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Abstract Rotating machines are exposed to differ-
ent faults such as shaft cracks, bearing failures, rotor
misalignment, stator to rotor rub, etc. Therefore, turbo-
generators, aircraft engines, compressors, pumps, and
many other rotating machines should be constantly
diagnosed to warn about the probable appearance of a
possible rotor failure. Unfortunately, despite the ongo-
ingwork on various rotor fault detectionmethods, there
are still very few techniques that can be considered as
reliable and applicable in practical problems. The dif-
ficulty lies in the fact that usually the fault introduces
very subtle local changes in the overall structure of the
rotor. The symptoms of these changes must be isolated
and extracted from a wide spectrum of vibration data
obtained from sensors measuring the vibrations of the
machine. The measured data are usually disturbed with
some noise or other disturbances, and that is why the
detection of a possible rotor fault is even more difficult.
The paper presents a new rotor fault detection method.
Themethod is based on a new diagnosticmodel of rotor
signals and external disturbances. The model utilizes
auto-correlation functions of measured rotor’s vibra-
tions. By proper processing of the measured vibration
data, the influence of environmental disturbances is
completely compensated and reliable indications of the
possible rotor fault are obtained. The method has been
tested numerically using the finite element model of
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the rotor and then verified experimentally at the shaft
crack detection test rig. The results are presented in a
readable graphical form and confirm high sensitivity
and reliability of the method.
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1 Introduction

Different faults such as shaft cracks, bearing failures,
rotor misalignment, stator to rotor rub, etc., can affect
the normal operation of rotating machinery. If not
detected early, such failures can lead to dangerous dam-
ages or even catastrophic accidents. Therefore, it is
important to constantly monitor the technical condi-
tion of a given rotating machine and quickly react to
possible changes resulting from developing failures.

Traditional rotor fault detection methods are based
on vibration signal analysis. Vibrations of the rotor are
measured at the bearings by proximity probes (eddy
current, reluctance, fiberoptic or laser sensors) and then
amplified and analyzed at dynamic signal analyzers or
specialized data acquisition devices equippedwith ded-
icated software. Usually, fast Fourier transform (FFT)
[1–8] is applied. This way, additional components
at Fourier spectra increase [3–5,9–12] in the overall
amplitude of vibrations or phase variations [1,7,8,11]
can be observed and used as indications for rotor failure
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detection and warning. For these purposes steady-state
(obtained at the constant rotating speed of themachine)
[2,3,5,6,11] or transient (e.g., obtained during run-up
or run-down of the machine) [7,13–18] vibration data
may be applied.

Soffker et al. [19] undertook comparison of the two
approaches used for crack detection in rotatingmachin-
ery: signal-based and model-based. As a modern
model-based technique, the PI-observer-based method
was used. Also a novel signal-based approach, based
on support vector machine (SVM) and wavelets as an
example for amodernmachine learning technique, was
introduced. When compared to complicated model-
based [20–25],modal testing [26,27] or non-traditional
[13,14,28–32] techniques, themethods based on vibra-
tion signal analysis are quick, lowcost and simple.They
utilize popular, commonly used measurement equip-
ment and well-established computational procedures
and software. Theymay be applied continuously online
duringnormal (steady-state)machine operation.There-
fore, theyhave already found and are expected to extend
their practical applications in different real-life rotor
damage detection problems.

First research reports on signal-based methods
appeared at early eighties. Bently and Muszynska [11]
observed changes in absolute shaft position, vibration
amplitude and steadily increasing 1× component in
the FFT spectra. The appearance of 1× component
has been also confirmed by Werner [8]. Saavedra and
Cuitino [6] conducted a theoretical and experimental
analysis of horizontally rotating shafts demonstrating
that the 2× component at the FFT spectrum appears at
half the first critical speed value if the transverse shaft
crack develops. The 2× component has been also stud-
ied by Allen and Bohanick [9], Bently and Muszyn-
ska [1], Lazzeri et al. [12], Kulesza and Sawicki [2].
Additional components in the vibration spectra due
to the crack have been reported by Bachschmid et al.
[10], Ishida et al. [33], and Sinou and Lees [27]. Patel
and Darpe [5] reported a stronger 1× component in
axial and torsional frequency responses in case of par-
allel misalignment and very strong 3× component in
case of angular misalignment. Szolc et al. [34] used
Monte Carlo numerical simulations of coupled nonlin-
ear lateral–torsional–axial vibrations of the rotor with
transverse crack to generate dynamic responses for var-
ious possible crack locations and depths. To detect and
localize the crack, Szolc et al. applied and compared
four identification methods: the nearest-point method

(NP), the Nedler–Mead method (NM), the orthogonal
projection method (OP) and the local sample method
(LS).

Another signal-based method for shaft crack detec-
tion has been proposed by Gasch and Liao [35]. This
method analyzes changes in orbit shapes of the cracked
rotating shaft. Vibration signal of the shaft is decom-
posed into forward and backward orbits of 1×, 2× and
3× frequencies, and a continuous monitoring of the
backward harmonics can indicate the crack. Changes
in orbit shapes indicating different rotor faults have
been also considered by Patel and Darpe [5], Goldman
et al. [36], Sinou and Lees [27], Wang et al. [37], Al-
Shudeifat et al. [38], Han and Chu [39].

