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Abstract This study has presented an improved
method for determining physical nonlinearities of
weakly nonlinear spring-suspension system and suc-
cessfully applied to a novel hybrid aeroelastic–pressure
balance (HAPB) system used in wind tunnel, which
can be used for simultaneously obtaining the unsteady
wind pressure and aeroelastic response of a test model.
A nonlinear identification method of equivalent lin-
earization approximation was firstly developed on the
basis of the averaging method of Krylov–Bogoliubov
to model the physical nonlinearity of a weakly nonlin-
ear system. Subsequently, the nonlinear physical fre-
quency and damping were identified using a modified
Morlet wavelet transform method and a constant vari-
ant method. Using these methods, the physical nonlin-
ear frequency and damping of the HAPB systemwith a
vertical test model were determined and were validated
by a time domain method and the Newmark-β method.
Finally, the nonlinear mechanical frequency and damp-
ing of the HAPB system with inclined test models
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were determined in a similar way. This study has not
only provided an identification method for determin-
ing physical nonlinearities of weakly nonlinear sys-
tem, but presented the detail for developing a hybrid
aeroelastic–pressure balance used in wind tunnel.

Keywords Physical nonlinearities · Equivalent
linearization approximation · Modified Morlet wavelet
transform · Hybrid aeroelastic–pressure balance

1 Introduction

Conventionally, a linear mechanical vibration model
is utilized to determine the physical nonlinearities
(nonlinear damping and stiffness) of a system from a
free decay test in wind and offshore engineering [1–
4]. Using the values identified by the linear model,
responses of various engineering objects are predicted.
However, as pointed out by Staszewski [5], all physi-
cal and engineering systems inevitably exhibit in prac-
tice nonlinear behaviors which may arise from struc-
tural, geometric andmaterial properties.A linearmodel
applied to a nonlinear system would result in signifi-
cant inaccuracies in response predictions of the sys-
tem. Though the nonlinear frequency and damping of
a weakly nonlinear systemmay vary slowly with oscil-
lating amplitude, and the physical nonlinearities of
the system are small in quantity, their presence would
lead to different dynamic behaviors, such as the long-
duration behaviors of energy dissipation and phase
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modulation due to the time-varying nonlinearities of
the system. Since a nonlinear system can display com-
plex phenomenon that a linear system cannot, the dis-
tinction between a linear and a nonlinear system should
be well concerned.

The most common method to identify the physi-
cal nonlinearities of a system is the Hilbert transform
(HT) method, which was developed in 1980s [6]. It uti-
lizes the transit amplitude and frequency of the impulse
response function to obtain the backbone curve and
quantitative information about the nonlinear behavior
of the system [5]. Due to its convenience, the method
has received much attention and been widely utilized
to many systems [7–9]. Despite its success, it has some
limitations. For example, it is valid only for asymp-
totic signals and the ‘end effect’ or ‘Gibbs effect’ may
be significant due to the incomplete data periodicity in
the discreteHT [10,11]. Combining theHTmethod and
an empirical mode decomposition method, the Hilbert-
Huang transform (HHT) method was proposed and has
been utilized to analyze nonlinear and nonstationary
time series [12]. The HHTmethod is effective in signal
decomposition and time-frequency domain analysis,
but it could not separate closely spacedmulti-frequency
signals into a set of mono-frequency components. The
Wigner–Ville distribution [13], Gabor transform [14]
and Wavelet transform [15–17] have also been devel-
oped and provided the most effective results for single-
degree-of-freedom (SDOF) systems. However, they
have been proved to be difficult for nonlinearities of
multi-degree-of-freedom (MDOF) systems since the
analysis requires bandpass filtration of the signal. To
avoid the problems, a few attempts have been made to
identify nonlinear parameters of MDOF systems, i.e.,
the improved HHT [18], the improved Wavelet trans-
form [5,15], and the harmonic balance method [19].
For weakly nonlinear systems, other methods have also
been developed including the equivalent linearization
method [20], the force-state mapping method [21], and
the restoring force surface method [22], etc. These
methods are complicated in use, and the accuracy is
not good enough for weakly nonlinear systems.

A high-frequency base balance (HFBB) or syn-
chronous multi-pressure sensing system (SMPSS) test
technique is often utilized to obtain aerodynamic per-
formances of bluff bodies, such as building and bridge
models, and an aeroelastic test technique is frequently
carried out for the evaluation of aeroelastic perfor-
mances [23,24]. However, both the HFBB and SMPSS

techniques are static forcemeasurements, whichmeans
that the techniques cannot consider the effect of struc-
tural motion that may have great effect on the evalu-
ation of aerodynamic and aeroelastic performances of
a structure. The aeroelastic test is used for obtaining
aeroelastic response, but it cannot give aerodynamic
forces on a test model simultaneously. To compre-
hensively study the effect of structural motion, both
the aerodynamic force and aeroelastic response mea-
surements of a structure are required. To the author’s
best knowledge, very few studies have concentrated on
the hybrid aeroelastic–pressure balance used in wind
tunnel.

