
< j. (21)

This result shows that there is a solution j ∈ Z for
every {i,m} ∈ Z:

j = Int∗
(
m + 1 − i

D̂ ρI

)
. (22)

Note, that it does not imply that collision occurs for
every x ′ = j ρI, too (see Fig. 13 centre panel).

It follows from (18) that one can introduce the high-
est quantization ratio corresponding to the disappear-
ance of first-order switching line collisions:

ρ
H,i
I = 1/(P̂ − D̂) when 0 < D̂ < P̂ . (23)

When ρI > ρ
H,i
I , first-order switching line collisions

no longer present, because higher-order collisions take
their place.
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Fig. 14 Illustration of switching line collision of swm (�) and
swm+1 (�) at (i, j) ρI. The upper corner of swm touches the
lower corner of swm+1. (Color figure online)

Expressing the condition for the collision of swm

and swm+1 for i (instead of j , similarly to Eq. (15)),
one can write:

Int∗
(
m − D̂ ρI ( j − 1)

P̂ ρI

)
= i

= Int∗
(

(m + 1) − D̂ ρI j

P̂ ρI

)
, {i, j,m} ∈ Z,

(24)

which yields the following inequalities:

1

P̂ + D̂
< ρI ≤ 1

D̂
∧

(m + 1) − D̂ ρI j

P̂ ρI
≤i<

m − D̂ ρI ( j − 1) + P̂ ρI

P̂ ρI
,

(25)

1

D̂
<

if D̂>P̂>0︷ ︸︸ ︷
ρI <

1

D̂ − P̂
∧

m − D̂ ρI ( j − 1)

P̂ρI
≤i<

(m + 1) − D̂ ρI j + P̂ ρI

P̂ρI
.

(26)

Here another critical quantization ratio is revealed for
which Eqs. (25–26) have a solution for every j (but not
necessarily for every x = i ρI):

ρ
1, j
I = 1/D̂. (27)

Combining Eqs. (20) and (27), one can express a com-
bined critical quantization ratio:

ρ1
I = max(ρ1,i

I , ρ
1, j
I ) = max(1/P̂, 1/D̂). (28)

If ρI ≥ ρ1
I , switching line collisions occur for all i and

j .
Expressing higher-order switching line collisions in

a similar fashion, one can arrive at the formulae of k-th
order critical quantization ratios for the collision of
swm and swm+k at ∀ i ∈ Z and ∀ j ∈ Z, respectively:

ρ
k,i
I = k/P̂, (29)

ρ
k, j
I = k/D̂. (30)

It is important to note that due to the double deadzone
of the mid-tread quantizer (see Fig. 2), switching line
collisions of sw−1 and sw+1 are 2nd order ones.

Here we considered only the case of positive P̂ and
D̂, but a similar analysis can be carried out for negative
control parameters, as well.

In the following sections, we show how the transi-
tion between the twofold and single quantization cases
affects the switching lines.

4.2 Transition from twofold quantization to output
quantization

It is clear—based onSect. 4, andEq. (13)—that refining
the input quantizer (ρI → 0) means smaller steps on
the jagged switching lines, and eventually the transition
to output quantization leads to a set of parallel lines.

ρI Int
∗
(
m − P̂ ρI Int (x/ρI)

D̂ ρI

)
−−−→
ρI→0

m − P̂ x

D̂

m ∈ Z.

(31)

One can imagine this kind of transition by looking
at Fig. 12. The transition from twofold quantization to
input quantization, however, is not this trivial.

4.3 Transition from twofold quantization to input
quantization

Switching lines corresponding to input quantizations
form a regular grid of horizontal (Int(y)) and verti-
cal (Int(x)) lines (see Fig. 6 right). The square shaped
domains (or rectangle shaped domains around the axes)
between switching lines correspond to integer value
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linear combination of the control parameters, e.g. F =
i P̂ + j D̂ control effort at Int(x) = i, Int(x ′) = j .

If we would like to achieve the same structure of
switching lines in the twofold quantization case, the
following conditions must be satisfied:

– Condition 1 switching lines must partition the state
space into square shaped domains, i.e. for every x ′
value, crossing x = i, (i ∈ Z) values must result
in a switch in the control effort value. Similarly, for
every x value, crossing x ′ = j, ( j ∈ Z) must also
result in a switch.

– Condition 2 for each domain between the switching
lines, the control effort value should be the same as
in the case of input quantization.

Condition 1 can be satisfied by using ρO ≤ ρ1
O

(where ρ1
O = 1/ρ1

I = min(P̂, D̂)), which corresponds
to ρI ≥ max(1/P̂, 1/D̂) (see Eq. (28)), because in this
case, for all i, j ∈ Z—at least first order—switching
line collision takes place.

It can be seen, that onceCondition 1 is satisfied (and
the structure of the state spacematches the input quanti-
zation case), the control effort value of twofold quanti-
zation will be within an error of ρO to the control effort
value of the input quantization case [see Eq. (8)]. It fol-
lows therefore, that ρO → 0 will satisfy Condition 2.

5 Conclusion

Wehave shown that twofold quantization in digital con-
trol can be characterized by the quantization ratio, cor-
responding to the ratio of input and output quantizers’
resolution. We have presented that twofold quantiza-
tion can be reduced to a single quantization case (input
or output quantization) if an appropriate quantization
ratio ρ is used and its limit ρ → 0 is analysed.

The micro-chaos map corresponding to a digitally
controlled inverted pendulum was presented and the
Clustered Simple Cell Mapping method was used to
analyse the effect of varying the quantization ratio.
Numerical results revealed, that the chaotic attractors
disappear or merge due to the change of the switching
lines and deadzones corresponding to input quantiza-
tion.

We have presented, that deadzone crisis occurs,
when the innermost stair on the switching line—
governed by the input quantization deadzone—grows
large enough to collide with other state space objects.

Analysing an example transition fromoutput to twofold
and finally input quantization, we have highlighted
that a series of deadzone crises happen and separated
chaotic attractors merge into a single recurring orbit.

Another interesting effect, the switching line colli-
sion was also introduced, which can induce qualitative
changes in the state space of continuous flows. Since the
solutions of maps are allowed to “jump” in the phase-
space, the effects of slc are less pronounced in the case
of maps. This is the reason why no slc-related sudden
bifurcations were detected during the analysis of the
micro-chaos map.

Frompractical point of view, it is possible to improve
the properties of the control for a given application, by
carrying out an analysis of the quantization ratio and
selecting a favourable range as illustrated in Sect. 3.2.
Doing so, one can also find out how to improve a cer-
tain controlled system, i.e. which quantizer should be
replaced by a higher-resolution one. In some cases one
can even arrive to an unnatural conclusion, that using
lower-resolution output quantizer or larger sampling
time will actually result in lower control error. Similar
results were found in [15,16], where the quantization
improved the stability properties of the controlled sys-
tem.
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