Investigatingdifferent variants of themethodof orbit
shape changes in a two-disk accelerating/decelerating
shaft, Al-Shudeifat [40] recently observed an interest-
ing phenomenon of additional backwardwhirl frequen-
cies. These frequencies appeared not below any critical
forward whirl frequency (as usually accepted), but just
above the forward whirl frequencies, and only in the
presence of shaft crack. These observations have been
verified experimentally and explained theoretically by
sign changes in gyroscopic matrices of the disks.

Nevertheless, the fast Fourier transform remains a
common approach, when signal-based damage detec-
tion methods are applied. More sophisticated signal
processing techniques, like auto-/cross-correlation or
power spectral density functions, i.e., the techniques
based on statistical data analysis, are less popular.

Ha et al. [41] utilized auto-correlation functionswith
properly selected windowing and time synchronous
averaging for condition monitoring of planetary gears
in window turbines. They were able to identify a fault
signature in the planet’s tooth even in a case when
the amount of the available stationary vibration data
was limited. Ni et al. [42] considered auto-/cross-
correlation functions of multiple excitations applied
to a mechanical structure. The functions were divided
into two parts: the time-variant one associatedwith unit
response functions depending on structural parameters,
and the time-invariant one depending on the energy
of the excitation force. By using these auto-/cross-
correlation functions and the model updating tech-
nique, Ni et al. [42] were able to identify small cracks
in a steel structure. A simple technique based on auto-
correlation functions of the vibration data obtained
from the cracked bar was proposed by Ramsagar and
Pardue [43]. The effectiveness of this method was
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demonstrated experimentally for a set of aluminum
bars with different depths of a crack. Similar technique
was used by Zubaydi et al. [44] to detect small cracks in
stiffened plates being themodels of ship hulls. Compar-
ing auto-correlation functions of healthy and cracked
plates, they confirmed the effectiveness of this simple
method, especially in the presence of external distur-
bances and measurement noise. Zhang and Schmidt
[45] introduced a correlation function matrix, consist-
ing of cross-correlation functions between combina-
tions of the vibration responses measured at different
points of the 12-bar mechanical structure. Defining a
special damage index for this matrix-based damage
indicator, they confirmed numerically the ability of the
method not only to detect but also to locate the local
stiffness changes in the structure.

The application of correlation function-based signal
processing techniques for rotor fault detection prob-
lems is not reported frequently. A possible use of
auto-correlation functions to average vibration signals
obtained from the rotating shaft was suggested by
Gosiewski and Sawicki in [46]. In [47] the authors used
the decorrelation technique, based on power spectral
density functions, to separate vibration signals from
the superposed signal. Seibold and Weinert [25] uti-
lized auto-correlation functions to compare the out-
puts of extended Kalman filters in a filter bank and
thus to locate the crack along the length of a shaft.
Sekhar [31] defined the coherence measure based on
auto-correlation functions to estimate the probability
of shaft cracks in a rotor.

The present paper introduces a new signal-based
approach for rotor fault detection [48–51]. The method
is based on auto-correlation and power spectral den-
sity functions of the vibration signals measured at the
bearings of the rotating shaft. Environmental signals
(e.g., external disturbances, sensor noise etc.) affect-
ing the operation of the machine are also included in
the diagnostic model. By proper signal transformations
including the calculation of squared amplitude gains of
measured signals, the method is able to eliminate the
influence of adverse disturbances on a diagnosticmodel
of the machine. This way, the effectiveness of damage
indications can be considerably improved. The ability
to reject the influence of external disturbance signals
on the diagnostic model is a unique feature of the pro-
posed method which differs it from other traditional,
signal-based diagnostic methods.

The method was developed by Lindstedt [48,49]
and applied successfully to various diagnostic prob-
lems of turbine blades [48–53] and jet engines [54].
The present paper unifies themathematical foundations
of the method and explains its possible application for
rotor fault detection problems. Provided numerical and
experimental results confirm its high effectiveness and
reliability when applied to shaft crack detection.

2 Mathematical foundations

2.1 Squared amplitude gain of signals

In diagnostics of machines, the technical condition
A(ϑ) of a given mechanical structure can be evaluated
based on vector y(t) of operational signals yk(t) mea-
sured by sensors, k = 1, 2, . . . , nm. The information
about the ambient environment affecting the operation
of this structure (external disturbances, sensor noise,
etc.) can be presented as vector x(t) of environmental
signals xl(t), l = 1, 2, . . . , nu. Here, nm and nu are the
numbers of operational and environmental signals.

Environmental signals x(t) disturb the normal oper-
ation of the machine and affect also operational sig-
nals y(t). Therefore, the technical condition A(ϑ) of
the machine can be defined by the mutual relationship
between signals y(t) and x(t) at the current moment ϑ1

of the diagnostic time interval and at the moment ϑ0 of
the beginning of this time interval [49]

A(ϑ) = f(y(t)ϑ0 , x(t)ϑ0 , y(t)ϑ1 , x(t)ϑ1) (1)

where A(ϑ) is the matrix of parameters that define the
technical condition of the machine, t is time in terms of
Newton’s definition (for diagnostic examinations) and
ϑ is time in terms of Bergson’s definition (for diagnos-
tic inference).

This relation between signals y(t) and x(t) can be
presented in the form of the following state equation

ẏ(t)ϑ = A(ϑ)y(t)ϑ + B(ϑ)x(t)ϑ (2)

whereB(ϑ) is thematrix of coefficients that define how
intensely the environment affects the given machine.