This study aims to (1) propose a method to iden-
tify the physical nonlinearity of weakly nonlinear sys-
tems; (2) to devise a novel hybrid aeroelastic–pressure
balance (HAPB) test system and identify the physi-
cal nonlinearities of the system using the proposed
method. In Sect. 2, the solution of aweak nonlinear sys-
tem is derived from the averaging method of Krylov–
Bogoliubov and the ELA method. Subsequently, a
modified Morlet wavelet transform (MMWT) method
is proposed and utilized for the identification of the
nonlinearities of aweakly nonlinear system.A constant
variant method is also employed to determine the non-
linear damping of the system. In Sect. 3, a HAPB sys-
tem is devised and the physical damping and stiffness
of the system were identified by a conventional linear
model. The physical damping and stiffness identified
by the linear model are constant, and the linear model
has been proved to be not precise enough in the predic-
tion of long-term free decay response due to the igno-
rance of the slow varying characteristics of the system.
In Sect. 4, the physical nonlinearities of the HAPB sys-
tem with a vertical test model are determined by using
the methods developed in Sect. 2. The nonlinearities
are validated by comparing the obtained nonlinearities
with those obtained from a time domainmethod and are
further verified by comparing the response calculated
from the identified nonlinearities with the response
directly observed from a free decay test. After verifying
the nonlinearities of the HAPB system with a vertical
test model, Sect. 5 presents the physical nonlinearities
of the system with inclined test models. The present
study makes sense in several aspects: (1) the analytical
methods can be used for identifying physical nonlinear-
ities of weakly nonlinear systems; (2) a HAPB system
that can measure the aeroelastic and aerodynamic per-
formance of structures was devised; (3) the identified
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Identification of physical nonlinearities of a hybrid 97

nonlinearities of the HAPB system are potential to be
employed to the dynamic analysis of a test system, such
as the analysis of the wind-induced oscillation of bluff
bodies (e.g., building and bridge pylon or deckmodels).

2 Nonlinear identification model

2.1 Equivalent linearization approximation

In an equivalent linearization approximation (ELA),
the response of a weakly nonlinear system (SDOF)
is regarded as a perturbation of undamped oscillator,
and the general differential equation governing the free
decay response of the system is expressed as

ü(t) + ε f [u̇(t), u(t)] + ω2
0u = 0 (1)

where ε is a small dimensionless parameter and 0 <

ε << 1. f (u̇, u) is a general nonlinear function of dis-
placement u and velocity u̇. It is well known that the
solution of Eq. (1), when ε = 0 (linear problem), is
u(t) = A cos(ω0t + ϕ) where A and ϕ are constants.
When ε �= 0, the solution of Eq. (1) can be deter-
mined by the averaging method of Krylov–Bogoliubov
[15,25], and is expressed as

u(t) = A(t) cos[ω0t + ϕ(t)] (2)

where A(t) and ϕ(t) are the amplitude and phase mod-
ulation of the free decay response of a nonlinear vibrat-
ing system and they are time-dependent functions.
Then, the first-order derivatives of Eq. (2) is expressed
as

u̇(t) = Ȧ(t) cos[ω0t + ϕ(t)]
−A(t)[ω0 + ϕ̇(t)] sin[ω0t + ϕ(t)] (3)

Suppose the velocity of the free decay response has the
same form as the harmonic oscillator and is expressed
as

u̇(t) = −A(t)ω0 sin[ω0t + ϕ(t)] (4)

The second-order derivative of the harmonic oscillator
is determined based on Eq. (4).

ü(t) = − Ȧ(t)ω0 sin[ω0t + ϕ(t)]
−A(t)ω0[ω0 + ϕ̇(t)] cos[ω0t + ϕ(t)] (5)

Comparing Eq. (3) with Eqs. (4), (6) is determined as

Ȧ(t)ω0 cos[ω0t + ϕ(t)]
−A(t)ϕ̇(t) sin[ω0t + ϕ(t)] = 0 (6)

Introducing all the relations in Eqs. (4)–(6) into the
differential equation Eqs. (1), (7) is obtained as

Ȧ(t)ω0 sin[ψ(t)] + A(t)ω0ϕ̇(t) cos[ψ(t)]
= −ε f {A(t) cos[ψ(t)],−A(t)ω0 sin[ψ(t)]} (7)

where ψ(t) = ω0t + ϕ(t).
Solving Eqs. (6) and (7), Ȧ(t) and ϕ̇(t) are obtained

as

Ȧ(t) = ε

ω0
sin[ψ(t)] f {A(t) cos[ψ(t)],

−A(t)ω0 sin[ψ(t)]} (8)

ϕ̇(t) = ε

ω0A(t)
cos[ψ(t)] f {A(t) cos[ψ(t)],

−A(t)ω0 sin[ψ(t)]} (9)

Applying Fourier expansion to Eqs. (8) and (9), we
have

f {A(t) cos[ψ(t)],−A(t)ω0 sin[ψ(t)]} sin[ψ(t)]

= K0(A) +
∞∑

n=1

[Kn(A) cos nψ + Ln(A) sin nψ]

(10)

f {A(t) cos[ψ(t)],−A(t)ω0 sin[ψ(t)]} cos[ψ(t)]

= P0(A) +
∞∑

n=1

[Pn(A) cos nψ + Qn(A) sin nψ]

(11)

where

K0(A) = 1

2π

∫ 2π

0
f {A(t) cos[ψ(t)],

−A(t)ω0 sin[ψ(t)]} sin[ψ(t)]dψ (12)

P0(A) = 1

2π

∫ 2π

0
f {A(t) cos[ψ(t)],

−A(t)ω0 sin[ψ(t)]} cos[ψ(t)]dψ (13)

Kn(A) = 1

π

∫ 2π

0
f {A(t) cos[ψ(t)],

−A(t)ω0 sin[ψ(t)]} sin[ψ(t)] cos[nψ(t)]dψ
(14)

Pn(A) = 1

π

∫ 2π

0
f {A(t) cos[ψ(t)],

−A(t)ω0 sin[ψ(t)]} cos[ψ(t)] cos[nψ(t)]dψ
(15)

Ln(A) = 1

π

∫ 2π

0
f {A(t) cos[ψ(t)],

−A(t)ω0 sin[ψ(t)]} sin[ψ(t)] sin[nψ(t)]dψ
(16)

Qn(A) = 1

π

∫ 2π

0
f {A(t) cos[ψ(t)],

−A(t)ω0 sin[ψ(t)]} cos[ψ(t)] sin[nψ(t)]dψ
(17)
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Then, Eqs. (8) and (9) can be rewritten by

Ȧ(t) = − ε

ω0
K0(A)

− ε

ω0

∞∑

n=1

[Kn(A) cos nψ + Ln(A) sin nψ]

(18)

ϕ̇(t) = − ε

ω0A(t)
P0(A)

− ε

ω0A(t)

∞∑

n=1

[Pn(A) cos nψ + Qn(A) sin nψ]

(19)

For a weakly nonlinear system, the variation of Ȧ(t)
and ϕ̇(t) is small because of the small parameter ε,
so that the variation could be approximated by their
changes in the corresponding single period. Therefore,
based on the method of Krylov–Bogoliubov, Ȧ(t) and
ϕ̇(t) can be approximated by the zero-harmonic term
of Fourier series and are expressed as

Ȧ(t) = − ε

ω0
K0(A)

= − ε

2πω0

∫ 2π

0
f {A(t) cos[ψ(t)],

−A(t)ω0 sin[ψ(t)]} sin[ψ(t)]dψ (20)

ϕ̇(t) = − ε

ω0A(t)
P0(A)

= − ε

2πω0A(t)

∫ 2π

0
f {A(t) cos[ψ(t)],

−A(t)ω0 sin[ψ(t)]} cos[ψ(t)]dψ (21)

Equations (20) and (21) allow to readily obtain an
approximate analytical solution describing the oscillat-
ing behavior of aweakly nonlinear system, for different
forms of the nonlinear function f (u̇, u). The solution
of Eq. (1) using the method of Krylov–Bogoliubov is
the same with that using the method of multiple scales
introduced in previous studies [10,26–28].

An equivalent linearization approximation method
is then applied to model the physical nonlinearities
of a weakly nonlinear system by introducing a damp-
ing coefficient D(A)which is in-phase with oscillation
velocity and a restoring force coefficient S(A)which is
in-phase with oscillation displacement, defined in Eqs.
(22) and (23).

D(A) = ε

π A(t)ω0
·
∫ 2π

0
f {A(t) cos[ψ(t)],

−A(t)ω0 sin[ψ(t)]} sin[ψ(t)]dψ (22)

K (A) = ω2
0 + ε

π A(t)
·
∫ 2π

0
f {A(t) cos[ψ(t)],

−A(t)ω0 sin[ψ(t)]} cosψ(t)dψ (23)

Substituting Eqs. (20) and (21) into Eqs. (22) and (23),
respectively, we have

Ȧ = D(A)

2
· A (24)

ϕ̇ = ωe(A) − ω0 (25)

where ωe(A) = √
K (A).

Differentiating Eq. (2) with respect to t and combin-
ing it with Eqs. (24) and (25), we have

u̇(t) = Ȧ(t) · cos[ω0t + ϕ(t)]
−A(t) · sin[ω0t + ϕ(t)] · [ω0 + ϕ̇(t)]

= D(A)

2
· u − A · ωe(A) · sinψ (26)

ü(t) = 1

2

dD(A)

dA
· dA
dt

· u

+D(A)

2
·
[
D(A)

2
· u − A · ωe(A) · sinψ

]

− Ȧ · ωe(A) · sinψ

−A ·
[
dωe(A)

dA
· dA
dt

· sinψ

+ωe(A) · cosψ · (ω0 + ϕ̇)]

= −D(A)u̇ − K (A)u + D2(A)

4
u

−1

4

dD(A)

dA
D(A) · A · u

−dωe(A)

dA
· D(A)

2
· A2 · sinψ (27)

Rewriting Eq. (27), we have

ü(t) + D(A)u̇ + K (A)u

= D2(A)

4
u − 1

4

dD(A)

dA
D(A) · A · u

−dωe(A)

dA
· D(A)

2
· A2 · sinψ (28)
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From Eqs. (24) and (25), we know

D(A) = o(ε) (29)
dD(A)

dA
= 2

A2

(
A · dA

′

dA
− A′

)
= o(ε) (30)

dωe(A)

dA
= dϕ′(A)

dA
= o(ε) (31)

Combining Eq. (28) with Eqs. (29)–(31), we have

ü(t) + D(A)u̇(t) + K (A)u(t) = o(ε2) (32)

By using equivalent viscous damping and frequency,
Eq. (32) can be further expressed as

ü(t) + 2ωe(A)ξe(A)u̇ + ω2
e (A)u = o(ε2) (33)

where ξe(A) and ωe(A) are equivalent amplitude-
dependent damping ratio and amplitude-dependent cir-
cular frequency, respectively.

From Eq. (33), the damping and frequency of a non-
linear system are approximated by a first-order approx-
imation. Comparing Eq. (33) with the linear model
of Eq. (1), the nonlinear damping and frequency of a
weakly nonlinear system are amplitude-dependent and
would be accurate to model the physical nonlinearities
of a spring-suspension weakly nonlinear system.

2.2 System identification

To determine the slow varying amplitude-dependent
damping and frequency in Eq. (33), a modified Mor-
let wavelet transform (MMWT) method and a constant
variant method are proposed hereunder. Thesemethods
will be verified and applied to the identification of the
nonlinearities of a weakly nonlinear system.