For a given pair of signals yk(t) and xl(t), the rela-
tions given by Eq. (2) can be transformed to the fol-
lowing form

yk(s) = Gkl(s)xl(s) (3)

where yk(s) and xl(s) are Laplace’s transforms of time
signals yk(t) and xl(t) (having initial conditions equal
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to zero) and Gkl(s) is a transfer function defining the
relation between yk(s) and xl(s).

From the basic properties of power spectral den-
sity analysis, the squared amplitude gainW 2(ω) of the
operational signal yk(t) related to the environmental
signal xl(t) can be obtained as [55]

W 2(ω) = |Gkl( jω)|2 = Syy(ω)

Sxx (ω)
(4)

where Gkl( jω) is the frequency response version of
transfer function Gkl(s), jω is the imaginary part of
complex variable s and Syy(ω), Sxx (ω) are power spec-
tral density functions of signals yk(t) and xl(t).

Using Wiener–Khinchin theorem, power spectral
density functions Syy(ω) and Sxx (ω) can be calcu-
lated as Fourier transforms of the corresponding auto-
correlation functions Ryy(τ ) and Rxx (τ ) [55]

Syy(ω) = F
[
Ryy(τ )

]
, Sxx (ω) = F [Rxx (τ )] (5)

where

Ryy(τ ) =
∞∫

−∞
yk(t)yk(t − τ)dτ ,

Rxx (τ ) =
∞∫

−∞
xl(t)xl(t − τ)dτ (6)

and F [ f (τ )] denotes Fourier transform of a time func-
tion f (τ ) and τ is time shift variable.

Equations (2)–(4) may be seen as different diagnos-
tic models of a given machine as they express relations
between operational yk(t) and environmental xl(t) sig-
nals on the one hand and technical parameters of the
machine A(ϑ) on the other.

The relation defined with Eq. (4) is particularly
important as it can be used to eliminate environmental
signals xl(t) from the diagnostic model of the machine.
This is explained in detail in the next section.

2.2 Elimination of environmental signals from the
diagnostic model

Consider two time intervals �t1 and �t2 (�t1 = �t2)
at which operational yk(t) and environmental xk(t) sig-
nals are analyzed (Fig. 1). According to Eq. (4) the
squares of amplitude gains W 2

1 (ω), W 2
2 (ω) of signal

yk(t) related to signal xl(t) in time intervals �t1, �t2
can be calculated as

W 2
1 (ω) = Syy1(ω)

Sxx1(ω)
, W 2

2 (ω) = Syy2(ω)

Sxx2(ω)
(7)

where Syy1(ω), Sxx1(ω) and Syy2(ω), Sxx2(ω) are
power spectral density functions of yk(t) and xl(t) sig-
nals in subsequent time intervals �t1 and �t2. Note
that Sxx1(ω) and Sxx2(ω) functions cannot be calcu-
lated since environmental signal xl(t) is not measured
directly. However, if a very short time distance �t0
between time intervals �t1 and �t2 is assumed, then
power spectral density functions Sxx1(ω) and Sxx2(ω)

can be considered as equal, i.e.,

Sxx1(ω) = Sxx2(ω) (8)

This assumption can be explained by the observation
that if the time distance�t0 between time intervals�t1
and �t2 is short, then environmental signal xl(t) in
those time intervals may be considered as unchanged.

Fig. 1 Operational and environmental signals in two time intervals
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Including Eq. (7), a new diagnostic model W 2
21(ω)

describing the technical condition of the testedmachine
can be introduced in the following form

W 2
21(ω) = W 2

2 (ω)

W 2
1 (ω)

(9)

Applying Eqs. (8) and (9) yields

W 2
21(ω) = Syy2(ω)

Syy1(ω)
(10)

Note that by taking the quotient of W 2
2 (ω) and W 2

1 (ω)

the power spectral density functions Sxx1(ω), Sxx2(ω)

of environmental signals xl(t) have been removed from
the new diagnostic model W 2

21(ω). This way, the influ-
ence of environmental signals xl(t) on the new model
W 2

21(ω) has been eliminated. Of course, the newmodel
still describes the technical condition of the tested
machine, as it relates operational yk(t), environmen-
tal xk(t) signals and parameters A(ϑ) of the machine
(retrace the sequel of Eqs. (3), (4), (7) and (10). How-
ever, this model is evaluated using only measured oper-
ational signals yk(t), with no need to include direct
measurements of environmental signals xl(t). What is
more important, environmental signals do not disturb
diagnostic indications of the new model, although they
still disturb operational signals yk(t).

2.3 Condition monitoring based on the new
diagnostic model

In order to use the proposed diagnostic model for con-
dition monitoring, the operational signals yk(t) of a
given machine are measured and sampled with time
period h > 0. Then, prescriptive numbers N of sig-
nal samples in two adjacent time intervals �t1 and �t2
are collected into two separable sets yk1(n) and yk2(n),
n = 0, 1, 2, . . . , N . The number N of signal samples
in each set must be chosen carefully to ensure proper
statistical assessment of measured operational signals
yk1(n) and yk2(n). Next, to reduce frequency leakage,
signals yk1(n) and yk2(n) are scaled by Hanning win-
dow Hw(n)

Hw(n)= 1

2

(
1−cos

(
2π

n

N

))
, n = 0, 1, 2, . . . , N

(11)

to form new signals yHk1(n) and yHk2(n)

yHk1(n) = Hw(n)yk1(n), yHk2(n) = Hw(n)yk2(n)

(12)