2.2.1 Modified Morlet wavelet transform and
wavelet entropy

One can refer to the background of the continuous
wavelet transform in previous studies [29,30]. Herein,
a modified Morlet wavelet transform function with a
bandwidth parameter fb that controls the shape of the
wavelet is directly defined as

λ(t) = 1√
π fb

e−t2/ fbeiω0t (34)

where fb is a bandwidth parameter and can give a nar-
rower bandwidth allowing a better frequency resolu-
tion, but at the expense of time resolution. Therefore,
there exists an optimal fb that balances the time and

frequency resolution of a certain signal localized in the
time-frequency domain. The modified MMWT func-
tion offers a better compromise in both time and fre-
quency of a signal, than a traditional Morlet wavelet
function. The optimal bandwidth parameter can be
determined by minimizing the entropy of the wavelet
coefficients introduced hereunder.

Assume that the signal u(t) is given by a series
of sampled values {u(n)}, where n = 1, 2, . . . N . In
the wavelet multi-resolution analysis of the time series
{u(n)}, the energy for each scale ai is

Eai =
∑

j

∣∣Wλ[u](ai , b j )
∣∣2 (35)

where Wλ[u](ai , b j ) are a set of wavelet coefficients
over a number of translations b j . The total energy is
then obtained by Etotal = ∑

i Eai , and the normalized
energy is obtained by Epi = Eai/Etotal representing
the relative energy for different i . The distribution of
Epi is considered as a time-scale density and the Shan-
non entropy [15,31] is a useful tool to analyze and com-
pare the distribution.Based on the Shannon entropy, the
time-varying wavelet entropy is defined as

WE =
∑

i

E pi log(Epi ) (36)

From Eq. (42), the optimal bandwidth parameter fb is
determined by minimization of the wavelet entropy.

2.2.2 The ridge and skeleton of the modified Morlet
wavelet transform

A class of signals called asymptotic was defined and
some results for the time-frequency analysis of the sig-
nals were obtained in a previous study [15]. Based on
the study, a signal in form of Eq. (2) is asymptotic if
the amplitude A(t) varies slowly compared to the vari-
ations of the phase ϕ(t). From the definition, the signal
is expressed as ua(t) = A(t)eiϕ(t) and the time-varying
angular frequency is ω(t) = ϕ̇(t). Then, the continu-
ous wavelet transform of an asymptotic signal u(t) is
obtained by asymptotic techniques and is expressed as
[15]

Wλ[u](a, b) =
√
a

2
A(b)eiϕ(b)λ̂[aϕ̇(b)] (37)

where λ̂ is the dilated version of the Fourier transform
of Eq. (34) and λ̂(aω) = e− fb/4(aω−ω0)

2
.
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Using the MMWT defined in Eqs. (34), (37) is
rewritten as

Wλ[u](a, b) =
√
a

2
A(b)eiϕ(b)e− fb/4(aϕ̇(b)−ω0)

2
(38)

The term e− fb/4(aϕ̇(b)−ω0)
2
is interpreted as an energy

density distribution over the time-scale plane. The con-
centration region of the energy on the time-scale plane
is called the ridge of the continuous wavelet trans-
form. The region corresponds to the maximum ampli-
tude of the continuous wavelet transform. The ridges
are identified by searching out the maximum local
coefficients of the continuous wavelet transform: for
each value of b, a value of a is determined such as
|Wλ[u](a(b), b)| = maxa |Wλ[u](a, b)|. To obtain the
ridge, the dilatation parameter, a = a(b) = ω0/ϕ̇(b),
has to be determined bymaximizing the λ̂[aϕ̇(b)] using
the MMWT. We obtain

Wλ[u](a(b), b) =
√
a(b)

2
A(b)eiϕ(b) (39)

FromEq. (37), the real component of theMMWTalong
the ridge is directly proportional to the signal given by
Eq. (2), and we have

A(b) = 2
Wλ[u](a(b), b)√

a(b)
(40)

ϕ(b) = ang(Wλ[u](a(b), b)) (41)

The ridge and skeleton will be used for the estima-
tion of the instantaneous oscillating amplitude A(t)
and instantaneous angular frequency ωe(A) = ϕ̇(t).
It should be noted that since the identified circular fre-
quencyωe(A)varies slowlywith the variable A(t), only
the long-term trend of ω(t) is considered in the func-
tion of ωe(A). However, the ω(t) of a weakly non-
linear system always contains significant fast-varying
components that are large in magnitude. The fast com-
ponents can be eliminated by removing in advance the
fast component contained inϕ(t) through a least square
polynomial fitting on the identified data.

2.2.3 Determination of instantaneous damping ratio

The instantaneous damping is dependent on energy dis-
sipationof a vibration systemand is oftendifferent from
case to case. It is generally difficult to determine the
instantaneous damping from responses of vibration. In
this study, a constant variant method is applied to iden-
tify the nonlinear damping ratio of a weakly nonlinear
system.

For a linear system, the instantaneous amplitude of
a free decay response is written as

A(t) = μ0e
−ξ0ω0t (42)

Equation (42) can be rewritten by

− 1

ω0
ln A(t) + ln u0

ω0
= ξ0t (43)

Equation (43) is further generalized as

B(t) + B0 = ξ0t (44)

In a linear system, B(t) is linear with time and the
damping ratio is the slope of the linear curve of B(t).

In a nonlinear system, the damping ratio and fre-
quency are amplitude dependent. Similar with the
expressions for a linear system in Eq. (42), the instanta-
neous amplitude of a free decay response is expressed
as

A(t) = μ0e
−ξe(A)ωe(A)t (45)

Similarly,

B(t) + B0 = ξe(A)t (46)

where

B(t) = − 1

ωe(A)
ln A(t) (47)

B0(t) = − 1

ωe(A)
ln u0 (48)

Apparently, in a nonlinear system, B(t) varies nonlin-
early with time, and the slope of B(t) is the amplitude-
dependent damping ratio ξe(A) that can be determined
by the instantaneous amplitude A(t) identified by the
MMWT given in Eq. (46). The amplitude-dependent
damping ratio is expressed by

ξe(t) = dB(t)

dt
= − 1

ωe(t)A(t)
Ȧ(t) (49)

Following the above procedure, the nonlinearities of a
weakly nonlinear systemcan be determined and quanti-
fied. For the purpose of convenient application, a frame-
work for the identification of the nonlinearities of a
weakly nonlinear system is summarized in Fig. 1.

3 A hybrid aeroelastic–pressure balance (HAPB)

3.1 Development of HAPB system

As mentioned before, a novel HAPB system was
devised to simultaneously measure the unsteady wind
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A weak nonlinear 
mechanical system

Equation of motion

Solution

The Krylov-
Bololiubov method
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Mathematical 
models 
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Fig. 1 A framework for the identification of the nonlinearities
of a weakly nonlinear system

force and response of a rectangular test model (bridge
pylon). The measured wind force including the effect
of structural motion is more accurate than that mea-
sured from the conventionalwind tunnel test techniques
(i.e., the HFBB and the SMPSS test techniques). The
test model is made of high-performance plastic with a
dimension of 50.8 mm × 50.8 mm × 914.4 mm. The
test rig is made of high-strength aluminum alloy, and
the diameter of the turntable is 60 cm. The elements of
the HAPB system are presented in Fig. 2.

In Fig. 2, the test model (E) was fixed with the cir-
cular plate (D) by two clamping steels. The circular
plate was linked to the circular ring (C) by pivot. The
‘U’-shaped connection (G) was connected with (D).
The spring, adjustingmass, and themechanical damper
immersed in the oil tank (N) (Figs. 2, 3) were used to
adjust the mechanical parameter (i.e., the stiffness and
damping) of the system. When the test model (E) is
excited by outer force (e.g., wind force), it oscillates
with the circular plate (D) and the ‘U’-shaped connec-
tion. The oscillation of the ‘U’-shaped connection was
associated with the deformation of the cantilever beam,
which was recorded by a strain collection system. The
relationship between the observed strain of the can-

Fig. 2 Assembly schematic diagramof theHAPBsystem: (A)—
turntable; (B)—rectangular block; (C)—circular ring; (D)—
circular plate; (E)—test model; (F)—clamping steel; (G)—
‘U’-shaped connection; (H)—adjusting mass; (I), (K), (M)—
connecting rods; (J)—mechanical damper; (L)—cantilever
beam; (N)—oil tank

tilever beam and the tip oscillating amplitude of the test
model (E) was determined through a method of static
calibration. Details of the calibration can be found in
a previous study [32]. Accordingly, the time-history
response of the test model was obtained. Meanwhile,
the wind-induced unsteady pressure of the prism was
measured by using pressure taps that connected with
the pressure tubes installed in the test model (Fig. 3).
There are 72 pressure taps installed on lateral faces of
the test model, which were connected with 72 pres-
sure tubes and 12 pressure transducers. The length and
diameter of the pressure tube are 1.2 m and 2 mm,
respectively.

The aerodynamicbehaviors of inclined square prisms
have been investigated comprehensively [1,33,34], due
to its practical significance for bridge towers. The
prevalence of the inclined structures is due to not only
its artistic appearance but also superior load-bearing
performance. It should be emphasized that the HAPB
system is not only utilized to test vertical prisms, but
also inclined prisms by changing different pairs of the
clamping steel (F) (Fig. 2). The inclination α of the
models ranged from 0◦ to 30◦ at an interval of 10◦
(Fig. 4).

The free decay response tests of the system with
vertical and inclined test models were performed in the
high wind speed section of the wind tunnel at the CLP
PowerWind/Wave Tunnel Facility of the Kong Univer-
sity of Science and Technology. The dimensions of the
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Fig. 3 HAPB system: a schematic diagram; b test rig and model; c distribution of pressure taps

Fig. 4 Inclined test models:
a schematic diagram; b an
inclined model in a wind
tunnel

α
(a) (b)

highwind speed test section are 29.2m long× 3mwide
× 2 m high. The test model was pivoted to oscillate
under excitation. The test model was excited by an ini-
tial displacement (around 0.3 times of themodel width)
in cross-wind direction. The free decay response at the
tip end of the test model was recorded, at a sampling
frequency of 500Hz, by using a laser displacement sen-
sor or strain gauges attached in the cantilever beams of
the HAPB system (Fig. 3). The model stiffness ks was
441.7 N/m, and the corresponding equivalent density
of the test models was 274 kg/m3 obtained from static
calibrations. The fundamental frequency and the damp-
ing ratio of the test models can be determined by the
free decay tests of the models. They have been detailed
in the following using linear and nonlinear analytical
models.

3.2 System identification: a linear identification

Using the linear identification model presented in
“Appendix A”, the undamped frequency and damping
ratio of the HAPB systemwith a vertical test model are
determined froma free decay signal (blue line inFig. 5),
and ω0 = 49.26 rad/s and ξ0 = 0.69%, respectively.
To verify the effectiveness of the linear identification
model, the time-history response was calculated from
Eq. (A2) and compared with that directly measured
from the HAPB system with a vertical test model. Fig-
ure 5 displays notable discrepancies between the free
decay response computed by the linear model and that
directly measured from the HAPB system. The dis-
crepancies are ascribed to the poor estimation of the
long-duration of phase and amplitude. Figure 5 also
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Fig. 5 Comparison of free
decay response predicted by
the linear model with that
measured from the HAPB
system with a vertical test
model

shows that the phase computed by the linear model
does not agree well with that directly measured from
the HAPB system, and the computed successive peaks
are notably larger than the directly measured. This was
induced by the considerable effect of the mechanical
nonlinearities of the HAPB. These physical nonlinear-
itiesmay be caused by friction between joints and inter-
faces and nonlinearities of the helical springs (Figs. 2,
3). Also, the pressure tubes installed in the test model
would oscillate with the oscillation of the test model,
and this may generate nonlinearities of the HAPB sys-
tem to some extent. The above illustration suggests that
the physical nonlinearity would cause a time-varying
or amplitude-dependent natural frequency, and a con-
ventional linear model is limited to predict the time-
varying or amplitude-dependent mechanical nonlinear
characteristics. It is necessary to develop a nonlinear
analytical model to precisely identify the mechanical
nonlinearities of the HAPB system, which should be
precise enough to predict the free decay response of
the HAPB system.