Then, discrete auto-correlation functions Ryy1(m),
Ryy2(m) of the scaled signals yHk1(n) and yHk2(n) are
calculated, as follows

Ryy1(m) =
N−1∑

n=0

yHk1(n)yHk1(n − m),

Ryy2(m) =
N−1∑

n=0

yHk2(n)yHk2(n − m) (13)

where m = − (N − 1), . . . ,−1, 0, 1, . . . ,+(N − 1).
Discrete auto-correlation functions Ryy1(m),

Ryy2(m) are then approximated with smooth approxi-
mating functions, to obtain analytical representations
Ryy1(τ ), Ryy2(τ ). As approximating functions the
polynomials may be used [50,51], resulting in the fol-
lowing forms of the auto-correlation functions:

Ryy1(τ ) = arτ
r + ar−1τ

(r−1) + · · · + a1τ + a0,

Ryy2(τ ) = brτ
r + br−1τ

(r−1) + · · · + b1τ + b0

(14)

where a j , b j are coefficients of the polynomials, j =
0, 1, 2, . . . , r .

The order r of the polynomials should be selected
carefully—too low order will result in inaccurate
approximations, too high order—in an excessive num-
ber of polynomial coefficients and longer calculation
times.

Based on analytical representations, the auto-
correlation functions Ryy1(τ ), Ryy2(τ ) Laplace trans-
forms F

[
Ryy1(τ )

]
, F

[
Ryy2(τ )

]
, and power spectral

density functions Syy1(ω), Syy2(ω) are calculated
according to Eq. (5). Next, the power spectral den-
sity functions Syy1(ω), Syy2(ω) are introduced into
Eq. (15). For polynomial approximation, the diagnostic
model W 2

12(ω) is obtained in the following form

W 2
21(ω) = Syy2(ω)

Syy1(ω)

= Br sr + Br−1sr−1 + · · · + B1s + B0

Ar sr + Ar−1sr−1 + · · · + A1s + A0

(15)

where

Bj = br− j (r − j)!, A j = ar− j (r − j)!,
j = 0, 1, 2, . . . , r (16)
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The technical condition of the machine is then eval-
uated by calculating relative changes �A j , �Bj in
model parameters, defined as follows

�A j = A j − Ā j

Ā j
, �Bj = Bj − B̄ j

B̄ j
(17)

where A j , Bj are values of the W 2
21(ω) model param-

eters evaluated at the moment ϑ1 and Ā j , B̄ j are mean
values of these parameters evaluated during subsequent
measurementswithin the period betweenϑ0 (beginning
of the monitoring process) and ϑ1 (the current moment
at the monitoring process).

2.4 Damage maps

To simplify the evaluation of technical condition of a
given machine, relative changes �A j , �Bj ofW 2

21(ω)

diagnostic model are classified into three damage
threshold ranges and presented in a convenient graphi-
cal way, termed as a damage map [52,53]. The damage
map of the machine is created as described below.

The three damage threshold ranges are defined with
mean �A j , �B j and standard deviation σA j , σBj val-
ues of relative changes �A j , �Bj , where

�A j = 1

K

K∑

k

�A j (k), �B j = 1

K

K∑

k

�Bj (k)

(18)

and

σA j =
√√√√ 1

K

K∑

k

(
�A j (k) − �A j

)2
,

σBj =
√√√
√ 1

K

K∑

k

(
�Bj (k) − �B j

)2
(19)

Here, �A j (k) and �Bj (k) are relative changes in
model parameters evaluated at time moment ϑk , ϑ0 ≤
ϑk ≤ ϑ1, and K is the number of those evaluations.

The three damage threshold ranges are assumed as

�A j ± σA j , �A j ± 2σA j , �A j ± 3σA j (20)

for �A j , and

�B j ± σBj , �B j ± 2σBj , �B j ± 3σBj (21)

for �Bj .
The damage map is then created in a form of a

color table of K rows and 2r columns, where each

row contains color indications of whether at a given
time moment ϑk the value of a given relative change
�A j and �Bj falls within one of the three damage
ranges. The colors in subsequent cells in a given row
are assigned as follows:

1. If at a given timemoment ϑk , relative changes�A j

or�Bj are within the first damage threshold range,
i.e., if
(
�A j − σA j

) ≤ �A j ≤ (
�A j + σA j

)
or

(
�B j − σBj

) ≤ �Bj ≤ (
�B j + σBj

)
(22)

then the indication of the respective relative change
�A j or �Bj in a given kth row, j th column
becomes green.

2. If at a given timemoment ϑk , relative changes�A j

or �Bj are within the second damage threshold
range, then the indication of the respective relative
change�A j or�Bj in a given kth row, j th column
becomes dark blue.

3. If at a given time moment ϑk , relative changes
�A j or�Bj are within the third damage threshold
range, then the indication of the respective relative
change�A j or�Bj in a given kth row, j th column
becomes red.

4. If at a given time moment ϑk , relative changes
�A j or �Bj are above the third damage threshold
range, then the indication of the respective relative
change�A j or�Bj in a given kth row, j th column
becomes black.

It is clear that damage maps defined in this way should
be predominantly green for a healthy machine. For the
machinewith any damage in structure, the predominant
colors should be red and black.