4 Verification of the identification for the physical
nonlinearities of the HAPB system

The nonlinearities of the HAPB system with a vertical
test model (α = 0◦, in Fig. 3) will be identified by the
proposed method (Sect. 2), and will be validated by
a time domain method and the Newmark-β method.
Then, the nonlinearities of the HAPB system with
inclined test models will be identified in a similar way.

4.1 Analytical process using the modified Morlet
wavelet transform

The free decay response of the HAPB system with a
vertical test model is observed in Sect. 2.2 (blue line
in Fig. 5). The amplitude of the response using the
MMWT given by Eq. (34) for bandwidth parameter
fb = 2 is presented in Fig. 6. It shows that the time-
frequency resolution is not good. To ensure the time-
frequency resolution, the optimal bandwidth fb of the
MMWT is determined by minimization the wavelet
entropy defined in Eq. (36). It is observed in Fig. 7 that
the optimal fb is found as fb = 49 leading to a min-
imum wavelet entropy. The amplitude of the MMWT

Fig. 6 Amplitude of the MMWT for fb = 2
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Fig. 7 Entropy of the MMWT

Fig. 8 Amplitude of the MMWT for fb = 49

for fb = 49 is presented in Fig. 8. It is found that the
time-frequency resolution is well improved.

The coefficient of the MMWT is then determined
from Fig. 8, and the ridge and skeleton of the MMWT
are extracted from Eq. (41). As a consequence, the
envelope A(t) of the signal is determined. The com-
parisons of the envelope predicted by the MMWT and
that directly observed are given in Fig. 9. It shows that
the envelope predicted by the MMWT for fb = 49
is in better agreement with the directly observed than
that for fb = 2. Moreover, the plots of the envelope
predicted by the MMWT for fb = 49 and the directly
observed coincide well with each other apart from the
beginning of the data due to significant ‘end effect’.
This effect has been studied in a number of previous
studies [35–37]. Note that the effect can be reduced by

Fig. 9 Comparisons of the envelope predicted by the MMWT
and that directly observed

Fig. 10 Instantaneous frequency and response of the signal

adding zeros or by adding negative values of the sig-
nal at the end region [35], or it could be fitted out as
long as the signal is long enough. We adopt the latter
method to reduce the effect, and the identification of
nonlinearities using this method will be verified.

The phase of the signal is determined by Eq. (36).
It is found in Fig. 10 that the instantaneous frequency
identified from theMMWThas significant fast-varying
components. As mentioned before, the fast-varying
components contained in ϕ(t) should be removed in
advance through a least square (LS) polynomial fitting.
The instantaneous frequency and response of the sig-
nal identified from the MMWT and that removing the
fast-varying component by the LS fitting are plotted in
Fig. 10.
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Fig. 11 B(t) calculated from MMWT and weighted by the LS

Fig. 12 Identifications and comparisons of the nonlinear fre-
quency of the HAPB system

Figure 11 plots B(t) given by Eq. (47). It is observed
that the slope of B(t)varies slowlywith time, indicating
that the damping ratio identified by Eq. (49) would also
varies slowly with time. Using the LS method, B(t) is
weighted by a polynomial, which is readily utilized to
obtain the damping ratio of the signal.

4.2 Nonlinear physical frequency and damping ratio

The nonlinear frequency fe = ωe/2π and damping
ratio of the HAPB system with a vertical test model
are identified by the MMWT method following the
framework in Fig. 1. Figure 12 presents the nonlin-
ear frequency of the system. It is observed that the
nonlinear frequency of the system decreases slowly
with increasing oscillating response, suggesting that

Fig. 13 Identifications and comparisons of the nonlinear damp-
ing of the HAPB system

the stiffness of the HAPB system is a weakly nonlin-
ear system. Figure 12 also plots the constant frequency
identified by the linear model presented in “Appendix
A”. Comparing the nonlinear frequency with the con-
stant frequency indicates that the slow varying behav-
ior of the frequency is filtered out by the linear model,
and the complex behavior of phasemodulation is there-
fore not precisely predicted (in Fig. 5). Moreover, the
nonlinear frequency identified by the MMWT is com-
pared with that identified by a time domain method
detailed in “Appendix B” (Figs. 16, 17). It is note-
worthy that the nonlinear frequency identified by the
MMWT is in good agreement with that identified
by the time domain method, suggesting that the pro-
posed identification method for the identification of the
nonlinear frequency of the HAPB system is reliable
and the identified nonlinear frequency of the system,
fe = − 1.734A(t)0.003626 + 9.529, could be utilized
for further analysis.

Figure 13 plots the nonlinear damping of the HAPB
system with a vertical test model. It is noted that the
nonlinear damping increases gradually with amplitude
of oscillation. The damping identified from the lin-
ear model presented in “Appendix A” is linear, and
can only describe approximately the dissipative behav-
iors of the nonlinear oscillating HAPB system. Fur-
thermore, the nonlinear damping identified by a time
domain method is also plotted and compared with the
nonlinear damping identified by the MMWT method.
Figure 13 shows that the nonlinear damping identified
by the MMWT agrees well with that obtained from the
timedomainmethoddefined in “AppendixB” (Figs. 16,
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17). There exist slight discrepancies at large oscilla-
tions (i.e., u/D = 12−−20%), whichmay be attribute
to the errors caused by curve fitting, such as the errors in
the curve fitting of B(t), fe, etc. But the discrepancy is
so small (the maximum is around 1.27%) that it is neg-
ligible. This suggests that the proposed identification
method is reliable and the identified nonlinear damping
of the HAPB system, ξ = − 0.004914A(t)−0.05913 +
0.0142, could be utilized for further analysis.

The nonlinearities of the HAPB system, depicted in
Figs. 12 and 13, may arise from a series of uncertain-
ties of the system. Generally, the nonlinear frequency
of the system is due to the nonlinear elastic effect of

restoring stiffness, and the nonlinear damping of the
system is attributed to a complicated energy dissipative
mechanism. More specifically, the physical sources of
the nonlinearities of the HAPB system are briefly sum-
marized as: (1) the viscous damping generated by the
interaction between the sounding still air and the test
model; (2) the friction between the components of the
HAPB system at joints, connections, and interfaces (in
Fig. 2); (3) the viscous damping generated by the oscil-
lation of the pressure tube attached on the inside sur-
face of the test model (in Figs. 3, 4); (4) the material
damping of the HAPB system, due to complex molec-
ular interactions within the material; (5) the nonlinear
damping introduced by additional dampers, such as air
or oil damper in Fig. 3.

4.3 Verification of the identified nonlinear physical
frequency and damping ratio

To further validate the nonlinear frequency (Fig. 12)
and nonlinear damping (Fig. 13) of the HAPB system
with a vertical test model, identified by the MMWT
method, the free decay response of the model is numer-
ically calculated by the Newmark-β method and com-
pared with the directly observed in Fig. 5.

By solving the equation of motion of Eq. (33)
using theNewmark-β method, the numerically calcu-
lated response of the displacement, velocity and accel-
eration of the HAPB system at time step ti+1 is given as

⎧
⎨

⎩

uti+1 = [(a0uti + a2u̇ti + a3üti ) + 2ξe(ti )ωe(ti )(a1uti + a4u̇ti + a3üti )]/[ω2
e (ti ) + a0 + 2a1ξe(ti )ωe(ti )]

u̇ti+1 = u̇ti + a6üti + a7üti+1

üti+1 = a0(uti+1 − uti ) − a2u̇ti − a3üti

(50)

where

a0 = 1

β · �t2
, a1 = γ

β · �t
, a2 = 1

β · �t
,

a3 = 1

2β
− 1, a4 = γ

β
− 1, a5 =

(
γ

2β
− 1

)
· �t,

a6 = (1 − γ ) · �t, a7 = γ · �t (51)

γ = 0.5, β = 1/6 (52)

The initial conditionu0 is defined as thefirst value of the
observed time-history response of theHAPBsystem (in
Fig. 4), and u̇0 = 0. The time step �t = 0.002 which
is the inverse of the sampling frequency (500 Hz).

The comparison of the time-history free decay
response computed from Eq. (50) and that directly
observed is presented in Fig. 14. It demonstrates that

Fig. 14 Comparison of the
time-history free decay
response computed from
Eq. (50) and that directly
observed
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Fig. 15 Physical nonlinearities of the HAPB system with inclined test models, identified from the MMWT

the computed response based on the identified non-
linear frequency and damping is coincide with the
directly measured, suggesting that the nonlinearities of
the HAPB system identified by theMMWTare reliable
and accurate. Comparing the result in Fig. 14 with that
in Fig. 4 indicates that the relatively poor agreement
using the linear model is attribute to the ignorance of
the nonlinearities of the HAPB system.

5 Nonlinearities of the HAPB system: with
inclined test models

As mentioned before, the HAPB system can also be
used to test models with different inclinations (Fig. 4).
The nonlinearities of the HAPB system with a vertical
systemhave been identified by theMMWTand verified

in the previous section. The nonlinearities of the system
with inclined test models are determined in a similar
way and are presented in Fig. 15. It shows that the non-
linear frequency and damping ratio of the system with
inclined test models vary with the inclination of the
models. This may be attribute to the different physical
sources induced by different inclinations: (1) the differ-
ent interactions between the sounding still air and the
test model; (2) the different frictions between the com-
ponents of theHAPB system at joints, connections, and
interfaces. But the trend is identical to that of theHAPB
system with a vertical test model. Also, both the non-
linear frequency and damping ratio of the system vary
slowly with increasing oscillating response, indicating
the stiffness and damping of the system with inclined
testmodels areweakly nonlinear systems.According to
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Fig. 15, the expressions of the nonlinear frequency and
damping ratio of the system weighted by the MMWT
are summarized in Eqs. (53) and (54), respectively.

fe =
⎧
⎨

⎩

− 0.2208A(t)0.02374 + 8.06 , α = 100

− 0.1425A(t)0.03909 + 8.186 , α = 200

− 0.1671A(t)0.02826 + 8.6 02, α = 300
(53)

ξe =
⎧
⎨

⎩

0.009911A(t)0.01467 − 0.001985 , α = 100

0.005435A(t)0.04038 + 0.00268 , α = 200

− 0.00801A(t)−0.01407 + 0.01705 , α = 300

(54)