3 Experimental test rig

The proposed damage detection method has been veri-
fied experimentally at a shaft crack detection test rig uti-
lized at Bialystok University of Technology (Fig. 2a).
The main component of the rig is a rotor supported by
two ball bearings 2 and driven by an adjustable-speed
electric motor 9 (Fig. 2b). The rotor consists of three
parts connected by cones 5, flanges 6 and screws to
ensure axial symmetry of the rotor on the one hand,
and quick and simple reconfiguration of tested shafts 7
on the other. The outermost parts of the rotor are two
short shafts with balancing disks 4 attached to them.
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Method of shaft crack detection based on squared gain 677

Fig. 2 Test rig: a photograph, b schematic of the rotor, c schematic of tested shafts: 2-ball bearings; 3-eddy current position sensors;
7-tested shaft

The shafts are the unchanging components of the rotor,
and they are supported by the bearings. Themiddle part
of the rotor is the tested shaft 7, which can be changed.
Shafts of different diameters and lengths with or with-
out transverse cracks can be attached to the unchanging
parts of the rotor (Fig. 2c). This way, different config-
urations of the rotor can be tested. Radial positions of
the shaft near the left bearing aremeasured by two eddy
current sensors 3, rotated by 45◦ from horizontal and
vertical axes (Fig. 2a).

During the experiments, three configurations of the
rotor have been tested (2c): Cnf1 with uncracked shaft
andCnf2, Cnf3with cracked shafts. InCnf2 the crack is
located at the 1/4 shaft length to the left, and in Cnf3—
at the 1/4 shaft length to the right. The length of the
tested shaft is 250 mm, and its diameter is 16 mm. A
thin notch simulating the crack is cut perpendicularly to

the shaft axis using the electrodischarging machining.
The relative depth of the crack is μ = 25%, where
μ = a/d, and a is absolute crack depth, d is diameter
of shaft cross section.

4 Model of the rotor

Simulation tests of afinite elementmodel of the cracked
rotor have been performed to numerically evaluate the
effectiveness of the proposedmethod. Themodel of the
rotor (Fig. 3) has been formulated using the methodol-
ogy presented in [2,56–58].

The shaft is discretized into n = 53 elements of
equal lengths having 6 degrees of freedom at each node
(Fig. 3a). These are beam finite elements with circular
cross sections. The two disks are modeled as rigid bod-
ies of given masses and moments of inertia. The rotor
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Fig. 3 Finite element model of the rotor: a discretization of the shaft, b shaft cross section at the crack, c models of tested shafts

is supported by two ball bearings located between 10th
and 11th, and 44th and 45th nodes. Vertical and hori-
zontal displacements of the shaft are measured by two
proximity sensors located at the 15th and 43rd nodes.

Breathing cracks can be introduced into the 24th
or 32nd finite elements (Cnf2 or Cnf3 configuration,
see Figs. 2c, 3c), by using the stress energy release
rate approach proposed in [2,56–58]. The model of the
crack is schematically presented in Fig. 3b.

After assembling shaft elements and including bear-
ing anddisk dynamics, the rotor-bearing system in local
coordinates can be presented with the following equa-
tion of motion:

Mq̈ + (Dd + ΩDg)q̇ + K[q(t)]q = G + Pu (23)

where M, Dd, Dg,K[q(t)] are mass, damping, gyro-
scopic and stiffness matrices; G and Pu are vectors
of gravity and unbalance; q is a vector of rotor dis-
placements; and Ω is the rotational speed. Here M,
Dd,Dg,K[q(t)] are 6n× 6n dimensional matrices, and
G, Pu, q are 6n × 1 dimensional vectors. Due to the

breathing mechanism of the crack, the stiffness matrix
K[q(t)] is not constant but depends on rotor displace-
ments q(t) which are in turn time dependent. To eval-
uate the forces on the crack edge, the new response
vector q is used to find the response in the rotor-fixed
coordinates qr . The nodal forces P are then presented
by:

[P] = [K ]r {q}r (24)

Details about the breathing mechanism of the crack
are well explained in [2,56]. The components of the
matrices are given in “Appendix 1” section.

5 Simulation results

Using the FE model of the rotor presented in Fig. 3,
vibration responses of the rotor have been calculated at
the constant rotational speed of Ω = 800 rpm.

The parameters of the rotor have been assumed as
follows: Young’s modulus E = 208 GPa, density ρ =
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Method of shaft crack detection based on squared gain 679

Fig. 4 Simulation frequency response of the uncracked rotor, μ = 0% (Cnf1): a no noise, b σ = 10−7 m noise

Fig. 5 Simulation frequency response of the cracked rotor μ = 25% (Cnf2): a no noise, b σ = 10−7 m noise

Fig. 6 Simulation frequency response of the cracked rotor μ = 25% (Cnf3): a no noise, b σ = 10−7 m noise
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Fig. 7 Simulated shaft positions at Ω = 800 rpm, a no noise, b σ = 10−7 m noise

7850 kg/m3, Poisson’s ratio ν = 0.3, radial stiffness
and damping coefficients of the bearings kb = 3.4×106

N/m, db = 10 Ns/m, and rotor eccentricity ε = 7 ×
10−5 m. The simulations have been conducted for the
rotor without the shaft crack (Cnf1) and with the crack
of depth valuesμ = 25% (Cnf2 and Cnf3). To simulate
measurement disturbances, additional white noise of
standard deviation σ = 10−7 m has been added to the
calculated vibration responses.

5.1 Simulation frequency response

To initially validate the correctness of the model, sim-
ulation frequency responses of the rotor have been cal-
culated and are presented in Figs. 4a, b, 5a, b and 6a,
b. Note that the results shown in Figs. 4b, 5b and 6b
have been disturbed with an additional white noise of
σ = 10−7 m.

As can be seen in Fig. 4a, b simulation vibra-
tion response of the uncracked rotor contains only
one strong frequency component located at 1× syn-
chronous frequency of the rotor, i.e., at f = 13.3 Hz
(Ω = 800 rpm). This is a typical response of a linear
model of the rotor with no crack.

In the simulated response of the cracked rotor, addi-
tional 2× and 4× frequency peaks appear, as can be
seen in Figs. 5a, b and 6a, b. These 2× and 4× compo-
nents result from the nonlinear breathing mechanism
of the crack.

5.2 Simulation damage maps

Simulated shaft positions in y axis with and without
noise are presented in Fig. 7a, b. These positions have
been calculated for the rotor rotating with a constant
speed of Ω = 800 rpm. It can be seen (the zoomed
portions of Fig. 7) that the vibration amplitudes of the
uncracked as well as the cracked rotor are almost the
same, and the 25% deep crack cannot be detected by
searching for possible changes in vibration amplitude
or in the orbits. Therefore, the proposed method based
on auto-correlation functions is applied and tested by
simulations.

According to the method, the vibration response of
the rotor is analyzed in two separate time intervals �t1
and�t2 (Fig. 8). These time intervals are applied in the
following manner: �t1 is located to the left from a rec-
ognized peak value, and�t2—to the right. The number
n of signal samples in each time interval is constant and
is selected arbitrarily to cover the most of the increas-
ing/decreasing parts of the vibration response during
one revolution of the rotor. For the rotating speed of
800 rpm, the number of samples is n = 299, while the
sampling frequency f = 8000 Hz.

Shaft vibrations yk1(n) and yk2(n) in each time inter-
val �t1, �t2 are scaled by Hanning window (Eq. 11),
and then auto-correlation functions Ryy1(m), Ryy2(m)

of the obtained signals yHk1(n), yHk2(n) are calcu-
lated (Eq. 13). Example functions Ryy1(m), Ryy2(m)

obtained for both time intervals of a selected vibra-
tion peak are shown in Fig. 9. It is obvious that the
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Fig. 8 Time intervals for auto-correlation calculations–
simulated vertical positions of the shaft rotating at Ω = 800
rpm with no noise

direct comparison of the auto-correlation functions
is difficult. Therefore, their analytical representations
Ryy1(τ ), Ryy2(τ ) are calculated (Eq. 14) and relative
changes �A j , �Bj in model parameters (Eq. 17) are
used to assess the appearance of a probable shaft crack.
After several initial calculations, the order r of the
approximating polynomials (Eq. 14) has been chosen
as r = 6 resulting in the coefficient of determination
R2 > 0.997. Next, threshold ranges (Eq. 20) for indi-
vidual parameter changes�A j ,�Bj are calculated and
damage maps are created. Auto-correlation analysis is
conducted in a series of K = 30 subsequent peaks.
The results obtained for each peak in a series are aver-
aged over the number of peaks. The number of K = 30
peaks is selected to ensure a statistically representative
data sample.

Fig. 9 Simulation auto-correlation functions of a selected vibration peak: a at time interval �t1, no noise, b at time interval �t2, no
noise, c at time interval �t1, σ = 10−7 m noise, b at time interval �t2, σ = 10−7 m noise
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Fig. 10 Simulation damage map of the uncracked rotor (Cnf1);
Ω = 800 rpm

Damagemaps obtained for the three considered con-
figurations of the rotor are presented in Figs. 10, 11
and 12. Figure 10 explains the structure of the dam-
age map for the uncracked shaft (Cnf1). The map
consists of 30 rows indicating the location of relative
changes �A j , �Bj within respective threshold ranges
�A j ±σA j ,�A j ±2σA j ,�A j ±3σA j and�B j ±σBj ,
�B j ±2σBj ,�B j ±3σBj at 30 vibration peaks. Dam-
age maps for other rotor configurations are created in
a similar manner (Figs. 11, 12). Figures 11 (with no
noise) and 12 (with σ = 10−7 m noise) contain two
sets of 30 peak series registered for each rotor configu-
ration (Cnf1–Cnf3). Rotation numbers at which vibra-
tion peaks are analyzed have been chosen freely (in a
randomized way).

The indications of a possible shaft crack in the rotor
shown in Fig. 11 (with no noise) are clearly visible. The
damage maps of the healthy rotor (Cnf1) are predomi-
nantly green,while themaps of the cracked rotor (Cnf2,
Cnf3) are predominantly black. For a noisy case, sim-
ilar indications are observed (Fig. 12)—damage maps
of the cracked rotor are completely different than the
maps of the cracked rotor. These changes in damage
maps reflect the technical condition of the rotor and
confirm the effectiveness of the proposed method in
the simulated case.

Fig. 11 Simulation damage maps (no noise) at Ω = 800 rpm: a uncracked rotor (Cnf1), b, c cracked rotor (Cnf2 and Cnf3)
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Fig. 12 Simulation damage maps (σ = 10−7 m noise) at Ω = 800 rpm: a uncracked rotor (Cnf1), b, c cracked rotor (Cnf2 and Cnf3)

6 Experimental results

6.1 Experimental frequency response

Frequency responses of the rotor obtained experimen-
tally are presented in Fig. 13a–c. As can be seen exper-
imental vibration response of the uncracked rotor con-
tains not only the 1× synchronous frequency of the
rotor located at f = 13.3 Hz (Ω = 800 rpm) but also
its multiples at 2×, 3×, 4×. These additional 2×, 3×,
4× components are the main differences in frequency
responses of the uncracked rotor obtained experimen-
tally and by simulations (compare Figs. 4 and 13). In
real rotor systems, these additional components appear
as a result of inevitable nonlinearities that are always
present even in healthy rotors [17,26].