6 Concluding remarks

This study has proposed an improvedmethod for deter-
mining physical nonlinearities of weakly nonlinear
spring-suspension system and successfully applied to a
novel hybrid aeroelastic–pressure balance (HAPB) sys-
tem used in wind tunnel, which can be used for simul-
taneously obtaining the unsteady wind pressure and
aeroelastic response of a test model. The identification
was verified through comparing the identificationswith
those identified by a time domain method. The main
findings are concluded: (1) The frequency and damp-
ing of theHAPB system identified by a linearmodel are
constant andwill lead to large discrepancies in response
predictions due to the ignorance of the slow varying
characteristics of the system. The nonlinearities of the
system have to be considered; (2) the proposed identifi-
cationmethod and the analytical schemeare precise and
reliable in identifying the nonlinearities of the system.
They are able to predict the long-duration free decay
response of the system; (3) the identified nonlinearities
of the system with inclined test models vary with the
inclination of the models, which may be attribute to the
different physical sources induced by the inclination.
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Appendix A: Linear identification model

It is common in practice to utilize a linear mechani-
cal model to identify the physical nonlinear stiffness
and damping of a wind tunnel test system from a time
series of free decay response. The linear model is also
applied to identify the parameters of the HAPB system.
In the linear model, the parameters are assumed to be
constant and invariant with time, and the equation of
motion of the system is therefore expressed as a time
invariant, second-order linear system

ü(t) + 2ξ0ω0u̇(t) + ω2
0u(t) = f (t) (A1)

where u(t), u̇(t) and ü(t) are the oscillating amplitude,
velocity and acceleration of the test model, respec-
tively; ξ0 is the equivalent viscous damping ratio; ω0

is the undamped natural circular frequency; f (t) is the
outer excitation (i.e., wind force).

The physical parameters in Eq. (A1) are identified
via a logarithmic decrement method from a free decay
response with f (t) = 0, and the free decay response is
expressed as

u(t) = u0e
−ξ0ω0t sin(ωdt + ϕ) (A2)

ωd = ω0
√
1 − ξ0 (A3)

where ωd is damped natural frequency.
The constant viscous damping ratio is determined

by the logarithm of the ratio of successive peaks and is
written as

ξ0 = 1
√

1 + (2πN/
N∑
i=1

ui
ui+1

)2

(A4)

where N is the total number of the successive positive
peaks (e.g., ui , ui+1).

The damped natural frequency ωd can be derived
from the time intervals of successive peaks and is
expressed as

ωd = 1

N

N∑

i=1

2π

ti+1 − ti
(A5)
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where ti corresponds to time of occurrence of the
successive peaks. The undamped frequency is then
obtained from Eq. (A3).

ω0 = ωd√
1 − ξ20

(A6)

Appendix B:A time domainmethod for comparison

A time domain method was proposed and verified in a
previous study [10]. This method is utilized to deter-
mine the instantaneous envelope and phase of a signal.
The process is briefly introduced infra.

Equation (26) is rewritten as

u̇(t) = −A(t)ω0 sin[ω0t + ϕ(t)] + o(ε) (B1)

From Eq. (B1), the responses of displacement and
velocity are expressed as

A(t)ei[ω0t+ϕ(t)] = u(t) − i
u̇(t)

ω0
(B2)

Projecting Eq. (B2) in Cartesian coordinate into the
coordinate of a complex plane, the instantaneous enve-
lope and phase of a signal can be obtained as

A(t) =
√

u(t)2 +
[
u̇(t)

ω0

]2
(B3)

ϕ(t) = − arctan
u̇(t)

ω0u(t)
(B4)

The instantaneous circular frequency is therefore
determined by the first-order differentiation of Eq.
(B4). We have

ϕ(t) = dϕ(t)

dt
= u̇(t)2 − ü(t)u(t)

ω0A(t)2
(B5)

where u̇(t) and ü(t) are the responses of the velocity
and the acceleration of the signal, and they can be deter-
mined by a fourth-order central difference method and
expressed as

u̇i =

⎧
⎪⎨

⎪⎩

−3ui+4ui+1−ui+2
2�t , 1 ≤ i ≤ 2

ui−2−8ui−1+8ui+1−ui+2
12�t , 2 < i ≤ n − 2

3ui−4ui+1+ui+2
2�t , n − 2 < i ≤ n

(B6)

üi =

⎧
⎪⎨

⎪⎩

ui−2ui+1+ui+2
�t2

, 1 ≤ i ≤ 2
−ui−2−16ui−1−30ui+16ui+1−ui+2

12�t2
, 2 < i ≤ n − 2

ui−2ui−1+ui−2
�t2

, n − 2 < i ≤ n

(B7)

Fig. 16 The instantaneous frequency of the free decay response
using the time domain method

Fig. 17 B(t) calculated from the time domain method and
weighted by LS

It should be mentioned that, before using the time
domain method, the low-pass signal needs to be
removed in advance by a low-pass filter. Then, the
amplitude-dependent circular frequency is obtained as

ωe(t) = dϕe(t)

dt
(B8)

where ϕe(t) is the long-term trend of identified ϕ(t).
The instantaneous damping ratio of a signal is deter-

mined by the constant variant method introduced in
Sect. 2.2.3, and the expressions are the same with those
in Sect. 2.2.3.

Using the time domain method and Eq. (B8), the
instantaneous frequency of the free decay response of
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the HAPB system with a vertical test model is deter-
mined as shown in Fig. 16.

The B(t) of the signal calculated from the time
domain method and weighted by LS is presented in
Fig. 17.

From Figs. 16 and 17, the nonlinear frequency and
damping ratio of the HAPB system are therefore deter-
mined by Eqs. (B8) and (49) based on the identified
instantaneous envelope and phase of the signal using
the time domainmethod. They are presented in Figs. 12
and 13, respectively, for the purpose of comparison.
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