As can be seen in Fig. 13, frequency responses of
the uncracked as well as the cracked rotor are almost
the same. Therefore, it becomes clear that the changes
in the frequency response of the rotor (appearance of
additional frequency components or increase in their
amplitudes) cannot be used as reliable shaft crack indi-
cations.

6.2 Experimental damage maps

Example time histories of vertical shaft positions
obtained for the rotor rotating with a constant speed of
800 rpm are shown in Fig. 14. The evident difference
between the responses in Fig. 14 is in the amplitudes
of vibration. However, there is no clear trend in these
changes—the amplitude for the cracked shaft may be
larger (Cnf3) or smaller (Cnf2) than for the uncracked
(Cnf1) shaft. This observation is true for other exper-
imentally registered cases, not shown in Fig. 14, and
confirms, what has already been noticed in Sect. 5.2
(and in literature), that the amplitude changes cannot
be considered as reliable shaft crack indications. Note
also that the obtained vibration responses are disturbed
with somemeasurement noise. Therefore, the proposed
method may be applied, expecting that due to its abil-
ity to eliminate the influence of external disturbances,
and independence on absolute amplitude values, the
obtained crack indications will be more robust.

According to the method, also in the experimental
case the vibration response of the rotor is analyzed in
two separate time intervals �t1 and �t2 (Fig. 15). To
detect the peaks, a simple procedure is applied inwhich
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Fig. 13 Experimental frequency responses of the rotor, a uncracked rotor (Cnf1), b, c cracked rotor (Cnf2 and Cnf3)

Fig. 14 Experimental shaft positions at Ω = 800 rpm

the measured vibration response is approximated with
a sine function.

Example auto-correlation functions Ryy1(m),
Ryy2(m) are shown in Fig. 16. The differences between
these functions obtained for the uncracked and cracked
rotor are larger than in the simulated case (compare
Figs. 9 and 16), yet again their analytical representa-
tions Ryy1(τ ), Ryy2(τ ) are calculated (Eq. 14) and rel-
ative changes�A j ,�Bj in model parameters (Eq. 17)
are used to create damage maps and assess the possible
appearance of a shaft crack.

Experimental damage maps obtained for the three
considered configurations of the rotor are presented in
Fig. 17. The indications of a possible shaft crack in the
rotor shown in Fig. 17 are clearly visible. The damage
maps of the healthy rotor (Cnf1) are predominantly
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Fig. 15 Time intervals for auto-correlation calculations–
experimental vertical positions of the shaft rotating at Ω = 800
rpm

green. The maps of the cracked rotor (Cnf2, Cnf3) are
predominantly black. Again the predominant colors in
eachmap reflect the technical condition of the rotor and
confirm the effectiveness of the proposed method also
in the experimental case.

When comparing the simulation and experimental
results, it appears that the proposed method is even
more sensitive to shaft crackswhen applied experimen-
tally than when introduced in a simulation procedure.
As can be seen in experimentally obtained Fig. 17b, c
damage maps are almost black. Similar damage maps
with mostly black areas are obtained in an undisturbed
simulation case in Fig. 11. For noisy simulation results
in Fig. 12, the damage maps are only red/blue for the
case of the cracked shaft.

This suggests that the white noise added to the sim-
ulation data does not accurately regenerate the real
disturbances that are present in the tested rotating
machine. Furthermore, the practical sensitivity of the
method may be even higher than predicted by simu-
lation calculations. This is because the mathematical
model does not include all physical phenomena that
exist in a real rotor.

Therefore, it is expected that the practical applica-
bility of the method will by high enough to detect not
only large (μ > 25%) but also small cracks. However,
to check and confirm this expectations, experimental
tests for rotors of different shaft crack depths and loca-
tions are required and are underway.

7 Conclusions

The rotor fault detection method presented in the paper
is based on auto-correlation and power spectral density
functions of the rotor vibration response measured at
the bearings. The response is analyzed in two separate
time intervals.When the intervals are in a close vicinity
to each other, the influence of external disturbances is
eliminated. Therefore, each change in the parameters of
the diagnostic model shall be interpreted as the change
in the technical condition of the machine.

Shaft crack indications are clearly readable and pre-
sented in a form of distinctive color maps, where the
predominant green implies the healthy shaft, and the
predominant black—the cracked shaft. The exact loca-
tions of the colors at the damage maps may be differ-

Fig. 16 Experimental auto-correlation functions of a selected vibration peak: a at time interval �t1, b at time interval �t2
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Fig. 17 Experimental damage maps at Ω = 800 rpm: a uncracked rotor (Cnf1), b, c cracked rotor (Cnf2 and Cnf3)
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ent, as the diagnostic thresholds are defined with mean
and standard deviation, i.e., with statistic parameters.
Therefore, not the exact locations but predominance
of a given color are important. The rotations at which
vibration peaks are analyzed can be chosen freely, yet
still the obtained damage maps clearly reflect the tech-
nical condition of the rotor.

Provided experimental and simulation results con-
firm that the method is able to reliably indicate the fault
even in the presence of variable amplitude values and
relatively high measurement disturbances. The method
is simple and uses only themeasured vibration data. No
initial preparation of the rotor for tests is required. The
machine can be monitored continuously online. This
gives chance for future practical implementation of the
method.

However, at the current state of its development, the
method cannot indicate the depth or location of the
shaft crack. It can only warn about a possible malfunc-
tion of the rotor, i.e., it can inform a diagnostic staff,
that the overhaul of the machine is required (when the
damage map is predominantly blue and red), or that the
replacement of the rotor can be considered (when the
damage map is predominantly red and black).

The efficiency of the method has been confirmed
only for shaft crack detection problems. Based on the
positive results obtained, it is expected that the method
can also accurately predict the appearance of other
malfunctions, e.g., rubbing or misalignment. However,
experimental verification is needed,which is underway.
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Appendix 1: Matrices of the rotor model

The forms of the matrices introduced in the motion Eq.
(23) are explained below.

Symmetrical inertia matrix of the shaft finite ele-
ment:

M = ρl

⎡

⎢⎢⎢⎢
⎢⎢
⎣

m1,1 m1,2 m1,3 m1,4 · · · m1,11 m1,12

m2,2 m2,3 m2,4 · · · m2,11 m2,12

m3,3 m3,4 · · · m3,11 m3,12

· · · · · · · · · · · ·
m11,11 m11,12

sym. m12,12

⎤

⎥⎥⎥⎥
⎥⎥
⎦

,

(A.1)

where the nonzero elements lying on themain diagonal
and above it are as follows:

m1,1 = A

3
, m1,2 = A

6
,

m2,2 = 13A

35
+ 6I3

5l2
, m2,6 = 11Al

210
+ I3

10l
,

m2,8 = 9A

70
+ I3

5l2
, m2,12 = −13Al

420
+ I3

10l
,

m3,3 = 13A

35
+ 6I2

5l2
, m3,5 = −11Al

210
− I2

10l
,

m3,9 = 9A

70
− 6I2

5l2
, m3,11 = 13Al

420
− I2

10l
,

m4,4 = I1
3

, m4,10 = I1
6

,

m5,5 = Al2

105
+ 2I2

15
, m5,9 = −m3,11,

m5,11 = −Al2

140
− I2

30
,

m6,6 = Al2

105
+ 2I3

15
, m6,8 = −m2,12,

m6,12 = −Al2

140
− I3

30
,

m7,7 = m1,1,

m8,8 = m2,2, m8,12 = −m2,6,

m9,9 = m3,3, m9,11 = −m3,5,

m10,10 = m4,4,

m11,11 = m5,5,

m12,12 = m6,6.

Symmetrical stiffnessmatrix of the shaft finite element:

K = E

l

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎣

k1,1 k1,2 k1,3 k1,4 · · · k1,11 k1,12
k2,2 k2,3 k2,4 · · · k2,11 k2,12

k3,3 k3,4 · · · k3,11 k3,12
· · · · · · · · · · · ·

k11,11 k11,12
sym. k12,12

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎦

,

(A.2)

where the nonzero elements lying on themain diagonal
and above it are as follows:

123

http://creativecommons.org/licenses/by/4.0/


688 R. Gradzki et al.

k1,1 = A, k1,7 = − k1,1,

k2,2 = 12I3
l2

, k2,6 = 6I3
l

,

k2,8 = − k2,2, k2,12 = k2,6,

k3,3 = 12I2
l2

, k3,3 = −6I2
l

,

k3,9 = − k3,3, k3,11 = k3,5,

k4,4 = I1
2 (1 + ν)

, k4,10 = − k4,4,

k5,5 = 4I2, k5,9 = − k3,5, k5,11 = 2I2,

k6,6 = 4I3, k6,8 = − k2,6, k6,12 = 2I3,

k7,7 = k1,1,

k8,8 = k2,2, k8,12 = − k2,6,

k9,9 = k3,3, k9,11 = k3,5,

k10,10 = k4,4,

k11,11 = k5,5,

k12,12 = k6,6.

Anti-symmetrical gyroscopic matrix of the shaft finite
element:

DG = 2ρ

⎡

⎢⎢⎢
⎢⎢⎢
⎣

d1,1 d1,2 d1,3 d1,4 · · · d1,11 d1,12
d2,2 d2,3 d2,4 · · · d2,11 d2,12

d3,3 d3,4 · · · d3,11 d3,12
· · · · · · · · · · · ·

d11,11 d11,12
antisym. d12,12

⎤

⎥⎥⎥
⎥⎥⎥
⎦

,

(A.3)

where the nonzero elements lying above diagonal are
as follows:

d2,3 = −13Al

35
, d2,5 = −11Al2

210
, d2,9 = −9Al

70
,

d2,11 = −13Al2

420
, d3,6 = d2,5, d3,8 = − d2,9,

d3,12 = d2,11, d5,6 = − Al3

105
, d5,8 = d2,11,

d5,12 = − Al3

140
, d6,9 = d2,11, d6,11 = − d5,12,

d8,9 = d2,3, d8,11 = − d2,5,

d9,12 = − d2,5, d11,12 = d5,6.

In the above formulas A is the cross-sectional area of
the shaft element, l is the length of the shaft element,
I1, I2 and I3 are the moments of inertia of the cross
section of the shaft element with respect to the x1, x2,
x3 axis, ρ is the density, E the Young’s modulus and ν

the Poisson’s ratio of the rotor material.
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